Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
Added anchors and references for link sharing policies.
[simgrid.git] / doc / doxygen / platform.doc
1 /*! \page platform Platform Description
2
3 @tableofcontents
4
5 In order to run any simulation, SimGrid must be provided with three things:
6 something to run (i.e., your code), a description of the platform on which you
7 want to simulate your application and lastly information about the deployment
8 process: Which process should be deployed to which processor/core?
9
10 For the last two items, there are essentially two possible ways you can provide
11 this information as an input:
12 \li You can program it, either by using the Lua console (
13     \ref MSG_Lua_funct) or, if you're using MSG, some of MSG's platform and
14     deployment functions (\ref msg_simulation). If you want to use this,
15     check the particular documentation. (You can also check the section
16     \ref pf_flexml_bypassing, however, this documentation is deprecated;
17     there is a new, but undocumented, way to do it properly).
18 \li You can use two XML files: one contains the platform description while
19     the other contains the deployment instructions.
20
21 For more information on SimGrid's deployment features, please refer to
22 the \ref deployment documentation.
23
24 The platform description may be intricate. This documentation is all
25 about how to write this file: The basic concepts are introduced. Furthermore,
26 advanced options are explained. Additionally, some hints and tips on how to
27 write a good platform description are given.
28
29 \section pf_overview Some words about XML and DTD
30
31 We chose to use XML not only because it's extensible but also because many
32 tools (and plugins for existing tools) are available that facilitate editing and
33 validating XML files. Furthermore, libraries that parse XML are often already
34 available and very well tested.
35
36 The XML checking is done based on the Document Type Definition (DTD) file,
37 available at
38 <a href="http://simgrid.gforge.inria.fr/simgrid.dtd">http://simgrid.gforge.inria.fr/simgrid.dtd</a>.
39
40 If you read the DTD, you should notice the following:
41 \li The platform tags contain a version attribute; the current version is 3.
42     This property might be used in the future to provide backwards
43     compatibility.
44 \li The DTD contains definitions for the two files used by SimGrid (i.e.,
45     platform description and deployment).
46
47 \section pf_basics Basic concepts
48
49 Nowadays, the Internet is composed of a bunch of independently managed
50 networks. Within each of those networks, there are entry and exit
51 points (most of the time, you can both enter and exit through the same
52 point); this allows to leave the current network and reach other
53 networks, possibly even in other locations.
54 At the upper level, such a network is called
55 <b>Autonomous System (AS)</b>, while at the lower level it is named
56 sub-network, or LAN (local area network).
57 They are indeed autonomous: routing is defined
58 (within the limits of his network) by the administrator, and so, those
59 networks can operate without a connection to other
60 networks. So-called gateways allow you to go from one network to
61 another, if such a (physical) connection exists. Every node in one network
62 that can be directly reached (i.e., without traversing other nodes) from
63 another network is called a gateway.
64 Each autonomous system consists of equipment such as cables (network links),
65 routers and switches as well as computers.
66
67 The structure of the SimGrid platform description relies exactly on the same
68 concept as a real-life platform (see above).  Every resource (computers,
69 network equipment etc.) belongs to an AS, which can be defined by using the
70 \<AS\> tag. Within an AS, the routing between its elements can be defined
71 abitrarily. There are several modes for routing, and exactly one mode must be
72 selected by specifying the routing attribute in the AS tag:
73
74 \verbatim
75 <AS id="AS0" routing="Full">
76 \endverbatim
77
78 \remark
79   Other supported values for the routing attribute can be found below, Section
80   \ref pf_raf.
81
82 There is also the ``<route>`` tag; this tag takes two attributes, ``src`` (source)
83 and ``dst`` (destination). Both source and destination must be valid identifiers
84 for routers (these will be introduced later). Contained by the ``<route>`` are
85 network links; these links must be used in order to communicate from the source
86 to the destination specified in the tag. Hence, a route merely describes
87 how to reach a router from another router.
88
89 \remark
90   More information and (code-)examples can be found in Section \ref pf_rm.
91
92 An AS can also contain itself one or more AS; this allows you to
93 model the hierarchy of your platform.
94
95 ### Within each AS, the following types of resources exist:
96
97 %Resource        | Documented in Section | Description
98 --------------- | --------------------- | -----------
99 AS              |                       | Every Autonomous System (AS) may contain one or more AS.
100 host            | \ref pf_host          | This entity carries out the actual computation. For this reason, it contains processors (with potentially multiple cores).
101 router          | \ref pf_router        | In SimGrid, routers are used to provide helpful information to routing algorithms.  Routers may also act as gateways, connecting several autonomous systems with each other.
102 link            | \ref pf_link          | In SimGrid, (network)links define a connection between two or potentially even more resources. Every link has a bandwidth and a latency and may potentially experience congestion.
103 cluster         | \ref pf_cluster       | In SimGrid, clusters were introduced to model large and homogenous environments. They are not really a resource by themselves - technically, they are only a shortcut, as they will internally set up all the hosts, network and routing for you, i.e., using this resource, one can easily setup thousands of hosts and links in a few lines of code. Each cluster is itself an AS.
104
105 %As it is desirable to interconnect these resources, a routing has to be
106 defined. The AS is supposed to be Autonomous, hence this has to be done at the
107 AS level. The AS handles two different types of entities (<b>host/router</b>
108 and <b>AS</b>). However, the user is responsible to define routes between those resources,
109 otherwise entities will be unconnected and therefore unreachable from other
110 entities. Although several routing algorithms are built into SimGrid (see
111 \ref pf_rm), you might encounter a case where you want to define routes
112 manually (for instance, due to specific requirements of your platform).
113
114 There are three tags to use:
115 \li <b>ASroute</b>: to define routes between two  <b>AS</b>
116 \li <b>route</b>: to define routes between two <b>host/router</b>
117 \li <b>bypassRoute</b>: to define routes between two <b>AS</b> that
118     will bypass default routing (as specified by the ``routing`` attribute
119     supplied to ``<AS>``, see above).
120
121 Here is an illustration of these concepts:
122
123 ![An illustration of an AS hierarchy. Here, AS1 contains 5 other AS' who in turn may contain other AS' as well.](AS_hierarchy.png)
124  Circles represent processing units and squares represent network routers. Bold
125     lines represent communication links. AS2 models the core of a national
126     network interconnecting a small flat cluster (AS4) and a larger
127     hierarchical cluster (AS5), a subset of a LAN (AS6), and a set of peers
128     scattered around the world (AS7).
129
130 \section pf_pftags Resource description
131
132 \subsection  pf_As Platform: The \<AS\> tag
133
134 The concept of an AS was already outlined above (Section \ref pf_basics);
135 recall that the AS is so important because it groups other resources (such
136 as routers/hosts) together (in fact, these resources must be contained by
137 an AS).
138
139 Available attributes :
140
141 Attribute name  | Mandatory | Values | Description
142 --------------- | --------- | ------ | -----------
143 id              | yes       | String | The identifier of an AS; facilitates referring to this AS. ID must be unique.
144 routing         | yes       | Full\| Floyd\| Dijkstra\| DijkstraCache\| none\| Vivaldi\| Cluster | See Section \ref pf_rm for details.
145
146
147 <b>Example:</b>
148 \verbatim
149 <AS id="AS0" routing="Full">
150    <host id="host1" power="1000000000"/>
151    <host id="host2" power="1000000000"/>
152    <link id="link1" bandwidth="125000000" latency="0.000100"/>
153    <route src="host1" dst="host2"><link_ctn id="link1"/></route>
154 </AS>
155 \endverbatim
156
157 In this example, AS0 contains two hosts (host1 and host2). The route
158 between the hosts goes through link1.
159
160 \subsection pf_Cr Computing resources: hosts, clusters and peers.
161
162 \subsubsection pf_host The tag <host/>
163
164 A <b>host</b> represents a computer/node card. Every host is able to execute
165 code and it can send and receive data to/from other hosts. Most importantly,
166 a host can contain more than 1 core.
167
168 ### Attributes: ###
169
170 Attribute name  | Mandatory | Values | Description
171 --------------- | --------- | ------ | -----------
172 id              | yes       | String | The identifier of the host. facilitates referring to this AS.
173 power           | yes       | double (must be > 0.0) | Computational power of every core of this host in FLOPS. Must be larger than 0.0.
174 core            | no        | int (Default: 1) | The number of cores of this host. If more than one core is specified, the "power" parameter refers to every core, i.e., the total computational power is #cores*power.<br /> If 6 cores are specified, up to 6 tasks can be executed without sharing the computational power; if more than 6 tasks are executed, computational power will be shared among these tasks. <br /> <b>Warning:</b> Although functional, this model was never scientifically assessed.
175 availability    | no        | int    | <b>Specify if the percentage of power available.</b> (What? TODO)
176 availability_file| no       | string | (Relative or absolute) filename to use as input; must contain availability traces for this host. The syntax of this file is defined below. <br /> <b>Note:</b> The filename must be specified with your system's format.
177 state           | no        | ON\|OFF<br/> (Default: ON) | Is this host running or not?
