 Algorithmique Numérique Distribuée Public GIT Repository
1 /* Copyright (c) 2004-2015. The SimGrid Team.
2  * All rights reserved.                                                     */
4 /* This program is free software; you can redistribute it and/or modify it
5  * under the terms of the license (GNU LGPL) which comes with this package. */
7 #ifndef _SURF_MAXMIN_H
8 #define _SURF_MAXMIN_H
10 #include "src/portable.h"
11 #include "xbt/misc.h"
12 #include "xbt/asserts.h"
13 #include "surf/datatypes.h"
14 #include <math.h>
17  * @details
18  * A linear maxmin solver to resolve inequations systems.
19  *
20  * Most SimGrid model rely on a "fluid/steady-state" modeling that simulate the sharing of resources between actions at
21  * relatively coarse-grain.  Such sharing is generally done by solving a set of linear inequations. Let's take an
22  * example and assume we have the variables \f$x_1\f$, \f$x_2\f$, \f$x_3\f$, and \f$x_4\f$ . Let's say that \f$x_1\f$
23  * and \f$x_2\f$ correspond to activities running and the same CPU \f$A\f$ whose capacity is \f$C_A\f$. In such a
24  * case, we need to enforce:
25  *
26  *   \f[ x_1 + x_2 \leq C_A \f]
27  *
28  * Likewise, if \f$x_3\f$ (resp. \f$x_4\f$) corresponds to a network flow \f$F_3\f$ (resp. \f$F_4\f$) that goes through
29  * a set of links \f$L_1\f$ and \f$L_2\f$ (resp. \f$L_2\f$ and \f$L_3\f$), then we need to enforce:
30  *
31  *   \f[ x_3  \leq C_{L_1} \f]
32  *   \f[ x_3 + x_4 \leq C_{L_2} \f]
33  *   \f[ x_4 \leq C_{L_3} \f]
34  *
35  * One could set every variable to 0 to make sure the constraints are satisfied but this would obviously not be very
36  * realistic. A possible objective is to try to maximize the minimum of the \f$x_i\f$ . This ensures that all the
37  * \f$x_i\f$ are positive and "as large as possible".
38  *
39  * This is called *max-min fairness* and is the most commonly used objective in SimGrid. Another possibility is to
40  * maximize \f$\sum_if(x_i)\f$, where \f$f\f$ is a strictly increasing concave function.
41  *
42  * Constraint:
43  *  - bound (set)
44  *  - shared (set)
45  *  - usage (computed)
46  *
47  * Variable:
48  *  - weight (set)
49  *  - bound (set)
50  *  - value (computed)
51  *
52  * Element:
53  *  - value (set)
54  *
55  * A possible system could be:
56  * - three variables: var1, var2, var3
57  * - two constraints: cons1, cons2
58  * - four elements linking:
59  *  - elem1 linking var1 and cons1
60  *  - elem2 linking var2 and cons1
61  *  - elem3 linking var2 and cons2
62  *  - elem4 linking var3 and cons2
63  *
64  * And the corresponding inequations will be:
65  *
66  *     var1.value <= var1.bound
67  *     var2.value <= var2.bound
68  *     var3.value <= var3.bound
69  *     var1.weight * var1.value * elem1.value + var2.weight * var2.value * elem2.value <= cons1.bound
70  *     var2.weight * var2.value * elem3.value + var3.weight * var3.value * elem4.value <= cons2.bound
71  *
72  * where var1.value, var2.value and var3.value are the unknown values.
73  *
74  * If a constraint is not shared, the sum is replaced by a max.
75  * For example, a third non-shared constraint cons3 and the associated elements elem5 and elem6 could write as:
76  *
77  *     max( var1.weight * var1.value * elem5.value  ,  var3.weight * var3.value * elem6.value ) <= cons3.bound
78  *
79  * This is usefull for the sharing of resources for various models.
80  * For instance, for the network model, each link is associated to a constraint and each communication to a variable.
