Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
Merge branch 'udpor-phase6' into 'master'
[simgrid.git] / src / mc / explo / udpor / Configuration_test.cpp
index f9d025e..8deb62e 100644 (file)
@@ -7,7 +7,12 @@
 #include "src/mc/explo/udpor/Configuration.hpp"
 #include "src/mc/explo/udpor/EventSet.hpp"
 #include "src/mc/explo/udpor/History.hpp"
+#include "src/mc/explo/udpor/Unfolding.hpp"
 #include "src/mc/explo/udpor/UnfoldingEvent.hpp"
+#include "src/mc/explo/udpor/maximal_subsets_iterator.hpp"
+#include "src/mc/explo/udpor/udpor_tests_private.hpp"
+
+#include <unordered_map>
 
 using namespace simgrid::mc::udpor;
 
@@ -21,11 +26,11 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Constructing Configurations")
   //          e3
   //         /  /
   //        e4   e5
-  UnfoldingEvent e1;
-  UnfoldingEvent e2{&e1};
-  UnfoldingEvent e3{&e2};
-  UnfoldingEvent e4{&e3};
-  UnfoldingEvent e5{&e3};
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e5(EventSet({&e3}), std::make_shared<IndependentAction>());
 
   SECTION("Creating a configuration without events")
   {
@@ -34,7 +39,7 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Constructing Configurations")
     REQUIRE(C.get_latest_event() == nullptr);
   }
 
-  SECTION("Creating a configuration with events")
+  SECTION("Creating a configuration with events (test violation of being causally closed)")
   {
     // 5 choose 0 = 1 test
     REQUIRE_NOTHROW(Configuration({&e1}));
@@ -90,10 +95,10 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Adding Events")
   //           /
   //         /  /
   //        e3   e4
-  UnfoldingEvent e1;
-  UnfoldingEvent e2{&e1};
-  UnfoldingEvent e3{&e2};
-  UnfoldingEvent e4{&e2};
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e2}), std::make_shared<IndependentAction>());
 
   REQUIRE_THROWS_AS(Configuration().add_event(nullptr), std::invalid_argument);
   REQUIRE_THROWS_AS(Configuration().add_event(&e2), std::invalid_argument);
@@ -133,16 +138,17 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order")
   //          e3
   //         /
   //        e4
-  UnfoldingEvent e1;
-  UnfoldingEvent e2{&e1};
-  UnfoldingEvent e3{&e2};
-  UnfoldingEvent e4{&e3};
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e3}), std::make_shared<IndependentAction>());
 
   SECTION("Topological ordering for entire set")
   {
     Configuration C{&e1, &e2, &e3, &e4};
-    REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4});
-    REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e4, &e3, &e2, &e1});
+    REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4});
+    REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+            std::vector<const UnfoldingEvent*>{&e4, &e3, &e2, &e1});
   }
 
   SECTION("Topological ordering for subsets")
@@ -150,29 +156,30 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order")
     SECTION("No elements")
     {
       Configuration C;
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{});
     }
 
     SECTION("e1 only")
     {
       Configuration C{&e1};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{&e1});
     }
 
     SECTION("e1 and e2 only")
     {
       Configuration C{&e1, &e2};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{&e2, &e1});
     }
 
     SECTION("e1, e2, and e3 only")
     {
       Configuration C{&e1, &e2, &e3};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e3, &e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+              std::vector<const UnfoldingEvent*>{&e3, &e2, &e1});
     }
   }
 }
@@ -189,63 +196,66 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order More Compli
   //        e4   e6
   //        /
   //       e5
-  UnfoldingEvent e1;
-  UnfoldingEvent e2{&e1};
-  UnfoldingEvent e3{&e2};
-  UnfoldingEvent e4{&e3};
-  UnfoldingEvent e5{&e4};
-  UnfoldingEvent e6{&e3};
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e5(EventSet({&e4}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e6(EventSet({&e3}), std::make_shared<IndependentAction>());
 
   SECTION("Topological ordering for subsets")
   {
     SECTION("No elements")
     {
       Configuration C;
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{});
     }
 
     SECTION("e1 only")
     {
       Configuration C{&e1};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{&e1});
     }
 
     SECTION("e1 and e2 only")
     {
       Configuration C{&e1, &e2};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<const UnfoldingEvent*>{&e2, &e1});
     }
 