178 state_file      | no        | string |  Same mechanism as availability_file.<br /> <b>Note:</b> The filename must be specified with your system's format.
179 coordinates     | no        | string | Must be provided when choosing the Vivaldi, coordinate-based routing model for the AS the host belongs to. More details can be found in the Section \ref pf_P2P_tags.
180
181 ### Possible children: ###
182
183 Tag name        | Description | Documentation
184 ------------    | ----------- | -------------
185 <mount/>        | Defines mounting points between some storage resource and the host. | \ref pf_sto_mo
186 <prop/>         | The prop tag allows you to define additional information on this host following the attribute/value schema. You may want to use it to give information to the tool you use for rendering your simulation, for example. | N/A
187
188 ### Example ###
189
190 \verbatim
191    <host id="host1" power="1000000000"/>
192    <host id="host2" power="1000000000">
193         <prop id="color" value="blue"/>
194         <prop id="rendershape" value="square"/>
195    </host>
196 \endverbatim
197
198
199 \anchor pf_host_dynamism
200 ### Expressing dynamism ###
201
202 SimGrid provides mechanisms to change a hosts' availability over
203 time, using the ``availability_file`` attribute to the ``<host>`` tag
204 and a separate text file whose syntax is exemplified below.
205
206 #### Adding a trace file ####
207
208 \verbatim
209 <platform version="1">
210   <host id="bob" power="500000000" availability_file="bob.trace" />
211 </platform>
212 \endverbatim
213
214 #### Example of "bob.trace" file ####
215
216 ~~~~~~~~~~~~~~{.py}
217 PERIODICITY 1.0
218   0.0 1.0
219   11.0 0.5
220   20.0 0.8
221 ~~~~~~~~~~~~~~
222
223 Let us begin to explain this example by looking at line 2. (Line 1 will become clear soon).
224 The first column describes points in time, in this case, time 0. The second column
225 describes the relative amount of power this host is able to deliver (relative
226 to the maximum performance specified in the ``<host>`` tag). (Clearly, the
227 second column needs to contain values that are not smaller than 0 and not larger than 1).
228 In this example, our host will deliver 500 Mflop/s at time 0, as 500 Mflop/s is the
229 maximum performance of this host. At time 11.0, it will
230 deliver half of its maximum performance, i.e., 250 Mflop/s until time 20.0 when it will
231 will start delivering 80\% of its power. In this example, this amounts to 400 Mflop/s.
232
233 Since the periodicity in line 1 was set to be 1.0, i.e., 1 timestep, this host will
234 continue to provide 500 Mflop/s from time 21. From time 32 it will provide 250 MFlop/s and so on.
235
236 ### Changing initial state ###
237
238 It is also possible to specify whether the host is up or down by setting the
239 ``state`` attribute to either <b>ON</b> (default value) or <b>OFF</b>.
240
241 #### Example: Expliciting the default value "ON" ####
242
243 \verbatim
244 <platform version="1">
245    <host id="bob" power="500000000" state="ON" />
246 </platform>
247 \endverbatim
248
249 If you want this host to be unavailable, simply substitute ON with OFF.
250
251 ### Expressing churn ###
252
253 To express the fact that a host can change state over time (as in P2P
254 systems, for instance), it is possible to use a file describing the time
255 at which the host is turned on or off. An example of the content
256 of such a file is presented below.
257
258 #### Adding a state file ####
259
260 \verbatim
261 <platform version="1">
262   <host id="bob" power="500000000" state_file="bob.fail" />
263 </platform>
264 \endverbatim
265
266 #### Example of "bob.fail" file ####
267
268 ~~~{.py}
269   PERIODICITY 10.0
270   1.0 -1.0
271   2.0 1.0
272 ~~~
273
274 A negative value means <b>down</b> (i.e., OFF) while a positive one means <b>up and
275   running</b> (i.e., ON). From time 0.0 to time 1.0, the host is on. At time 1.0, it is
276 turned off and at time 2.0, it is turned on again until time 12 (2.0 plus the
277 periodicity 10.0). It will be turned on again at time 13.0 until time 23.0, and
278 so on.
279
280
281
282 \subsubsection pf_cluster <cluster>
283
284 ``<cluster />`` represents a machine-cluster. It is most commonly used
285 when one wants to define many hosts and a network quickly. Technically,
286 ``cluster`` is a meta-tag: <b>from the inner SimGrid point of
287 view, a cluster is an AS where some optimized routing is defined</b>.
288 The default inner organization of the cluster is as follow:
289
290 \verbatim
291                  __________
292                 |          |
293                 |  router  |
294     ____________|__________|_____________ backbone
295       |   |   |              |     |   |
296     l0| l1| l2|           l97| l96 |   | l99
297       |   |   |   ........   |     |   |
298       |                                |
299     c-0.me                             c-99.me
300 \endverbatim
301
302 Here, a set of <b>host</b>s is defined. Each of them has a <b>link</b>
303 to a central backbone (backbone is a link itself, as a link can
304 be used to represent a switch, see the switch / link section
305 below for more details about it). A <b>router</b> allows to connect a
306 <b>cluster</b> to the outside world. Internally,
307 SimGrid treats a cluster as an AS containing all hosts: the router is the default
308 gateway for the cluster.
309
310 There is an alternative organization, which is as follows:
311 \verbatim
312                  __________
313                 |          |
314                 |  router  |
315                 |__________|
316                     / | \
317                    /  |  \
318                l0 / l1|   \l2
319                  /    |    \
320                 /     |     \
321             host0   host1   host2
322 \endverbatim
323
324 The principle is the same, except that there is no backbone. This representation
325 can be obtained easily: just do not set the bb_* attributes.
326
327
328 Attribute name  | Mandatory | Values | Description
329 --------------- | --------- | ------ | -----------
330 id              | yes       | string | The identifier of the cluster. Facilitates referring to this cluster.
331 prefix          | yes       | string | Each node of the cluster has to have a name. This name will be prefixed with this prefix.
332 suffix          | yes       | string | Each node of the cluster will be suffixed with this suffix
333 radical         | yes       | string | Regexp used to generate cluster nodes name. Syntax: "10-20" will give you 11 machines numbered from 10 to 20, "10-20;2" will give you 12 machines, one with the number 2, others numbered as before. The produced number is concatenated between prefix and suffix to form machine names.
334 power           | yes       | int    | Same as the ``power`` attribute of the ``<host>`` tag.
335 core            | no        | int (default: 1) | Same as the ``core`` attribute of the ``<host>`` tag.
336 bw              | yes       | int    | Bandwidth for the links between nodes and backbone (if any). <b>See <b>link</b> section for syntax/details.</b>
337 lat             | yes       | int    | Latency for the links between nodes and backbone (if any). See <b>link</b> section for syntax/details.
338 sharing_policy  | no        | string | Sharing policy for the links between nodes and backbone (if any). See <b>link</b> section for syntax/details.
339 bb_bw           | no        | int    | Bandwidth for backbone (if any). See <b>link</b> section for syntax/details. If bb_bw and bb_lat (see below) attributes are omitted, no backbone is created (alternative cluster architecture <b>described before</b>).
340 bb_lat          | no        | int    | Latency for backbone (if any). See <b>link</b> section for syntax/details. If bb_lat and bb_bw (see above) attributes are omitted, no backbone is created (alternative cluster architecture <b>described before</b>).
341 bb_sharing_policy | no      | string | Sharing policy for the backbone (if any). See <b>link</b> section for syntax/details.
342 availability_file | no      | string | Allows you to use a file as input for availability. Similar to <b>hosts</b> attribute.
343 state_file        | no      | string | Allows you to use a file as input for states.  Similar to <b>hosts</b> attribute.
344 loopback_bw       | no      | int    | Bandwidth for loopback (if any). See <b>link</b> section for syntax/details. If loopback_bw and loopback_lat (see below) attributes are omitted, no loopback link is created and all intra-node communication will use the main network link of the node. Loopback link is a \ref sharing_policy_fatpipe "\b FATPIPE".
345 loopback_lat      | no      | int    | Latency for loopback (if any). See <b>link</b> section for syntax/details. See loopback_bw for more info.
346 topology          | no      | FLAT\|TORUS\|FAT_TREE (default: FLAT) | Network topology to use. SimGrid currently supports FLAT (with or without backbone, as described before), <a href="http://en.wikipedia.org/wiki/Torus_interconnect">TORUS </a> and FAT_TREE attributes for this tag.
347 topo_parameters   | no      | string | Specific parameters to pass for the topology defined in the topology tag. For torus networks, comma-separated list of the number of nodes in each dimension of the torus. For fat trees, refer to \ref AsClusterFatTree "AsClusterFatTree documentation".
348
349 TODO
350
351 the router name is defined as the resulting String in the following
352 java line of code:
353
354 @verbatim
355 router_name = prefix + clusterId + _router + suffix;
356 @endverbatim
357
358
359 #### Cluster example ####
360
361 Consider the following two (and independent) uses of the ``cluster`` tag:
362
363 \verbatim
364 <cluster id="my_cluster_1" prefix="" suffix="" radical="0-262144"
365          power="1e9" bw="125e6" lat="5E-5"/>
366
367 <cluster id="my_cluster_2" prefix="c-" suffix=".me" radical="0-99"
368          power="1e9" bw="125e6" lat="5E-5"
369          bb_bw="2.25e9" bb_lat="5E-4"/>
370 \endverbatim
371
372 The second example creates one router and 100 machines with the following names:
373 \verbatim
374 c-my_cluster_2_router.me
375 c-0.me
376 c-1.me
377 c-2.me
378 ...