81  *
82  * Implementation details
83  *
84  * For implementation reasons, we are interested in distinguishing variables that actually participate to the
85  * computation of constraints, and those who are part of the equations but are stuck to zero.
86  * We call enabled variables, those which var.weight is strictly positive. Zero-weight variables are called disabled
87  * variables.
88  * Unfortunately this concept of enabled/disabled variables intersects with active/inactive variable.
89  * Semantically, the intent is similar, but the conditions under which a variable is active is slightly more strict
90  * than the conditions for it to be enabled.
91  * A variable is active only if its var.value is non-zero (and, by construction, its var.weight is non-zero).
92  * In general, variables remain disabled after their creation, which often models an initialization phase (e.g. first
93  * packet propagating in the network). Then, it is enabled by the corresponding model. Afterwards, the max-min solver
94  * (lmm_solve()) activates it when appropriate. It is possible that the variable is again disabled, e.g. to model the
95  * pausing of an action.
96  *
97  * Concurrency limit and maximum
98  *
99  * We call concurrency, the number of variables that can be enabled at any time for each constraint.
100  * From a model perspective, this "concurrency" often represents the number of actions that actually compete for one
101  * constraint.
102  * The LMM solver is able to limit the concurrency for each constraint, and to monitor its maximum value.
103  *
104  * One may want to limit the concurrency of constraints for essentially three reasons:
105  *  - Keep LMM system in a size that can be solved (it does not react very well with tens of thousands of variables per
106  *    constraint)
107  *  - Stay within parameters where the fluid model is accurate enough.
108  *  - Model serialization effects
109  *
110  * The concurrency limit can also be set to a negative value to disable concurrency limit. This can improve performance
111  * slightly.
112  *
113  * Overall, each constraint contains three fields related to concurrency:
114  *  - concurrency_limit which is the limit enforced by the solver
115  *  - concurrency_current which is the current concurrency
116  *  - concurrency_maximum which is the observed maximum concurrency
117  *
118  * Variables also have one field related to concurrency: concurrency_share.
119  * In effect, in some cases, one variable is involved multiple times (i.e. two elements) in a constraint.
120  * For example, cross-traffic is modeled using 2 elements per constraint.
121  * concurrency_share formally corresponds to the maximum number of elements that associate the variable and any given
122  * constraint.
123  */
125 XBT_PUBLIC_DATA(double) sg_maxmin_precision;
126 XBT_PUBLIC_DATA(double) sg_surf_precision;
128 static XBT_INLINE void double_update(double *variable, double value, double precision)
129 {
130   //printf("Updating %g -= %g +- %g\n",*variable,value,precision);
131   //xbt_assert(value==0  || value>precision);
132   //Check that precision is higher than the machine-dependent size of the mantissa. If not, brutal rounding  may happen,
133   //and the precision mechanism is not active...