     SECTION("e1, e2, and e3 only")
     {
       Configuration C{&e1, &e2, &e3};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e3, &e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+              std::vector<const UnfoldingEvent*>{&e3, &e2, &e1});
     }
 
     SECTION("e1, e2, e3, and e6 only")
     {
       Configuration C{&e1, &e2, &e3, &e6};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e6});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e6, &e3, &e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e6});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+              std::vector<const UnfoldingEvent*>{&e6, &e3, &e2, &e1});
     }
 
     SECTION("e1, e2, e3, and e4 only")
     {
       Configuration C{&e1, &e2, &e3, &e4};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4});
-      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() == std::vector<UnfoldingEvent*>{&e4, &e3, &e2, &e1});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4});
+      REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+              std::vector<const UnfoldingEvent*>{&e4, &e3, &e2, &e1});
     }
 
     SECTION("e1, e2, e3, e4, and e5 only")
     {
       Configuration C{&e1, &e2, &e3, &e4, &e5};
-      REQUIRE(C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e5});
+      REQUIRE(C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e5});
       REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
-              std::vector<UnfoldingEvent*>{&e5, &e4, &e3, &e2, &e1});
+              std::vector<const UnfoldingEvent*>{&e5, &e4, &e3, &e2, &e1});
     }
 
     SECTION("e1, e2, e3, e4 and e6 only")
@@ -253,12 +263,12 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order More Compli
       // In this case, e4 and e6 are interchangeable. Hence, we have to check
       // if the sorting gives us *any* of the combinations
       Configuration C{&e1, &e2, &e3, &e4, &e6};
-      REQUIRE((C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e6} ||
-               C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e6, &e4}));
+      REQUIRE((C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e6} ||
+               C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e6, &e4}));
       REQUIRE((C.get_topologically_sorted_events_of_reverse_graph() ==
-                   std::vector<UnfoldingEvent*>{&e6, &e4, &e3, &e2, &e1} ||
+                   std::vector<const UnfoldingEvent*>{&e6, &e4, &e3, &e2, &e1} ||
                C.get_topologically_sorted_events_of_reverse_graph() ==
-                   std::vector<UnfoldingEvent*>{&e4, &e6, &e3, &e2, &e1}));
+                   std::vector<const UnfoldingEvent*>{&e4, &e6, &e3, &e2, &e1}));
     }
 
     SECTION("Topological ordering for entire set")
@@ -266,15 +276,16 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order More Compli
       // In this case, e4/e5 are both interchangeable with e6. Hence, again we have to check
       // if the sorting gives us *any* of the combinations
       Configuration C{&e1, &e2, &e3, &e4, &e5, &e6};
-      REQUIRE((C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e5, &e6} ||
-               C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e6, &e5} ||
-               C.get_topologically_sorted_events() == std::vector<UnfoldingEvent*>{&e1, &e2, &e3, &e6, &e4, &e5}));
+      REQUIRE(
+          (C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e5, &e6} ||
+           C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e4, &e6, &e5} ||
+           C.get_topologically_sorted_events() == std::vector<const UnfoldingEvent*>{&e1, &e2, &e3, &e6, &e4, &e5}));
       REQUIRE((C.get_topologically_sorted_events_of_reverse_graph() ==
-                   std::vector<UnfoldingEvent*>{&e6, &e5, &e4, &e3, &e2, &e1} ||
+                   std::vector<const UnfoldingEvent*>{&e6, &e5, &e4, &e3, &e2, &e1} ||
                C.get_topologically_sorted_events_of_reverse_graph() ==
-                   std::vector<UnfoldingEvent*>{&e5, &e6, &e4, &e3, &e2, &e1} ||
+                   std::vector<const UnfoldingEvent*>{&e5, &e6, &e4, &e3, &e2, &e1} ||
                C.get_topologically_sorted_events_of_reverse_graph() ==
-                   std::vector<UnfoldingEvent*>{&e5, &e4, &e6, &e3, &e2, &e1}));
+                   std::vector<const UnfoldingEvent*>{&e5, &e4, &e6, &e3, &e2, &e1}));
     }
   }
 }
@@ -294,18 +305,18 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order Very Compli
   //        /   /     /
   //         /  /   /
   //         [   e12    ]
-  UnfoldingEvent e1;
-  UnfoldingEvent e2{&e1};
-  UnfoldingEvent e8{&e1};
-  UnfoldingEvent e3{&e2};
-  UnfoldingEvent e4{&e3};
-  UnfoldingEvent e5{&e4};
-  UnfoldingEvent e6{&e4};
-  UnfoldingEvent e7{&e2, &e8};
-  UnfoldingEvent e9{&e6, &e7};
-  UnfoldingEvent e10{&e7};
-  UnfoldingEvent e11{&e8};
-  UnfoldingEvent e12{&e5, &e9, &e10};
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e8(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e5(EventSet({&e4}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e6(EventSet({&e4}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e7(EventSet({&e2, &e8}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e9(EventSet({&e6, &e7}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e10(EventSet({&e7}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e11(EventSet({&e8}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e12(EventSet({&e5, &e9, &e10}), std::make_shared<IndependentAction>());
   Configuration C{&e1, &e2, &e3, &e4, &e5, &e6, &e7, &e8, &e9, &e10, &e11, &e12};
 