379 c-99.me
380 \endverbatim
381
382 \subsubsection pf_peer <peer/>
383
384 This tag represents a peer, as in Peer-to-Peer (P2P) networks. However, internally,
385 SimGrid transforms a peer into an AS (similar to Cluster). Hence, this tag
386 is virtually only a shortcut that comes with some pre-defined resources
387 and values. These are:
388
389 \li A tiny AS whose routing type is cluster is created
390 \li A host
391 \li Two links: One for download and one for upload. This is
392     convenient to use and simulate stuff under the last mile model (e.g., ADSL peers).
393 \li It connects the two links to the host
394 \li It creates a router (a gateway) that serves as an entry point for this peer zone.
395     This router has coordinates.
396
397 #### Attributes ####
398
399 Attribute name  | Mandatory | Values | Description
400 --------------- | --------- | ------ | -----------
401 id              | yes       | string | The identifier of the peer. Facilitates referring to this peer.
402 power           | yes       | int    | See the description of the ``host`` tag for this attribute
403 bw_in           | yes       | int    | Bandwidth downstream
404 bw_out          | yes       | int    | Bandwidth upstream
405 lat             | yes       | double | Latency for both up- and downstream, in seconds.
406 coordinates     | no        | string | Coordinates of the gateway for this peer. Example value: 12.8 14.4 6.4
407 sharing_policy  | no        | SHARED\|FULLDUPLEX (default: FULLDUPLEX) | Sharing policy for links. See <b>link</b> description for details.
408 availability_file| no       | string | Availability file for the peer. Same as host availability file. See <b>host</b> description for details.
409 state_file      | no        | string | State file for the peer. Same as host state file. See <b>host</b> description for details.
410
411 Internally, SimGrid transforms any ``<peer/>`` construct such as
412 \verbatim
413 <peer id="FOO"
414   coordinates="12.8 14.4 6.4"
415   power="1.5Gf"
416   bw_in="2.25GBps"
417   bw_out="2.25GBps"
418   lat="500us" />
419 \endverbatim
420 into an ``<AS>`` (see Sections \ref pf_basics and \ref pf_As). In fact, this example of the ``<peer/>`` tag
421 is completely equivalent to the following declaration:
422
423 \verbatim
424 <AS id="as_FOO" routing="Cluster">
425    <host id="peer_FOO" power="1.5Gf"/>
426    <link id="link_FOO_UP" bandwidth="2.25GBps" latency="500us"/>
427    <link id="link_FOO_DOWN" bandwidth="2.25GBps" latency="500us"/>
428    <router id="router_FOO" coordinates="25.5 9.4 1.4"/>
429    <host_link id="peer_FOO" up="link_FOO_UP" down="link_FOO_DOWN"/>
430 </AS>
431 \endverbatim
432
433
434 \subsection pf_ne Network equipments: links and routers
435
436 There are two tags at all times available to represent network entities and
437 several other tags that are available only in certain contexts.
438 1. ``<link>``: Represents a entity that has a limited bandwidth, a
439     latency, and that can be shared according to TCP way to share this
440     bandwidth.
441 \remark
442   The concept of links in SimGrid may not be intuitive, as links are not limited
443   to connecting (exactly) two entities; in fact, you can have more than two equipments
444   connected to it. (In graph theoretical terms: A link in SimGrid is not an edge,
445   but a hyperedge)
446
447 2. ``<router/>``: Represents an entity that a message can be routed
448     to, but that is unable to execute any code. In SimGrid, routers have also
449     no impact on the performance: Routers do not limit any bandwidth nor
450     do they increase latency. As a matter of fact, routers are (almost) ignored
451     by the simulator when the simulation has begun.
452
453 3. ``<backbone/>``: This tag is only available when the containing AS is
454                     used as a cluster (i.e., mode="Cluster")
455
456 \remark
457     If you want to represent an entity like a switch, you must use ``<link>`` (see section). Routers are used
458     to run some routing algorithm and determine routes (see Section \ref pf_routing for details).
459
460 \subsubsection pf_router <router/>
461
462 %As said before, <b>router</b> is used only to give some information
463 for routing algorithms. So, it does not have any attributes except :
464
465 #### Attributes ####
466
467 Attribute name  | Mandatory | Values | Description
468 --------------- | --------- | ------ | -----------
469 id              | yes       | string | The identifier of the router to be used when referring to it.
470 coordinates     | yes       | string | Must be provided when choosing the Vivaldi, coordinate-based routing model for the AS the router belongs to. More details can be found in the Section \ref pf_P2P_tags.
471
472 #### Example ####
473
474 \verbatim
475  <router id="gw_dc1_horizdist"/>
476 \endverbatim
477
478 \subsubsection pf_link <link>
479
480 Network links can represent one-hop network connections. They are
481 characterized by their id and their bandwidth; links can (but may not) be subject
482 to latency.
483
484 #### Attributes ####
485
486 Attribute name  | Mandatory | Values | Description
487 --------------- | --------- | ------ | -----------
488 id              | yes       | string | The identifier of the link to be used when referring to it.
489 bandwidth       | yes       | int    | Maximum bandwidth for this link, given in bytes/s
490 latency         | no        | double (default: 0.0) | Latency for this link.
491 sharing_policy  | no        | \ref sharing_policy_shared "SHARED"\|\ref sharing_policy_fatpipe "FATPIPE"\|\ref sharing_policy_fullduplex "FULLDUPLEX" (default: SHARED) | Sharing policy for the link.
492 state           | no        | ON\|OFF (default: ON) | Allows you to to turn this link on or off (working / not working)
493 bandwidth_file  | no        | string | Allows you to use a file as input for bandwidth.
494 latency_file    | no        | string | Allows you to use a file as input for latency.
495 state_file      | no        | string | Allows you to use a file as input for states.
496
497
498 #### Possible shortcuts for ``latency`` ####
499
500 When using the latency attribute, you can specify the latency by using the scientific
501 notation or by using common abbreviations. For instance, the following three tags
502 are equivalent:
503
504 \verbatim
505  <link id="LINK1" bandwidth="125000000" latency="5E-6"/>
506  <link id="LINK1" bandwidth="125000000" latency="5us"/>
507  <link id="LINK1" bandwidth="125000000" latency="0.000005"/>
508 \endverbatim
509
510 Here, the second tag uses "us", meaning "microseconds". Other shortcuts are:
511
512 Name | Abbreviation | Time (in seconds)
513 ---- | ------------ | -----------------
514 Week | w | 7 * 24 * 60 * 60
515 Day  | d | 24 * 60 * 60
516 Hour | h | 60 * 60
517 Minute | m | 60
518 Second | s | 1
519 Millisecond | ms | 0.001 = 10^(-3)
520 Microsecond | us | 0.000001 = 10^(-6)
521 Nanosecond  | ns | 0.000000001 = 10^(-9)
522 Picosecond  | ps | 0.000000000001 = 10^(-12)
523
524 #### Sharing policy ####
525
526 \anchor sharing_policy_shared
527 By default a network link is \b SHARED, i.e., if two or more data flows go
528 through a link, the bandwidth is shared fairly among all data flows. This
529 is similar to the sharing policy TCP uses.
530
531 \anchor sharing_policy_fatpipe
532 On the other hand, if a link is defined as a \b FATPIPE,
533 each flow going through this link will be provided with the complete bandwidth,
534 i.e., no sharing occurs and the bandwidth is only limiting each flow individually.
535 The complete bandwidth provided by this link in this mode
536 is ``#flows*bandwidth``, with at most ``bandwidth`` being available per flow.
537
538 Using the FATPIPE mode allows to model backbones that won't affect performance
539 (except latency).
540
541 \anchor sharing_policy_fullduplex
542 The last mode available is \b FULLDUPLEX. This means that SimGrid will
543 automatically generate two links (one carrying the suffix _UP and the other the
544 suffix _DOWN) for each ``<link>`` tag. This models situations when the direction
545 of traffic is important.
546
547 \remark
548   Transfers from one side to the other will interact similarly as
549   TCP when ACK returning packets circulate on the other direction. More
550   discussion about it is available in the description of link_ctn description.
551
552 In other words: The SHARED policy defines a physical limit for the bandwidth.
553 The FATPIPE mode defines a limit for each application,
554 with no upper total limit.
555
556 \remark
557   Tip: By using the FATPIPE mode, you can model big backbones that
558   won't affect performance (except latency).
559
560 #### Example ####
561
562 \verbatim
563  <link id="SWITCH" bandwidth="125000000" latency="5E-5" sharing_policy="FATPIPE" />
564 \endverbatim
565
566 #### Expressing dynamism and failures ####
567
568 Similar to hosts, it is possible to declare links whose state, bandwidth
569 or latency changes over time (see Section \ref pf_hosts_dynamism for details).