135   *variable -= value;
136   if (*variable < precision)
137     *variable = 0.0;
138 }
140 static XBT_INLINE int double_positive(double value, double precision)
141 {
142   return (value > precision);
143 }
145 static XBT_INLINE int double_equals(double value1, double value2, double precision)
146 {
147   return (fabs(value1 - value2) < precision);
148 }
150 SG_BEGIN_DECL()
152 /** @{ @ingroup SURF_lmm */
153 /**
154  * @brief Create a new Linear MaxMim system
155  * @param selective_update [description]
156  */
157 XBT_PUBLIC(lmm_system_t) lmm_system_new(int selective_update);
159 /**
160  * @brief Free an existing Linear MaxMin system
161  * @param sys The lmm system to free
162  */
163 XBT_PUBLIC(void) lmm_system_free(lmm_system_t sys);
165 /**
166  * @brief Create a new Linear MaxMin constraint
167  * @param sys The system in which we add a constraint
168  * @param id Data associated to the constraint (e.g.: a network link)
169  * @param bound_value The bound value of the constraint
170  */
171 XBT_PUBLIC(lmm_constraint_t) lmm_constraint_new(lmm_system_t sys, void *id,double bound_value);
173 /**
174  * @brief Share a constraint
175  * @param cnst The constraint to share
176  */
177 XBT_PUBLIC(void) lmm_constraint_shared(lmm_constraint_t cnst);
179 /**
180  * @brief Check if a constraint is shared (shared by default)
181  * @param cnst The constraint to share
182  * @return 1 if shared, 0 otherwise
183  */
184 XBT_PUBLIC(int) lmm_constraint_sharing_policy(lmm_constraint_t cnst);
186 /**
187  * @brief Free a constraint
188  * @param sys The system associated to the constraint
189  * @param cnst The constraint to free
190  */
191 XBT_PUBLIC(void) lmm_constraint_free(lmm_system_t sys, lmm_constraint_t cnst);
193 /**
194  * @brief Get the usage of the constraint after the last lmm solve
195  * @param cnst A constraint
196  * @return The usage of the constraint
197  */
198 XBT_PUBLIC(double) lmm_constraint_get_usage(lmm_constraint_t cnst);
200 /**
201  * @brief Sets the concurrency limit for this constraint
202  * @param cnst A constraint
203  * @param concurrency_limit The concurrency limit to use for this constraint
204  */
205 XBT_PUBLIC(void) lmm_constraint_concurrency_limit_set(lmm_constraint_t cnst, int concurrency_limit);
207 /**
208  * @brief Gets the concurrency limit for this constraint
209  * @param cnst A constraint
210  * @return The concurrency limit used by this constraint
211  */
212 XBT_PUBLIC(int) lmm_constraint_concurrency_limit_get(lmm_constraint_t cnst);
214 /**
215  * @brief Reset the concurrency maximum for a given variable (we will update the maximum to reflect constraint
216  * evolution).
217  * @param cnst A constraint
218 */
219 XBT_PUBLIC(void) lmm_constraint_concurrency_maximum_reset(lmm_constraint_t cnst);
221 /**
222  * @brief Get the concurrency maximum for a given variable (which reflects constraint evolution).
223  * @param cnst A constraint
224  * @return the maximum concurrency of the constraint
225  */
226 XBT_PUBLIC(int) lmm_constraint_concurrency_maximum_get(lmm_constraint_t cnst);
228 /**
229  * @brief Create a new Linear MaxMin variable
230  * @param sys The system in which we add a constaint
231  * @param id Data associated to the variable (e.g.: a network communication)
232  * @param weight_value The weight of the variable (0.0 if not used)
233  * @param bound The maximum value of the variable (-1.0 if no maximum value)
234  * @param number_of_constraints The maximum number of constraint to associate to the variable
235  */
236 XBT_PUBLIC(lmm_variable_t) lmm_variable_new(lmm_system_t sys, void *id, double weight_value, double bound,
237                                             int number_of_constraints);
238 /**
239  * @brief Free a variable
240  * @param sys The system associated to the variable
241  * @param var The variable to free
242  */
243 XBT_PUBLIC(void) lmm_variable_free(lmm_system_t sys, lmm_variable_t var);
245 /**
246  * @brief Get the value of the variable after the last lmm solve