   SECTION("Test every combination of the maximal configuration (forward graph)")
@@ -316,7 +327,7 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order Very Compli
     EventSet events_seen;
     const auto ordered_events = C.get_topologically_sorted_events();
 
-    std::for_each(ordered_events.begin(), ordered_events.end(), [&events_seen](UnfoldingEvent* e) {
+    std::for_each(ordered_events.begin(), ordered_events.end(), [&events_seen](const UnfoldingEvent* e) {
       History history(e);
       for (auto* e_hist : history) {
         // In this demo, we want to make sure that
@@ -343,7 +354,7 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order Very Compli
     EventSet events_seen;
     const auto ordered_events = C.get_topologically_sorted_events_of_reverse_graph();
 
-    std::for_each(ordered_events.begin(), ordered_events.end(), [&events_seen](UnfoldingEvent* e) {
+    std::for_each(ordered_events.begin(), ordered_events.end(), [&events_seen](const UnfoldingEvent* e) {
       History history(e);
 
       for (auto* e_hist : history) {
@@ -359,5 +370,797 @@ TEST_CASE("simgrid::mc::udpor::Configuration: Topological Sort Order Very Compli
     });
   }
 
-  SECTION("Test that the topological ordering contains only the events of the configuration") {}
+  SECTION("Test that the topological ordering contains only the events of the configuration")
+  {
+    const EventSet events_seen = C.get_events();
+
+    SECTION("Forward direction")
+    {
+      auto ordered_events              = C.get_topologically_sorted_events();
+      const EventSet ordered_event_set = EventSet(std::move(ordered_events));
+      REQUIRE(events_seen == ordered_event_set);
+    }
+
+    SECTION("Reverse direction")
+    {
+      auto ordered_events              = C.get_topologically_sorted_events_of_reverse_graph();
+      const EventSet ordered_event_set = EventSet(std::move(ordered_events));
+      REQUIRE(events_seen == ordered_event_set);
+    }
+  }
+
+  SECTION("Test that the topological ordering is equivalent to that of the configuration's events")
+  {
+    REQUIRE(C.get_topologically_sorted_events() == C.get_events().get_topological_ordering());
+    REQUIRE(C.get_topologically_sorted_events_of_reverse_graph() ==
+            C.get_events().get_topological_ordering_of_reverse_graph());
+  }
+}
+
+TEST_CASE("simgrid::mc::udpor::maximal_subsets_iterator: Basic Testing of Maximal Subsets")
+{
+  // The following tests concern the given event structure:
+  //                e1
+  //              /   /
+  //             e2   e5
+  //            /     /
+  //           e3    e6
+  //           /     / /
+  //          e4    e7 e8
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e5(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e6(EventSet({&e5}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e7(EventSet({&e6}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e8(EventSet({&e6}), std::make_shared<IndependentAction>());
+
+  SECTION("Iteration over an empty configuration yields only the empty set")
+  {
+    Configuration C;
+    maximal_subsets_iterator first(C);
+    maximal_subsets_iterator last;
+
+    REQUIRE(*first == EventSet());
+    ++first;
+    REQUIRE(first == last);
+  }
+
+  SECTION("Check counts of maximal event sets discovered")
+  {
+    std::unordered_map<int, int> maximal_subset_counts;
+
+    Configuration C{&e1, &e2, &e3, &e4, &e5, &e6, &e7, &e8};
+    maximal_subsets_iterator first(C);
+    maximal_subsets_iterator last;
+
+    for (; first != last; ++first) {
+      maximal_subset_counts[(*first).size()]++;
+    }
+
+    // First, ensure that there are only sets of size 0, 1, 2, and 3
+    CHECK(maximal_subset_counts.size() == 4);
+
+    // The empty set should appear only once
+    REQUIRE(maximal_subset_counts[0] == 1);
+
+    // 8 is the number of nodes in the graph
+    REQUIRE(maximal_subset_counts[1] == 8);
+
+    // 13 = 3 * 4 (each of the left branch can combine with one in the right branch) + 1 (e7 + e8)
+    REQUIRE(maximal_subset_counts[2] == 13);
+
+    // e7 + e8 must be included, so that means we can combine from the left branch
+    REQUIRE(maximal_subset_counts[3] == 3);