570
571 In the case of network links, the ``bandwidth`` and ``latency`` attributes are
572 replaced by the ``bandwidth_file`` and ``latency_file`` attributes.
573 The following XML snippet demonstrates how to use this feature in the platform
574 file. The structure of the files "link1.bw" and "link1.lat" is shown below.
575
576 \verbatim
577 <link id="LINK1" state_file="link1.fail" bandwidth="80000000" latency=".0001" bandwidth_file="link1.bw" latency_file="link1.lat" />
578 \endverbatim
579
580 \note
581   Even if the syntax is the same, the semantic of bandwidth and latency
582   trace files differs from that of host availability files. For bandwidth and
583   latency, the corresponding files do not
584   express availability as a fraction of the available capacity but directly in
585   bytes per seconds for the bandwidth and in seconds for the latency. This is
586   because most tools allowing to capture traces on real platforms (such as NWS)
587   express their results this way.
588
589 ##### Example of "link1.bw" file #####
590
591 ~~~{.py}
592 PERIODICITY 12.0
593 4.0 40000000
594 8.0 60000000
595 ~~~
596
597 In this example, the bandwidth changes repeatedly, with all changes
598 being repeated every 12 seconds.
599
600 At the beginning of the the simulation, the link's bandwidth is 80,000,000
601 B/s (i.e., 80 Mb/s); this value was defined in the XML snippet above.
602 After four seconds, it drops to 40 Mb/s (line 2), and climbs
603 back to 60 Mb/s after another 4 seconds (line 3). The value does not change any
604 more until the end of the period, that is, after 12 seconds have been simulated).
605 At this point, periodicity kicks in and this behavior is repeated: Seconds
606 12-16 will experience 80 Mb/s, 16-20 40 Mb/s etc.).
607
608 ##### Example of "link1.lat" file #####
609
610 ~~~{.py}
611 PERIODICITY 5.0
612 1.0 0.001
613 2.0 0.01
614 3.0 0.001
615 ~~~
616
617 In this example, the latency varies with a period of 5 seconds.
618 In the xml snippet above, the latency is initialized to be 0.0001s (100µs). This
619 value will be kept during the first second, since the latency_file contains
620 changes to this value at second one, two and three.
621 At second one, the value will be 0.001, i.e., 1ms. One second later it will
622 be adjusted to 0.01 (or 10ms) and one second later it will be set again to 1ms. The
623 value will not change until second 5, when the periodicity defined in line 1
624 kicks in. It then loops back, starting at 100µs (the initial value) for one second.
625
626
627 #### The ``<prop/>`` tag ####
628
629 Similar to ``<host>``, the link may also contain the ``<prop/>`` tag; see the host
630 documentation (Section \ref pf_host) for an example.
631
632
633 TODO
634
635 \subsubsection pf_backbone <backbone/>
636
637 \note
638   This tag is <b>only available</b> when the containing AS uses the "Cluster" mode!
639
640 TODO: Is default=shared correct?
641
642 Attribute name  | Mandatory | Values | Description
643 --------------- | --------- | ------ | -----------
644 id              | yes       | string | The identifier of the link to be used when referring to it.
645 bandwidth       | yes       | int    | Maximum bandwidth for this link, given in bytes/s
646 latency         | no        | double (default: 0.0) | Latency for this link.
647 sharing_policy  | no        | SHARED\|FATPIPE\|FULLDUPLEX (default: SHARED) | Sharing policy for the link.
648
649 \subsection pf_storage Storage
650
651 \note
652   This is a prototype version that should evolve quickly, this
653   is just some doc valuable only at the time of writing this doc
654   This section describes the storage management under SimGrid ; nowadays
655   it's only usable with MSG. It relies basically on linux-like concepts.
656   You also may want to have a look to its corresponding section in \ref
657   msg_file_management ; functions access are organized as a POSIX-like
658   interface.
659
660 \subsubsection pf_sto_conc Storage Main concepts
661 Basically there is 3 different entities to know :
662 \li the <b>storage_type</b>: here you define some kind of storage that
663     you will instantiate many type on your platform. Think of it like
664     a definition of throughput of a specific disk.
665 \li the <b>storage</b>: instance of a <b>storage_type</b>. Defines a
666     new storage of <b>storage_type</b>
667 \li the <b>mount</b>: says that the storage is located into this
668     specific resource.
669
670 the content of a storage has to be defined in a content file that
671 contains the content. The path to this file has to be passed within
672 the <b>content</b> attribute . Here is a way to generate it:
673
674 \verbatim
675 find /path/you/want -type f -exec ls -l {} \; 2>/dev/null > ./content.txt
676 \endverbatim
677
678 \subsubsection pf_sto_sttp storage_type
679
680
681 <b>storage_type</b> attributes :
682 \li <b>id (mandatory)</b>: the identifier of the storage_type to be
683     used when referring to it.
684 \li <b>model (mandatory)</b>: Unused for now by the simulator (but
685     mandatory, ok)
686 \li <b>content</b>: default value 0. The file containing the disk
687     content. (may be moved soon or later to <b>storage</b> tag.
688
689 The tag must contains some predefined model prop, as may do some other
690 resources tags.
691 <b>storage_type</b> mandatory <b>model_prop</b> :
692 \li <b>Bwrite</b>: value in B/s. Write throughput
693 \li <b>Bread</b>: value in B/s. Read throughput
694 \li <b>Bconnexion</b>: value in B/s. Connection throughput (i.e. the
695     throughput of the storage connector).
696
697 A storage_type can also contain the <b>prop</b> tag. The prop tag allows you
698 to define additional information on this storage_type following the
699 attribute/value schema. You may want to use it to give information to
700 the tool you use for rendering your simulation, for example.
701
702 \verbatim
703 <storage_type id="single_HDD" model="linear_no_lat" size="4000" content_type="txt_unix">
704   <model_prop id="Bwrite" value="30MBps" />
705   <model_prop id="Bread" value="100MBps" />
706   <model_prop id="Bconnection" value="150MBps" />
707   <b><prop id="Brand" value="Western Digital" /></b>
708 </storage_type>
709 \endverbatim
710
711 \subsubsection pf_sto_st storage
712
713 <b>storage_type</b> attributes :
714 \li <b>id (mandatory)</b>: the identifier of the storage to be used
715     when referring to it.
716 \li <b>typeId (mandatory)</b>: the identifier of the storage_type that
717     this storage belongs to.
718 \li <b>attach (mandatory)</b>: the host (name) to which the storage is
719         attached to.
720
721 \subsubsection pf_sto_mo mount
722
723 <b>mount</b> attributes :
724 \li <b>id (mandatory)</b>: the id of the <b>storage</b> that must be
725     mounted on that computer.
726 \li <b>name (mandatory)</b>: the name that will be the logical
727     reference to this disk (the mount point).
728
729 \subsubsection pf_sto_mst mstorage
730 <b>Note : unused for now</b>
731 <b>mstorage</b> attributes :
732 \li <b>typeId (mandatory)</b>: the id of the <b>storage</b> that must
733     be mounted on that computer.
734 \li <b>name (mandatory)</b>: the name that will be the logical
735     reference to this disk (the mount point).
736
737 \section pf_routing Routing
738
739 To achieve high performance, the routing tables used within SimGrid are
740 static. This means that routing between two nodes is calculated once
741 and will not change during execution. The SimGrid team chose to use this
742 approach as it is rare to have a real deficiency of a resource;
743 most of the time, a communication fails because the links experience too much
744 congestion and hence, your connection stops before the timeout or
745 because the computer designated to be the destination of that message
746 is not responding.
747
748 We also chose to use shortest paths algorithms in order to emulate
749 routing. Doing so is consistent with the reality: RIP, OSPF, BGP are
750 all calculating shortest paths. They have some convergence time, but
751 at the end, so when the platform is stable (and this should be the
752 moment you want to simulate something using SimGrid) your packets will
753 follow the shortest paths.
754
755 \subsection pf_rm Routing models
756
757 Within each AS, you have to define a routing model to use. You have
758 basically 3 main kind of routing models :
759
760 \li Shortest-path based models: you let SimGrid calculates shortest
761     paths and manage it. Behaves more or less as most real life
762     routing.
763 \li Manually-entered route models: you'll have to define all routes
764     manually by yourself into the platform description file.
765     Consistent with some manually managed real life routing.
766 \li Simple/fast models: those models offers fast, low memory routing
767     algorithms. You should consider to use it if you can make some
768     assumptions about your AS. Routing in this case is more or less
769     ignored
770
771 \subsubsection pf_raf The router affair
772
773 Expressing routers becomes mandatory when using shortest-path based
774 models or when using ns-3 or the bindings to the GTNetS packet-level
775 simulator instead of the native analytical network model implemented
776 in SimGrid.
777
778 For graph-based shortest path algorithms, routers are mandatory,
779 because both algorithms need a graph, and so we need to have source
780 and destination for each edge.
781
782 Routers are naturally an important concept in GTNetS or ns-3 since the
783 way they run the packet routing algorithms is actually simulated.