247  * @param var A variable
248  * @return The value of the variable
249  */
250 XBT_PUBLIC(double) lmm_variable_getvalue(lmm_variable_t var);
252 /**
253  * @brief Get the maximum value of the variable (-1.0 if no maximum value)
254  * @param var A variable
255  * @return The bound of the variable
256  */
257 XBT_PUBLIC(double) lmm_variable_getbound(lmm_variable_t var);
259 /**
260  * @brief Set the concurrent share of the variable
261  * @param var A variable
262  * @param concurrency_share The new concurrency share
263  */
264 XBT_PUBLIC(void) lmm_variable_concurrency_share_set(lmm_variable_t var, short int concurrency_share);
266 /**
267  * @brief Remove a variable from a constraint
268  * @param sys A system
269  * @param cnst A constraint
270  * @param var The variable to remove
271  */
272 XBT_PUBLIC(void) lmm_shrink(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var);
274 /**
275  * @brief Associate a variable to a constraint with a coefficient
276  * @param sys A system
277  * @param cnst A constraint
278  * @param var A variable
279  * @param value The coefficient associated to the variable in the constraint
280  */
281 XBT_PUBLIC(void) lmm_expand(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value);
283 /**
284  * @brief Add value to the coefficient between a constraint and a variable or create one
285  * @param sys A system
286  * @param cnst A constraint
287  * @param var A variable
288  * @param value The value to add to the coefficient associated to the variable in the constraint
289  */
290 XBT_PUBLIC(void) lmm_expand_add(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value);
292 /**
293  * @brief Get the numth constraint associated to the variable
294  * @param sys The system associated to the variable (not used)
295  * @param var A variable
296  * @param num The rank of constraint we want to get
297  * @return The numth constraint
298  */
299 XBT_PUBLIC(lmm_constraint_t) lmm_get_cnst_from_var(lmm_system_t sys, lmm_variable_t var, int num);
301 /**
302  * @brief Get the weigth of the numth constraint associated to the variable
303  * @param sys The system associated to the variable (not used)
304  * @param var A variable
305  * @param num The rank of constraint we want to get
306  * @return The numth constraint
307  */
308 XBT_PUBLIC(double) lmm_get_cnst_weight_from_var(lmm_system_t sys, lmm_variable_t var, int num);
310 /**
311  * @brief Get the number of constraint associated to a variable
312  * @param sys The system associated to the variable (not used)
313  * @param var A variable
314  * @return The number of constraint associated to the variable
315  */
316 XBT_PUBLIC(int) lmm_get_number_of_cnst_from_var(lmm_system_t sys, lmm_variable_t var);
318 /**
319  * @brief Get a var associated to a constraint
320  * @details Get the first variable of the next variable of elem if elem is not NULL
321  * @param sys The system associated to the variable (not used)
322  * @param cnst A constraint
323  * @param elem A element of constraint of the constraint or NULL
324  * @return A variable associated to a constraint
325  */
326 XBT_PUBLIC(lmm_variable_t) lmm_get_var_from_cnst(lmm_system_t sys, lmm_constraint_t cnst, lmm_element_t * elem);
328 /**
329  * @brief Get a var associated to a constraint
330  * @details Get the first variable of the next variable of elem if elem is not NULL
331  * @param cnst A constraint
332  * @param elem A element of constraint of the constraint or NULL
333  * @param nextelem A element of constraint of the constraint or NULL, the one after elem
334  * @param numelem parameter representing the number of elements to go
335  *
336  * @return A variable associated to a constraint
337  */
338 XBT_PUBLIC(lmm_variable_t) lmm_get_var_from_cnst_safe(lmm_system_t /*sys*/, lmm_constraint_t cnst,
339                                      lmm_element_t * elem, lmm_element_t * nextelem, int * numelem);
341 /**
342  * @brief Get the first active constraint of a system
343  * @param sys A system
344  * @return The first active constraint