+  }
+
+  SECTION("Check counts of maximal event sets discovered with a filter")
+  {
+    std::unordered_map<int, int> maximal_subset_counts;
+
+    Configuration C{&e1, &e2, &e3, &e4, &e5, &e6, &e7, &e8};
+
+    SECTION("Filter with events part of initial maximal set")
+    {
+      EventSet interesting_bunch{&e2, &e4, &e7, &e8};
+
+      maximal_subsets_iterator first(C, [&](const UnfoldingEvent* e) { return interesting_bunch.contains(e); });
+      maximal_subsets_iterator last;
+
+      for (; first != last; ++first) {
+        const auto& event_set = *first;
+        // Only events in `interesting_bunch` can appear: thus no set
+        // should include anything else other than `interesting_bunch`
+        REQUIRE(event_set.is_subset_of(interesting_bunch));
+        REQUIRE(event_set.is_maximal());
+        maximal_subset_counts[event_set.size()]++;
+      }
+
+      // The empty set should (still) appear only once
+      REQUIRE(maximal_subset_counts[0] == 1);
+
+      // 4 is the number of nodes in the `interesting_bunch`
+      REQUIRE(maximal_subset_counts[1] == 4);
+
+      // 5 = 2 * 2 (each of the left branch can combine with one in the right branch) + 1 (e7 + e8)
+      REQUIRE(maximal_subset_counts[2] == 5);
+
+      // e7 + e8 must be included, so that means we can combine from the left branch (only e2 and e4)
+      REQUIRE(maximal_subset_counts[3] == 2);
+
+      // There are no subsets of size 4 (or higher, but that
+      // is tested by asserting each maximal set traversed is a subset)
+      REQUIRE(maximal_subset_counts[4] == 0);
+    }
+
+    SECTION("Filter with interesting subset not initially part of the maximal set")
+    {
+      EventSet interesting_bunch{&e3, &e5, &e6};
+
+      maximal_subsets_iterator first(C, [&](const UnfoldingEvent* e) { return interesting_bunch.contains(e); });
+      maximal_subsets_iterator last;
+
+      for (; first != last; ++first) {
+        const auto& event_set = *first;
+        // Only events in `interesting_bunch` can appear: thus no set
+        // should include anything else other than `interesting_bunch`
+        REQUIRE(event_set.is_subset_of(interesting_bunch));
+        REQUIRE(event_set.is_maximal());
+        maximal_subset_counts[event_set.size()]++;
+      }
+
+      // The empty set should (still) appear only once
+      REQUIRE(maximal_subset_counts[0] == 1);
+
+      // 3 is the number of nodes in the `interesting_bunch`
+      REQUIRE(maximal_subset_counts[1] == 3);
+
+      // 2 = e3, e5 and e3, e6
+      REQUIRE(maximal_subset_counts[2] == 2);
+
+      // There are no subsets of size 3 (or higher, but that
+      // is tested by asserting each maximal set traversed is a subset)
+      REQUIRE(maximal_subset_counts[3] == 0);
+    }
+  }
+}
+
+TEST_CASE("simgrid::mc::udpor::maximal_subsets_iterator: Stress Test for Maximal Subsets Iteration")
+{
+  // The following tests concern the given event structure:
+  //                              e1
+  //                            /   /
+  //                          e2    e3
+  //                          / /   /  /
+  //               +------* e4 *e5 e6  e7
+  //               |        /   ///   /  /
+  //               |       e8   e9    e10
+  //               |      /  /   /\      /
+  //               |   e11 e12 e13 e14   e15
+  //               |   /      / / /   /  /
+  //               +-> e16     e17     e18
+  UnfoldingEvent e1(EventSet(), std::make_shared<IndependentAction>());
+  UnfoldingEvent e2(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e3(EventSet({&e1}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e4(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e5(EventSet({&e2}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e6(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e7(EventSet({&e3}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e8(EventSet({&e4}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e9(EventSet({&e4, &e5, &e6}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e10(EventSet({&e6, &e7}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e11(EventSet({&e8}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e12(EventSet({&e8}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e13(EventSet({&e9}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e14(EventSet({&e9}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e15(EventSet({&e10}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e16(EventSet({&e5, &e11}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e17(EventSet({&e12, &e13, &e14}), std::make_shared<IndependentAction>());