784 Instead, the SimGrid’s analytical models aggregate the routing time
785 with the transfer time. Rebuilding a graph representation only from
786 the route information turns to be a very difficult task, because of
787 the missing information about how routes intersect. That is why we
788 introduced a \<router\> tag, which is simply used to express these
789 intersection points. The only attribute accepted by this tag an id. It
790 is important to understand that the \<router\> tag is only used to
791 provide topological information.
792
793 To express those topological information, some <b>route</b> have to be
794 defined saying which link is between which routers. Description or the
795 route syntax is given below, as well as example for the different
796 models.
797
798 \subsubsection pf_rm_sh Shortest-path based models
799
800 Here is the complete list of such models, that computes routes using
801 classic shortest-paths algorithms. How to choose the best suited
802 algorithm is discussed later in the section devoted to it.
803
804 \li <b>Floyd</b>: Floyd routing data. Pre-calculates all routes once.
805 \li <b>Dijkstra</b>: Dijkstra routing data ,calculating routes when
806     necessary.
807 \li <b>DijkstraCache</b>: Dijkstra routing data. Handle some cache for
808     already calculated routes.
809
810 All those shortest-path models are instanciated the same way. Here are
811 some example of it:
812
813 Floyd example :
814 \verbatim
815 <AS  id="AS0"  routing="Floyd">
816
817   <cluster id="my_cluster_1" prefix="c-" suffix=""
818                 radical="0-1"   power="1000000000"    bw="125000000"     lat="5E-5"
819         router_id="router1"/>
820
821  <AS id="AS1" routing="none">
822     <host id="host1" power="1000000000"/>
823  </AS>
824
825   <link id="link1" bandwidth="100000" latency="0.01"/>
826
827   <ASroute src="my_cluster_1" dst="AS1"
828     gw_src="router1"
829     gw_dst="host1">
830     <link_ctn id="link1"/>
831   </ASroute>
832
833 </AS>
834 \endverbatim
835
836 ASroute given at the end gives a topological information: link1 is
837 between router1 and host1.
838
839 Dijsktra example :
840 \verbatim
841  <AS id="AS_2" routing="Dijsktra">
842      <host id="AS_2_host1" power="1000000000"/>
843      <host id="AS_2_host2" power="1000000000"/>
844      <host id="AS_2_host3" power="1000000000"/>
845      <link id="AS_2_link1" bandwidth="1250000000" latency="5E-4"/>
846      <link id="AS_2_link2" bandwidth="1250000000" latency="5E-4"/>
847      <link id="AS_2_link3" bandwidth="1250000000" latency="5E-4"/>
848      <link id="AS_2_link4" bandwidth="1250000000" latency="5E-4"/>
849      <router id="central_router"/>
850      <router id="AS_2_gateway"/>
851      <!-- routes providing topological information -->
852      <route src="central_router" dst="AS_2_host1"><link_ctn id="AS_2_link1"/></route>
853      <route src="central_router" dst="AS_2_host2"><link_ctn id="AS_2_link2"/></route>
854      <route src="central_router" dst="AS_2_host3"><link_ctn id="AS_2_link3"/></route>
855      <route src="central_router" dst="AS_2_gateway"><link_ctn id="AS_2_link4"/></route>
856   </AS>
857 \endverbatim
858
859 DijsktraCache example :
860 \verbatim
861 <AS id="AS_2" routing="DijsktraCache">
862      <host id="AS_2_host1" power="1000000000"/>
863      ...
864 (platform unchanged compared to upper example)
865 \endverbatim
866
867 \subsubsection pf_rm_me Manually-entered route models
868
869 \li <b>Full</b>: You have to enter all necessary routes manually
870
871 Full example :
872 \verbatim
873 <AS  id="AS0"  routing="Full">
874    <host id="host1" power="1000000000"/>
875    <host id="host2" power="1000000000"/>
876    <link id="link1" bandwidth="125000000" latency="0.000100"/>
877    <route src="host1" dst="host2"><link_ctn id="link1"/></route>
878  </AS>
879 \endverbatim
880
881 \subsubsection pf_rm_sf Simple/fast models
882
883 \li <b>none</b>: No routing (Unless you know what you are doing, avoid
884 using this mode in combination with a non Constant network model).
885 None Example :
886 \verbatim
887 <AS id="exitAS"  routing="none">
888         <router id="exit_gateway"/>
889 </AS>\endverbatim
890
891 \li <b>Vivaldi</b>: Vivaldi routing, so when you want to use
892     coordinates. See the corresponding section P2P below for details.
893 \li <b>Cluster</b>: Cluster routing, specific to cluster tag, should
894     not be used, except internally.
895
896 \subsection ps_dec Defining routes
897
898 The principle of route definition is the same for the 4 available tags
899 for doing it. Those for tags are:
900
901 \li <b>route</b>: to define route between host/router
902 \li <b>ASroute</b>: to define route between AS
903 \li <b>bypassRoute</b>: to bypass normal routes as calculated by the
904     network model between host/router
905 \li <b>bypassASroute</b>: same as bypassRoute, but for AS
906
907 Basically all those tags will contain an (ordered) list of references
908 to link that compose the route you want to define.
909
910 Consider the example below:
911
912 \verbatim
913 <route src="Alice" dst="Bob">
914         <link_ctn id="link1"/>
915         <link_ctn id="link2"/>
916         <link_ctn id="link3"/>
917    </route>
918 \endverbatim
919
920 The route here from host Alice to Bob will be first link1, then link2,
921 and finally link3. What about the reverse route ? <b>route</b> and
922 <b>ASroute</b> have an optional attribute <b>symmetrical</b>, that can
923 be either YES or NO. YES means that the reverse route is the same
924 route in the inverse order, and is set to YES by default. Note that
925 this is not the case for bypass*Route, as it is more probable that you
926 want to bypass only one default route.
927
928 For an ASroute, things are just slightly more complicated, as you have
929 to give the id of the gateway which is inside the AS you're talking
930 about you want to access ... So it looks like this :
931
932
933 \verbatim
934   <ASroute src="AS1" dst="AS2"
935     gw_src="router1" gw_dst="router2">
936     <link_ctn id="link1"/>
937   </ASroute>
938 \endverbatim
939
940 gw == gateway, so when any message are trying to go from AS1 to AS2,
941 it means that it must pass through router1 to get out of the AS, then
942 pass through link1, and get into AS2 by being received by router2.
943 router1 must belong to AS1 and router2 must belong to AS2.
944
945 \subsubsection pf_linkctn link_ctn
946
947 a <b>link_ctn</b> is the tag that is used in order to reference a
948 <b>link</b> in a route. Its id is the link id it refers to.
949
950 <b>link_ctn</b> attributes :
951 \li <b>id (mandatory)</b>: Id of the link this tag refers to
952 \li <b>direction</b>: if the link referenced by <b>id</b> has been
953     declared as FULLDUPLEX, this is used to indicate in which
954     direction the route you're defining is going through this link.
955     Possible values "UP" or "DOWN".
956
957 \subsubsection pf_asro ASroute
958
959 ASroute tag purpose is to let people write manually their routes
960 between AS. It's useful when you're in Full model.
961
962 <b>ASroute</b> attributes :
963 \li <b>src (mandatory)</b>: the source AS id.
964 \li <b>dst (mandatory)</b>: the destination AS id.
965 \li <b>gw_src (mandatory)</b>: the gateway to be used within the AS.
966     Can be any <b>host</b> or \b router defined into the \b src AS or
967     into one of the AS it includes.
968 \li <b>gw_dst (mandatory)</b>: the gateway to be used within the AS.
969     Can be any <b>host</b> or \b router defined into the \b dst AS or
970     into one of the AS it includes.
971 \li <b>symmetrical</b>: if the route is symmetric, the reverse route
972     will be the opposite of the one defined. Can be either YES or NO,
973     default is YES.
974
975 <b>Example of ASroute with Full</b>
976 \verbatim
977 <AS  id="AS0"  routing="Full">
978   <cluster id="my_cluster_1" prefix="c-" suffix=".me"
979                 radical="0-149" power="1000000000"    bw="125000000"     lat="5E-5"
980         bb_bw="2250000000" bb_lat="5E-4"/>
981
982   <cluster id="my_cluster_2" prefix="c-" suffix=".me"
983             radical="150-299" power="1000000000"        bw="125000000"  lat="5E-5"
984             bb_bw="2250000000" bb_lat="5E-4"/>
985
986      <link id="backbone" bandwidth="1250000000" latency="5E-4"/>
987
988      <ASroute src="my_cluster_1" dst="my_cluster_2"
989          gw_src="c-my_cluster_1_router.me"
990          gw_dst="c-my_cluster_2_router.me">
991                 <link_ctn id="backbone"/>
992      </ASroute>
993      <ASroute src="my_cluster_2" dst="my_cluster_1"
994          gw_src="c-my_cluster_2_router.me"
995          gw_dst="c-my_cluster_1_router.me">
996                 <link_ctn id="backbone"/>
997      </ASroute>
998 </AS>
999 \endverbatim
1000
1001 \subsubsection pf_ro route
1002 The principle is the same as ASroute : <b>route</b> contains list of
1003 links that are in the path between src and dst, except that it is for
1004 routes between a src that can be either <b>host</b> or \b router and a
1005 dst that can be either <b>host</b> or \b router. Useful for Full
1006 as well as for the shortest-paths based models, where you
1007 have to give topological information.