345  */
346 XBT_PUBLIC(lmm_constraint_t) lmm_get_first_active_constraint(lmm_system_t sys);
348 /**
349  * @brief Get the next active constraint of a constraint in a system
350  * @param sys A system
351  * @param cnst An active constraint of the system
352  *
353  * @return The next active constraint
354  */
355 XBT_PUBLIC(lmm_constraint_t) lmm_get_next_active_constraint(lmm_system_t sys, lmm_constraint_t cnst);
357 #ifdef HAVE_LATENCY_BOUND_TRACKING
358 XBT_PUBLIC(int) lmm_is_variable_limited_by_latency(lmm_variable_t var);
359 #endif
361 /**
362  * @brief Get the data associated to a constraint
363  * @param cnst A constraint
364  * @return The data associated to the constraint
365  */
366 XBT_PUBLIC(void *) lmm_constraint_id(lmm_constraint_t cnst);
368 /**
369  * @brief Get the data associated to a variable
370  * @param var A variable
371  * @return The data associated to the variable
372  */
373 XBT_PUBLIC(void *) lmm_variable_id(lmm_variable_t var);
375 /**
376  * @brief Update the value of element linking the constraint and the variable
377  * @param sys A system
378  * @param cnst A constraint
379  * @param var A variable
380  * @param value The new value
381  */
382 XBT_PUBLIC(void) lmm_update(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value);
384 /**
385  * @brief Update the bound of a variable
386  * @param sys A system
387  * @param var A constraint
388  * @param bound The new bound
389  */
390 XBT_PUBLIC(void) lmm_update_variable_bound(lmm_system_t sys, lmm_variable_t var, double bound);
392 /**
393  * @brief Update the weight of a variable
394  * @param sys A system
395  * @param var A variable
396  * @param weight The new weight of the variable
397  */
398 XBT_PUBLIC(void) lmm_update_variable_weight(lmm_system_t sys, lmm_variable_t var, double weight);
400 /**
401  * @brief Get the weight of a variable
402  * @param var A variable
403  * @return The weight of the variable
404  */
405 XBT_PUBLIC(double) lmm_get_variable_weight(lmm_variable_t var);
407 /**
408  * @brief Update a constraint bound
409  * @param sys A system
410  * @param cnst A constraint
411  * @param bound The new bound of the consrtaint
412  */
413 XBT_PUBLIC(void) lmm_update_constraint_bound(lmm_system_t sys, lmm_constraint_t cnst, double bound);
415 /**
416  * @brief [brief description]
417  * @param sys A system
418  * @param cnst A constraint
419  * @return [description]
420  */
421 XBT_PUBLIC(int) lmm_constraint_used(lmm_system_t sys, lmm_constraint_t cnst);
423 /**
424  * @brief Print the lmm system
425  * @param sys The lmm system to print
426  */
427 XBT_PUBLIC(void) lmm_print(lmm_system_t sys);
429 /**
430  * @brief Solve the lmm system
431  * @param sys The lmm system to solve
432  */
433 XBT_PUBLIC(void) lmm_solve(lmm_system_t sys);
435 XBT_PUBLIC(void) lagrange_solve(lmm_system_t sys);
436 XBT_PUBLIC(void) bottleneck_solve(lmm_system_t sys);
438 /** Default functions associated to the chosen protocol. When using the lagrangian approach. */
440 XBT_PUBLIC(void) lmm_set_default_protocol_function(double (*func_f)(lmm_variable_t var,double x),
441                                                    double (*func_fp)(lmm_variable_t var,double x),
442                                                    double (*func_fpi)(lmm_variable_t var,double x));
444 XBT_PUBLIC(double func_reno_f) (lmm_variable_t var, double x);
445 XBT_PUBLIC(double func_reno_fp) (lmm_variable_t var, double x);
446 XBT_PUBLIC(double func_reno_fpi) (lmm_variable_t var, double x);
448 XBT_PUBLIC(double func_reno2_f) (lmm_variable_t var, double x);
449 XBT_PUBLIC(double func_reno2_fp) (lmm_variable_t var, double x);
450 XBT_PUBLIC(double func_reno2_fpi) (lmm_variable_t var, double x);
452 XBT_PUBLIC(double func_vegas_f) (lmm_variable_t var, double x);
453 XBT_PUBLIC(double func_vegas_fp) (lmm_variable_t var, double x);
454 XBT_PUBLIC(double func_vegas_fpi) (lmm_variable_t var, double x);
456 /** @} */
457 SG_END_DECL()
459 #endif                          /* _SURF_MAXMIN_H */