+  UnfoldingEvent e18(EventSet({&e14, &e15}), std::make_shared<IndependentAction>());
+  Configuration C{&e1, &e2, &e3, &e4, &e5, &e6, &e7, &e8, &e9, &e10, &e11, &e12, &e13, &e14, &e15, &e16, &e17, &e18};
+
+  SECTION("Every subset iterated over is maximal")
+  {
+    maximal_subsets_iterator first(C);
+    maximal_subsets_iterator last;
+
+    // Make sure we actually have something to iterate over
+    REQUIRE(first != last);
+
+    for (; first != last; ++first) {
+      REQUIRE((*first).size() <= C.get_events().size());
+      REQUIRE((*first).is_maximal());
+    }
+  }
+
+  SECTION("Test that the maximal set ordering is equivalent to that of the configuration's events")
+  {
+    maximal_subsets_iterator first_config(C);
+    maximal_subsets_iterator first_events(C.get_events());
+    maximal_subsets_iterator last;
+
+    // Make sure we actually have something to iterate over
+    REQUIRE(first_config != last);
+    REQUIRE(first_config == first_events);
+    REQUIRE(first_events != last);
+
+    for (; first_config != last; ++first_config, ++first_events) {
+      // first_events and first_config should always be at the same location
+      REQUIRE(first_events != last);
+      const auto& first_config_set = *first_config;
+      const auto& first_events_set = *first_events;
+
+      REQUIRE(first_config_set.size() <= C.get_events().size());
+      REQUIRE(first_config_set.is_maximal());
+      REQUIRE(first_events_set == first_config_set);
+    }
+
+    // Iteration with events directly should now also be finished
+    REQUIRE(first_events == last);
+  }
+}
+
+TEST_CASE("simgrid::mc::udpor:Configuration: Computing Full Alternatives in Reader/Writer Example")
+{
+  // The following tests concern the given event structure that is given as
+  // an example in figure 1 of the original UDPOR paper.
+  //                  e0
+  //              /  /   /
+  //            e1   e4   e7
+  //           /     /  //   /
+  //         /  /   e5  e8   e9
+  //        e2 e3   /        /
+  //               e6       e10
+  //
+  // Theses tests walk through exactly the configurations and sets of `D` that
+  // UDPOR COULD encounter as it walks through the unfolding. Note that
+  // if there are multiple alternatives to any given configuration, UDPOR can
+  // continue searching any one of them. The sequence assumes UDPOR first picks `e1`,
+  // then `e4`, and then `e7`
+  Unfolding U;
+
+  auto e0        = std::make_unique<UnfoldingEvent>(EventSet(), std::make_shared<ConditionallyDependentAction>());
+  auto e0_handle = e0.get();
+
+  auto e1        = std::make_unique<UnfoldingEvent>(EventSet({e0_handle}), std::make_shared<DependentAction>());
+  auto e1_handle = e1.get();
+
+  auto e2 = std::make_unique<UnfoldingEvent>(EventSet({e1_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e2_handle = e2.get();
+
+  auto e3 = std::make_unique<UnfoldingEvent>(EventSet({e1_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e3_handle = e3.get();
+
+  auto e4 = std::make_unique<UnfoldingEvent>(EventSet({e0_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e4_handle = e4.get();
+
+  auto e5        = std::make_unique<UnfoldingEvent>(EventSet({e4_handle}), std::make_shared<DependentAction>());
+  auto e5_handle = e5.get();
+
+  auto e6 = std::make_unique<UnfoldingEvent>(EventSet({e5_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e6_handle = e6.get();
+
+  auto e7 = std::make_unique<UnfoldingEvent>(EventSet({e0_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e7_handle = e7.get();
+
+  auto e8 = std::make_unique<UnfoldingEvent>(EventSet({e4_handle, e7_handle}), std::make_shared<DependentAction>());
+  auto e8_handle = e8.get();
+
+  auto e9        = std::make_unique<UnfoldingEvent>(EventSet({e7_handle}), std::make_shared<DependentAction>());