1008
1009
1010 <b>route</b> attributes :
1011 \li <b>src (mandatory)</b>: the source id.
1012 \li <b>dst (mandatory)</b>: the destination id.
1013 \li <b>symmetrical</b>: if the route is symmetric, the reverse route
1014     will be the opposite of the one defined. Can be either YES or NO,
1015     default is YES.
1016
1017 <b>route example in Full</b>
1018 \verbatim
1019  <route src="Tremblay" dst="Bourassa">
1020      <link_ctn id="4"/><link_ctn id="3"/><link_ctn id="2"/><link_ctn id="0"/><link_ctn id="1"/><link_ctn id="6"/><link_ctn id="7"/>
1021    </route>
1022 \endverbatim
1023
1024 <b>route example in a shortest-path model</b>
1025 \verbatim
1026  <route src="Tremblay" dst="Bourassa">
1027      <link_ctn id="3"/>
1028    </route>
1029 \endverbatim
1030 Note that when using route to give topological information, you have
1031 to give routes with one link only in it, as SimGrid needs to know
1032 which host are at the end of the link.
1033
1034 \subsubsection pf_byASro bypassASroute
1035
1036 <b>Note : bypassASroute and bypassRoute are under rewriting to perform
1037 better ; so you may not use it yet</b> As said before, once you choose
1038 a model, it (if so) calculates routes for you. But maybe you want to
1039 define some of your routes, which will be specific. You may also want
1040 to bypass some routes defined in lower level AS at an upper stage :
1041 <b>bypassASroute</b> is the tag you're looking for. It allows to
1042 bypass routes defined between already defined between AS (if you want
1043 to bypass route for a specific host, you should just use byPassRoute).
1044 The principle is the same as ASroute : <b>bypassASroute</b> contains
1045 list of links that are in the path between src and dst.
1046
1047 <b>bypassASroute</b> attributes :
1048 \li <b>src (mandatory)</b>: the source AS id.
1049 \li <b>dst (mandatory)</b>: the destination AS id.
1050 \li <b>gw_src (mandatory)</b>: the gateway to be used within the AS.
1051     Can be any <b>host</b> or \b router defined into the \b src AS or
1052     into one of the AS it includes.
1053 \li <b>gw_dst (mandatory)</b>: the gateway to be used within the AS.
1054     Can be any <b>host</b> or \b router defined into the \b dst AS or
1055     into one of the AS it includes.
1056 \li <b>symmetrical</b>: if the route is symmetric, the reverse route
1057     will be the opposite of the one defined. Can be either YES or NO,
1058     default is YES.
1059
1060 <b>bypassASroute Example</b>
1061 \verbatim
1062     <bypassASRoute src="my_cluster_1" dst="my_cluster_2"
1063      gw_src="my_cluster_1_router"
1064      gw_dst="my_cluster_2_router">
1065         <link_ctn id="link_tmp"/>
1066      </bypassASroute>
1067 \endverbatim
1068
1069 \subsubsection pf_byro bypassRoute
1070 <b>Note : bypassASRoute and bypassRoute are under rewriting to perform
1071 better ; so you may not use it yet</b> As said before, once you choose
1072 a model, it (if so) calculates routes for you. But maybe you want to
1073 define some of your routes, which will be specific. You may also want
1074 to bypass some routes defined in lower level AS at an upper stage :
1075 <b>bypassRoute</b> is the tag you're looking for. It allows to bypass
1076 routes defined between <b>host/router</b>. The principle is the same
1077 as route : <b>bypassRoute</b> contains list of links references of
1078 links that are in the path between src and dst.
1079
1080 <b>bypassRoute</b> attributes :
1081 \li <b>src (mandatory)</b>: the source AS id.
1082 \li <b>dst (mandatory)</b>: the destination AS id.
1083 \li <b>symmetrical</b>: if the route is symmetric, the reverse route
1084     will be the opposite of the one defined. Can be either YES or NO,
1085     default is YES.
1086
1087 <b>bypassRoute Example</b>
1088 \verbatim
1089     <bypassRoute src="host_1" dst="host_2">
1090         <link_ctn id="link_tmp"/>
1091      </bypassRoute>
1092 \endverbatim
1093
1094
1095 \subsection pb_baroex Basic Routing Example
1096
1097 Let's say you have an AS named AS_Big that contains two other AS, AS_1
1098 and AS_2. If you want to make a host (h1) from AS_1 with another one
1099 (h2) from AS_2 then you'll have to proceed as follows:
1100 \li First, you have to ensure that a route is defined from h1 to the
1101     AS_1's exit gateway and from h2 to AS_2's exit gateway.
1102 \li Then, you'll have to define a route between AS_1 to AS_2. As those
1103     AS are both resources belonging to AS_Big, then it has to be done
1104     at AS_big level. To define such a route, you have to give the
1105     source AS (AS_1), the destination AS (AS_2), and their respective
1106     gateway (as the route is effectively defined between those two
1107     entry/exit points). Elements of this route can only be elements
1108     belonging to AS_Big, so links and routers in this route should be
1109     defined inside AS_Big. If you choose some shortest-path model,
1110     this route will be computed automatically.
1111
1112 As said before, there are mainly 2 tags for routing :
1113 \li <b>ASroute</b>: to define routes between two  <b>AS</b>
1114 \li <b>route</b>: to define routes between two <b>host/router</b>
1115
1116 As we are dealing with routes between AS, it means that those we'll
1117 have some definition at AS_Big level. Let consider AS_1 contains 1
1118 host, 1 link and one router and AS_2 3 hosts, 4 links and one router.
1119 There will be a central router, and a cross-like topology. At the end
1120 of the crosses arms, you'll find the 3 hosts and the router that will
1121 act as a gateway. We have to define routes inside those two AS. Let
1122 say that AS_1 contains full routes, and AS_2 contains some Floyd
1123 routing (as we don't want to bother with defining all routes). As
1124 we're using some shortest path algorithms to route into AS_2, we'll
1125 then have to define some <b>route</b> to gives some topological
1126 information to SimGrid. Here is a file doing it all :
1127
1128 \verbatim
1129 <AS  id="AS_Big"  routing="Dijsktra">
1130   <AS id="AS_1" routing="Full">
1131      <host id="AS_1_host1" power="1000000000"/>
1132      <link id="AS_1_link" bandwidth="1250000000" latency="5E-4"/>
1133      <router id="AS_1_gateway"/>
1134      <route src="AS_1_host1" dst="AS_1_gateway">
1135             <link_ctn id="AS_1_link"/>
1136      </route>
1137   </AS>
1138   <AS id="AS_2" routing="Floyd">
1139      <host id="AS_2_host1" power="1000000000"/>
1140      <host id="AS_2_host2" power="1000000000"/>
1141      <host id="AS_2_host3" power="1000000000"/>
1142      <link id="AS_2_link1" bandwidth="1250000000" latency="5E-4"/>
1143      <link id="AS_2_link2" bandwidth="1250000000" latency="5E-4"/>
1144      <link id="AS_2_link3" bandwidth="1250000000" latency="5E-4"/>
1145      <link id="AS_2_link4" bandwidth="1250000000" latency="5E-4"/>
1146      <router id="central_router"/>
1147      <router id="AS_2_gateway"/>
1148      <!-- routes providing topological information -->
1149      <route src="central_router" dst="AS_2_host1"><link_ctn id="AS_2_link1"/></route>
1150      <route src="central_router" dst="AS_2_host2"><link_ctn id="AS_2_link2"/></route>
1151      <route src="central_router" dst="AS_2_host3"><link_ctn id="AS_2_link3"/></route>
1152      <route src="central_router" dst="AS_2_gateway"><link_ctn id="AS_2_link4"/></route>
1153   </AS>
1154     <link id="backbone" bandwidth="1250000000" latency="5E-4"/>
1155
1156      <ASroute src="AS_1" dst="AS_2"
1157          gw_src="AS_1_gateway"
1158          gw_dst="AS_2_gateway">
1159                 <link_ctn id="backbone"/>
1160      </ASroute>
1161 </AS>
1162 \endverbatim
1163
1164 \section pf_other_tags Tags not (directly) describing the platform
1165
1166 There are 3 tags, that you can use inside a \<platform\> tag that are
1167 not describing the platform:
1168 \li random: it allows you to define random generators you want to use
1169     for your simulation.
1170 \li config: it allows you to pass some configuration stuff like, for
1171     example, the network model and so on. It follows the
1172 \li include: simply allows you to include another file into the
1173     current one.
1174
1175 \subsection pf_conf config
1176 <b>config</b> attributes :
1177 \li <b>id (mandatory)</b>: the identifier of the config to be used
1178     when referring to it.