+  auto e9_handle = e9.get();
+
+  auto e10 = std::make_unique<UnfoldingEvent>(EventSet({e9_handle}), std::make_shared<ConditionallyDependentAction>());
+  auto e10_handle = e10.get();
+
+  SECTION("Alternative computation call 1")
+  {
+    // During the first call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /
+    //         /  /
+    //        e2 e3
+    //
+    // C := {e0, e1, e2} and `Explore(C, D, A)` picked `e3`
+    // (since en(C') where C' := {e0, e1, e2, e3} is empty
+    // [so UDPOR will simply return when C' is reached])
+    //
+    // Thus the computation is (since D is empty at first)
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e1, e2}, {e3})
+    //
+    // where U is given above. There are no alternatives in
+    // this case since `e4` and `e7` conflict with `e1` (so
+    // they cannot be added to C to form a configuration)
+    const Configuration C{e0_handle, e1_handle, e2_handle};
+    const EventSet D_plus_e{e3_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e7));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 2")
+  {
+    // During the second call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /
+    //         /  /
+    //        e2 e3
+    //
+    // C := {e0, e1} and `Explore(C, D, A)` picked `e2`.
+    //
+    // Thus the computation is (since D is still empty)
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e1}, {e2})
+    //
+    // where U is given above. There are no alternatives in
+    // this case since `e4` and `e7` conflict with `e1` (so
+    // they cannot be added to C to form a configuration) and
+    // e3 is NOT in conflict with either e0 or e1
+    const Configuration C{e0_handle, e1_handle};
+    const EventSet D_plus_e{e2_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e7));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 3")
+  {
+    // During the thrid call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                 e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /
+    //         /  /
+    //        e2 e3
+    //
+    // C := {e0} and `Explore(C, D, A)` picked `e1`.
+    //
+    // Thus the computation is (since D is still empty)
+    //
+    // Alt(C, D + {e}) --> Alt({e0}, {e1})
+    //
+    // where U is given above. There are two alternatives in this case:
+    // {e0, e4} and {e0, e7}. Either one would be a valid choice for
+    // UDPOR, so we must check for the precense of either
+    const Configuration C{e0_handle};
+    const EventSet D_plus_e{e1_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e7));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE(alternative.has_value());
+
+    // The first alternative that is found is the one that is chosen. Since
+    // traversal over the elements of an unordered_set<> are not guaranteed,
+    // both {e0, e4} and {e0, e7} are valid alternatives
+    REQUIRE((alternative.value().get_events() == EventSet({e0_handle, e4_handle}) or
+             alternative.value().get_events() == EventSet({e0_handle, e7_handle})));
+  }
+
+  SECTION("Alternative computation call 4")
+  {
+    // During the fourth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //
+    //         /  /   e5  e8
+    //        e2 e3   /
+    //               e6
+    //
+    // C := {e0, e4, e5} and `Explore(C, D, A)` picked `e6`
+    // (since en(C') where C' := {e0, e4, e5, e6} is empty
+    // [so UDPOR will simply return when C' is reached])
+    //
+    // Thus the computation is (since D is {e1})
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e4, e5}, {e1, e6})
+    //
+    // where U is given above. There are no alternatives in this
+    // case, since:
+    //
+    // 1.`e2/e3` are eliminated since their histories contain `e1`
+    // 2. `e7/e8` are eliminated because they conflict with `e5`
+    const Configuration C{e0_handle, e4_handle, e5_handle};
+    const EventSet D_plus_e{e1_handle, e6_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 5")
+  {
+    // During the fifth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //
+    //         /  /   e5  e8
+    //        e2 e3   /
+    //               e6
+    //
+    // C := {e0, e4} and `Explore(C, D, A)` picked `e5`
+    // (since en(C') where C' := {e0, e4, e5, e6} is empty
+    // [so UDPOR will simply return when C' is reached])
+    //
+    // Thus the computation is (since D is {e1})
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e4}, {e1, e5})
+    //
+    // where U is given above. There are THREE alternatives in this case,
+    // viz. {e0, e7}, {e0, e4, e7} and {e0, e4, e7, e8}.
+    //
+    // To continue the search, UDPOR computes J / C which in this
+    // case gives {e7, e8}. Since `e8` is not in en(C), UDPOR will
+    // choose `e7` next and add `e5` to `D`
+    const Configuration C{e0_handle, e4_handle};
+    const EventSet D_plus_e{e1_handle, e5_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    REQUIRE(U.size() == 8);
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE(alternative.has_value());
+    REQUIRE((alternative.value().get_events() == EventSet({e0_handle, e7_handle}) or
+             alternative.value().get_events() == EventSet({e0_handle, e4_handle, e7_handle}) or
+             alternative.value().get_events() == EventSet({e0_handle, e4_handle, e7_handle, e8_handle})));
+  }
+
+  SECTION("Alternative computation call 6")
+  {
+    // During the sixth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                 e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /
+    //               e6
+    //
+    // C := {e0, e4, e7} and `Explore(C, D, A)` picked `e8`
+    // (since en(C') where C' := {e0, e4, e7, e8} is empty
+    // [so UDPOR will simply return when C' is reached])
+    //
+    // Thus the computation is (since D is {e1, e5} [see the last step])
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e4, e7}, {e1, e5, e8})
+    //
+    // where U is given above. There are no alternatives in this case
+    // since all `e9` conflicts with `e4` and all other events of `U`
+    // are eliminated since their history intersects `D`
+    const Configuration C{e0_handle, e4_handle, e7_handle};
+    const EventSet D_plus_e{e1_handle, e5_handle, e8_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 7")
+  {
+    // During the seventh call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                 e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /
+    //               e6
+    //
+    // C := {e0, e4} and `Explore(C, D, A)` picked `e7`
+    //
+    // Thus the computation is (since D is {e1, e5} [see call 5])
+    //
+    // Alt(C, D + {e}) --> Alt({e0, e4}, {e1, e5, e7})
+    //
+    // where U is given above. There are no alternatives again in this case
+    // since all `e9` conflicts with `e4` and all other events of `U`
+    // are eliminated since their history intersects `D`
+    const Configuration C{e0_handle, e4_handle};
+    const EventSet D_plus_e{e1_handle, e5_handle, e7_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 8")
+  {
+    // During the eigth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                 e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /
+    //               e6
+    //
+    // C := {e0} and `Explore(C, D, A)` picked `e4`. At this
+    // point, UDPOR finished its recursive search of {e0, e4}
+    // after having finished {e0, e1} prior.
+    //
+    // Thus the computation is (since D = {e1})
+    //
+    // Alt(C, D + {e}) --> Alt({e0}, {e1, e4})
+    //
+    // where U is given above. There is one alternative in this
+    // case, viz {e0, e7, e9} since
+    // 1. e9 conflicts with e4 in D
+    // 2. e7 conflicts with e1 in D
+    // 3. the set {e7, e9} is conflict-free since `e7 < e9`
+    // 4. all other events are eliminated since their histories
+    // intersect D
+    //
+    // UDPOR will continue its recursive search following `e7`
+    // and add `e4` to D
+    const Configuration C{e0_handle};
+    const EventSet D_plus_e{e1_handle, e4_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE(alternative.has_value());
+    REQUIRE(alternative.value().get_events() == EventSet({e0_handle, e7_handle, e9_handle}));
+  }
+
+  SECTION("Alternative computation call 9")
+  {
+    // During the ninth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /        /