1179
1180
1181 <b>config</b> tag only purpose is to include <b>prop</b> tags. Valid
1182 id are basically the same as the list of possible parameters you can
1183 use by command line, except that "/" are used for namespace
1184 definition. See the \ref options config and options page for more
1185 information.
1186
1187
1188 <b>config example</b>
1189 \verbatim
1190 <?xml version='1.0'?>
1191 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
1192 <platform version="3">
1193 <config id="General">
1194         <prop id="maxmin/precision" value="0.000010"></prop>
1195         <prop id="cpu/optim" value="TI"></prop>
1196         <prop id="workstation/model" value="compound"></prop>
1197         <prop id="network/model" value="SMPI"></prop>
1198         <prop id="path" value="~/"></prop>
1199         <prop id="smpi/bw_factor" value="65472:0.940694;15424:0.697866;9376:0.58729"></prop>
1200 </config>
1201
1202 <AS  id="AS0"  routing="Full">
1203 ...
1204 \endverbatim
1205
1206
1207 \subsection pf_rand random
1208 Not yet in use, and possibly subject to huge modifications.
1209
1210 \subsection pf_incl include
1211 <b>include</b> tag allows to import into a file platform parts located
1212 in another file. This is done with the intention to help people
1213 combine their different AS and provide new platforms. Those files
1214 should contains XML part that contains either
1215 <b>include,cluster,peer,AS,trace,trace_connect</b> tags.
1216
1217 <b>include</b> attributes :
1218 \li <b>file (mandatory)</b>: filename of the file to include. Possible
1219     values: absolute or relative path, syntax similar to the one in
1220     use on your system.
1221
1222 <b>Note</b>: due to some obscure technical reasons, you have to open
1223 and close tag in order to let it work.
1224 <b>include Example</b>
1225 \verbatim
1226 <?xml version='1.0'?>
1227 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
1228 <platform version="3">
1229         <AS id="main" routing="Full">
1230                 <include file="clusterA.xml"></include>
1231                 <include file="clusterB.xml"></include>
1232         </AS>
1233 </platform>
1234 \endverbatim
1235
1236 \subsection pf_tra trace and trace_connect
1237 Both tags are an alternate way to passe availability, state, and so on
1238 files to entity. Instead of referring to the file directly in the host,
1239 link, or cluster tag, you proceed by defining a trace with an id
1240 corresponding to a file, later a host/link/cluster, and finally using
1241 trace_connect you say that the file trace must be used by the entity.
1242 Get it ? Let's have a look at an example :
1243
1244 \verbatim
1245 <AS  id="AS0"  routing="Full">
1246   <host id="bob" power="1000000000"/>
1247 </AS>
1248   <trace id="myTrace" file="bob.trace" periodicity="1.0"/>
1249   <trace_connect trace="myTrace" element="bob" kind="POWER"/>
1250 \endverbatim
1251
1252 All constraints you have is that <b>trace_connect</b> is after
1253 <b>trace</b> and <b>host</b> definitions.
1254
1255
1256 <b>trace</b> attributes :
1257 \li <b>id (mandatory)</b>: the identifier of the trace to be used when
1258     referring to it.
1259 \li <b>file</b>: filename of the file to include. Possible values :
1260     absolute or relative path, syntax similar to the one in use on
1261     your system. If omitted, the system expects that you provide the
1262     trace values inside the trace tags (see below).
1263 \li <b>trace periodicity (mandatory)</b>: trace periodicity, same
1264     definition as in hosts (see upper for details).
1265
1266 Here is an example  of trace when no file name is provided:
1267
1268 \verbatim
1269  <trace id="myTrace" periodicity="1.0">
1270     0.0 1.0
1271     11.0 0.5
1272     20.0 0.8
1273   </trace>
1274 \endverbatim
1275
1276 <b>trace_connect</b> attributes :
1277 \li <b>kind</b>: the type of trace, possible values
1278     <b>HOST_AVAIL|POWER|LINK_AVAIL|BANDWIDTH|LATENCY,</b>  default:
1279     <b>HOST_AVAIL</b>
1280 \li <b>trace (mandatory)</b>: the identifier of the trace referenced.
1281 \li <b>element (mandatory)</b>: the identifier of the entity referenced.
1282
1283
1284
1285 \section pf_hints Hints and tips, or how to write a platform efficiently
1286
1287 Now you should know at least the syntax and be able to create a
1288 platform by your own. However, after having ourselves wrote some platforms, there
1289 are some best practices you should pay attention to in order to
1290 produce good platform and some choices you can make in order to have
1291 faster simulations. Here's some hints and tips, then.
1292
1293 \subsection pf_as_h AS Hierarchy
1294 The AS design allows SimGrid to go fast, because computing route is
1295 done only for the set of resources defined in this AS. If you're using
1296 only a big AS containing all resource with no AS into it and you're
1297 using Full model, then ... you'll loose all interest into it. On the
1298 other hand, designing a binary tree of AS with, at the lower level,
1299 only one host, then you'll also loose all the good AS hierarchy can
1300 give you. Remind you should always be "reasonable" in your platform
1301 definition when choosing the hierarchy. A good choice if you try to
1302 describe a real life platform is to follow the AS described in
1303 reality, since this kind of trade-off works well for real life
1304 platforms.
1305
1306 \subsection pf_exit_as Exit AS: why and how
1307 Users that have looked at some of our platforms may have notice a
1308 non-intuitive schema ... Something like that :
1309
1310
1311 \verbatim
1312 <AS id="AS_4"  routing="Full">
1313 <AS id="exitAS_4"  routing="Full">
1314         <router id="router_4"/>
1315 </AS>
1316 <cluster id="cl_4_1" prefix="c_4_1-" suffix="" radical="1-20" power="1000000000" bw="125000000" lat="5E-5" bb_bw="2250000000" bb_lat="5E-4"/>
1317 <cluster id="cl_4_2" prefix="c_4_2-" suffix="" radical="1-20" power="1000000000" bw="125000000" lat="5E-5" bb_bw="2250000000" bb_lat="5E-4"/>
1318 <link id="4_1" bandwidth="2250000000" latency="5E-5"/>
1319 <link id="4_2" bandwidth="2250000000" latency="5E-5"/>
1320 <link id="bb_4" bandwidth="2250000000" latency="5E-4"/>
1321 <ASroute src="cl_4_1"
1322         dst="cl_4_2"
1323         gw_src="c_4_1-cl_4_1_router"
1324         gw_dst="c_4_2-cl_4_2_router"
1325         symmetrical="YES">
1326                 <link_ctn id="4_1"/>
1327                 <link_ctn id="bb_4"/>
1328                 <link_ctn id="4_2"/>
1329 </ASroute>
1330 <ASroute src="cl_4_1"
1331         dst="exitAS_4"
1332         gw_src="c_4_1-cl_4_1_router"
1333         gw_dst="router_4"
1334         symmetrical="YES">
1335                 <link_ctn id="4_1"/>
1336                 <link_ctn id="bb_4"/>
1337 </ASroute>
1338 <ASroute src="cl_4_2"
1339         dst="exitAS_4"
1340         gw_src="c_4_2-cl_4_2_router"
1341         gw_dst="router_4"
1342         symmetrical="YES">
1343                 <link_ctn id="4_2"/>
1344                 <link_ctn id="bb_4"/>
1345 </ASroute>
1346 </AS>
1347 \endverbatim
1348
1349 In the AS_4, you have an exitAS_4 defined, containing only one router,
1350 and routes defined to that AS from all other AS (as cluster is only a
1351 shortcut for an AS, see cluster description for details). If there was
1352 an upper AS, it would define routes to and from AS_4 with the gateway
1353 router_4. It's just because, as we did not allowed (for performances
1354 issues) to have routes from an AS to a single host/router, you have to
1355 enclose your gateway, when you have AS included in your AS, within an
1356 AS to define routes to it.
1357
1358 \subsection pf_P2P_tags P2P or how to use coordinates
1359 SimGrid allows you to use some coordinated-based system, like vivaldi,
1360 to describe a platform. The main concept is that you have some peers
1361 that are located somewhere: this is the function of the
1362 <b>coordinates</b> of the \<peer\> or \<host\> tag. There's nothing
1363 complicated in using it, here is an example of it:
1364
1365 \verbatim
1366 <?xml version='1.0'?>
1367 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
1368 <platform version="3">
1369
1370 <config id="General">
1371         <prop id="network/coordinates" value="yes"></prop>
1372 </config>
1373  <AS  id="AS0"  routing="Vivaldi">
1374         <host id="100030591" coordinates="25.5 9.4 1.4" power="1500000000.0" />
1375         <host id="100036570" coordinates="-12.7 -9.9 2.1" power="730000000.0" />
1376         ...
1377         <host id="100429957" coordinates="17.5 6.7 18.8" power="830000000.0" />
1378         </AS>
1379 </platform>
1380 \endverbatim
1381
1382 Coordinates are then used to calculate latency between two hosts by
1383 calculating the euclidean distance between the two hosts coordinates.
1384 The results express the latency in ms.
1385
1386 Note that the previous example defines a routing directly between hosts but it could be also used to define a routing between AS.
1387 That is for example what is commonly done when using peers (see Section \ref pf_peer).
1388 \verbatim
1389 <?xml version='1.0'?>
1390 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
1391 <platform version="3">
1392
1393 <config id="General">
1394         <prop id="network/coordinates" value="yes"></prop>
1395 </config>
1396  <AS  id="AS0"  routing="Vivaldi">
1397    <peer id="peer-0" coordinates="173.0 96.8 0.1" power="730Mf" bw_in="13.38MBps" bw_out="1.024MBps" lat="500us"/>
1398    <peer id="peer-1" coordinates="247.0 57.3 0.6" power="730Mf" bw_in="13.38MBps" bw_out="1.024MBps" lat="500us" />
1399    <peer id="peer-2" coordinates="243.4 58.8 1.4" power="730Mf" bw_in="13.38MBps" bw_out="1.024MBps" lat="500us" />
1400 </AS>
1401 </platform>
1402 \endverbatim
1403 In such a case though, we connect the AS created by the <b>peer</b> tag with the Vivaldi routing mechanism.
1404 This means that to route between AS1 and AS2, it will use the coordinates of router_AS1 and router_AS2.
1405 This is currently a convention and we may offer to change this convention in the DTD later if needed.
1406 You may have noted that conveniently, a peer named FOO defines an AS named FOO and a router named router_FOO, which is why it works seamlessly with the <b>peer</b> tag.
1407
1408
1409 \subsection pf_wisely Choosing wisely the routing model to use
1410
1411
1412 Choosing wisely the routing model to use can significantly fasten your
1413 simulation/save your time when writing the platform/save tremendous
1414 disk space. Here is the list of available model and their
1415 characteristics (lookup : time to resolve a route):
1416
1417 \li <b>Full</b>: Full routing data (fast, large memory requirements,
1418     fully expressive)
1419 \li <b>Floyd</b>: Floyd routing data (slow initialization, fast
1420     lookup, lesser memory requirements, shortest path routing only).
1421     Calculates all routes at once at the beginning.
1422 \li <b>Dijkstra</b>: Dijkstra routing data (fast initialization, slow
1423     lookup, small memory requirements, shortest path routing only).
1424     Calculates a route when necessary.
1425 \li <b>DijkstraCache</b>: Dijkstra routing data (fast initialization,
1426     fast lookup, small memory requirements, shortest path routing
1427     only). Same as Dijkstra, except it handles a cache for latest used
1428     routes.
1429 \li <b>none</b>: No routing (usable with Constant network only).
1430     Defines that there is no routes, so if you try to determine a
1431     route without constant network within this AS, SimGrid will raise
1432     an exception.
1433 \li <b>Vivaldi</b>: Vivaldi routing, so when you want to use coordinates
1434 \li <b>Cluster</b>: Cluster routing, specific to cluster tag, should
1435     not be used.
1436
1437 \subsection pf_switch Hey, I want to describe a switch but there is no switch tag !
1438
1439 Actually we did not include switch tag, ok. But when you're trying to
1440 simulate a switch, the only major impact it has when you're using
1441 fluid model (and SimGrid uses fluid model unless you activate GTNetS,
1442 ns-3, or constant network mode) is the impact of the upper limit of
1443 the switch motherboard speed that will eventually be reached if you're
1444 using intensively your switch. So, the switch impact is similar to a
1445 link one. That's why we are used to describe a switch using a link tag
1446 (as a link is not an edge by a hyperedge, you can connect more than 2
1447 other links to it).
1448
1449 \subsection pf_platform_multipath How to express multipath routing in platform files?
1450
1451 It is unfortunately impossible to express the fact that there is more
1452 than one routing path between two given hosts. Let's consider the
1453 following platform file:
1454
1455 \verbatim
1456 <route src="A" dst="B">
1457    <link_ctn id="1"/>
1458 </route>
1459 <route src="B" dst="C">
1460   <link_ctn id="2"/>
1461 </route>
1462 <route src="A" dst="C">
1463   <link_ctn id="3"/>
1464 </route>
1465 \endverbatim
1466
1467 Although it is perfectly valid, it does not mean that data traveling
1468 from A to C can either go directly (using link 3) or through B (using
1469 links 1 and 2). It simply means that the routing on the graph is not
1470 trivial, and that data do not following the shortest path in number of
1471 hops on this graph. Another way to say it is that there is no implicit
1472 in these routing descriptions. The system will only use the routes you
1473 declare (such as &lt;route src="A" dst="C"&gt;&lt;link_ctn
1474 id="3"/&gt;&lt;/route&gt;), without trying to build new routes by aggregating
1475 the provided ones.
1476
1477 You are also free to declare platform where the routing is not
1478 symmetric. For example, add the following to the previous file:
1479
1480 \verbatim
1481 <route src="C" dst="A">
1482   <link_ctn id="2"/>
1483   <link_ctn id="1"/>
1484 </route>
1485 \endverbatim
1486
1487 This makes sure that data from C to A go through B where data from A
1488 to C go directly. Don't worry about realism of such settings since
1489 we've seen ways more weird situation in real settings (in fact, that's
1490 the realism of very regular platforms which is questionable, but
1491 that's another story).
1492
1493 \section pf_flexml_bypassing Bypassing the XML parser with your own C functions
1494 <b>NOTE THAT THIS DOCUMENTATION, WHILE STILL WORKING, IS STRONGLY DEPRECATED</b>
1495
1496 So you want to bypass the XML files parser, uh? Maybe doing some parameter
1497 sweep experiments on your simulations or so? This is possible, and
1498 it's not even really difficult (well. Such a brutal idea could be
1499 harder to implement). Here is how it goes.
1500
1501 For this, you have to first remember that the XML parsing in SimGrid is done
1502 using a tool called FleXML. Given a DTD, this gives a flex-based parser. If
1503 you want to bypass the parser, you need to provide some code mimicking what
1504 it does and replacing it in its interactions with the SURF code. So, let's
1505 have a look at these interactions.
1506
1507 FleXML parser are close to classical SAX parsers. It means that a
1508 well-formed SimGrid platform XML file might result in the following
1509 "events":
1510
1511   - start "platform_description" with attribute version="2"
1512   - start "host" with attributes id="host1" power="1.0"
1513   - end "host"
1514   - start "host" with attributes id="host2" power="2.0"
1515   - end "host"
1516   - start "link" with ...
1517   - end "link"
1518   - start "route" with ...
1519   - start "link_ctn" with ...
1520   - end "link_ctn"
1521   - end "route"
1522   - end "platform_description"
1523
1524 The communication from the parser to the SURF code uses two means:
1525 Attributes get copied into some global variables, and a surf-provided
1526 function gets called by the parser for each event. For example, the event
1527   - start "host" with attributes id="host1" power="1.0"
1528
1529 let the parser do something roughly equivalent to:
1530 \verbatim
1531   strcpy(A_host_id,"host1");
1532   A_host_power = 1.0;
1533   STag_host();
1534 \endverbatim
1535
1536 In SURF, we attach callbacks to the different events by initializing the
1537 pointer functions to some the right surf functions. Since there can be
1538 more than one callback attached to the same event (if more than one
1539 model is in use, for example), they are stored in a dynar. Example in
1540 workstation_ptask_L07.c:
1541 \verbatim
1542   /* Adding callback functions */
1543   surf_parse_reset_parser();
1544   surfxml_add_callback(STag_surfxml_host_cb_list, &parse_cpu_init);
1545   surfxml_add_callback(STag_surfxml_prop_cb_list, &parse_properties);
1546   surfxml_add_callback(STag_surfxml_link_cb_list, &parse_link_init);
1547   surfxml_add_callback(STag_surfxml_route_cb_list, &parse_route_set_endpoints);
1548   surfxml_add_callback(ETag_surfxml_link_c_ctn_cb_list, &parse_route_elem);
1549   surfxml_add_callback(ETag_surfxml_route_cb_list, &parse_route_set_route);
1550
1551   /* Parse the file */
1552   surf_parse_open(file);
1553   xbt_assert(!surf_parse(), "Parse error in %s", file);
1554   surf_parse_close();
1555 \endverbatim
1556
1557 So, to bypass the FleXML parser, you need to write your own version of the
1558 surf_parse function, which should do the following:
1559    - Fill the A_<tag>_<attribute> variables with the wanted values
1560    - Call the corresponding STag_<tag>_fun function to simulate tag start
1561    - Call the corresponding ETag_<tag>_fun function to simulate tag end
1562    - (do the same for the next set of values, and loop)
1563
1564 Then, tell SimGrid that you want to use your own "parser" instead of the stock one:
1565 \verbatim
1566   surf_parse = surf_parse_bypass_environment;
1567   MSG_create_environment(NULL);
1568   surf_parse = surf_parse_bypass_application;
1569   MSG_launch_application(NULL);
1570 \endverbatim
1571
1572 A set of macros are provided at the end of
1573 include/surf/surfxml_parse.h to ease the writing of the bypass
1574 functions. An example of this trick is distributed in the file
1575 examples/msg/masterslave/masterslave_bypass.c
1576
1577
1578 */