+    //               e6       e10
+    //
+    // C := {e0, e7, e9} and `Explore(C, D, A)` picked `e10`.
+    // (since en(C') where C' := {e0, e7, e9, e10} is empty
+    // [so UDPOR will simply return when C' is reached]).
+    //
+    // Thus the computation is (since D = {e1, e4} [see the previous step])
+    //
+    // Alt(C, D + {e}) --> Alt({e0}, {e1, e4, e10})
+    //
+    // where U is given above. There are no alternatives in this case
+    const Configuration C{e0_handle, e7_handle, e9_handle};
+    const EventSet D_plus_e{e1_handle, e4_handle, e10_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+    U.insert(std::move(e10));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 10")
+  {
+    // During the tenth call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /        /
+    //               e6       e10
+    //
+    // C := {e0, e7} and `Explore(C, D, A)` picked `e9`.
+    //
+    // Thus the computation is (since D = {e1, e4} [see call 8])
+    //
+    // Alt(C, D + {e}) --> Alt({e0}, {e1, e4, e9})
+    //
+    // where U is given above. There are no alternatives in this case
+    const Configuration C{e0_handle, e7_handle};
+    const EventSet D_plus_e{e1_handle, e4_handle, e9_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+    U.insert(std::move(e10));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation call 11 (final call)")
+  {
+    // During the eleventh and final call to Alt(C, D + {e}),
+    // UDPOR believes `U` to be the following:
+    //
+    //                  e0
+    //              /  /   /
+    //            e1   e4   e7
+    //           /     /  //   /
+    //         /  /   e5  e8   e9
+    //        e2 e3   /        /
+    //               e6       e10
+    //
+    // C := {e0} and `Explore(C, D, A)` picked `e7`.
+    //
+    // Thus the computation is (since D = {e1, e4} [see call 8])
+    //
+    // Alt(C, D + {e}) --> Alt({e0}, {e1, e4, e7})
+    //
+    // where U is given above. There are no alternatives in this case:
+    // everyone is eliminated!
+    const Configuration C{e0_handle, e7_handle};
+    const EventSet D_plus_e{e1_handle, e4_handle, e9_handle};
+
+    REQUIRE(U.empty());
+    U.insert(std::move(e0));
+    U.insert(std::move(e1));
+    U.insert(std::move(e2));
+    U.insert(std::move(e3));
+    U.insert(std::move(e4));
+    U.insert(std::move(e6));
+    U.insert(std::move(e7));
+    U.insert(std::move(e8));
+    U.insert(std::move(e9));
+    U.insert(std::move(e10));
+
+    const auto alternative = C.compute_alternative_to(D_plus_e, U);
+    REQUIRE_FALSE(alternative.has_value());
+  }
+
+  SECTION("Alternative computation next")
+  {
+    SECTION("Followed {e0, e7} first")
+    {
+      const EventSet D{e1_handle, e7_handle};
+      const Configuration C{e0_handle};
+
+      REQUIRE(U.empty());
+      U.insert(std::move(e0));
+      U.insert(std::move(e1));
+      U.insert(std::move(e2));
+      U.insert(std::move(e3));
+      U.insert(std::move(e4));
+      U.insert(std::move(e5));
+      U.insert(std::move(e7));
+      U.insert(std::move(e8));
+      U.insert(std::move(e9));
+      U.insert(std::move(e10));
+
+      const auto alternative = C.compute_alternative_to(D, U);
+      REQUIRE(alternative.has_value());
+
+      // In this case, only {e0, e4} is a valid alternative
+      REQUIRE(alternative.value().get_events() == EventSet({e0_handle, e4_handle, e5_handle}));
+    }
+
+    SECTION("Followed {e0, e4} first")
+    {
+      const EventSet D{e1_handle, e4_handle};
+      const Configuration C{e0_handle};
+
+      REQUIRE(U.empty());
+      U.insert(std::move(e0));
+      U.insert(std::move(e1));
+      U.insert(std::move(e2));
+      U.insert(std::move(e3));
+      U.insert(std::move(e4));
+      U.insert(std::move(e5));
+      U.insert(std::move(e6));
+      U.insert(std::move(e7));
+      U.insert(std::move(e8));
+      U.insert(std::move(e9));
+
+      const auto alternative = C.compute_alternative_to(D, U);
+      REQUIRE(alternative.has_value());
+
+      // In this case, only {e0, e7} is a valid alternative
+      REQUIRE(alternative.value().get_events() == EventSet({e0_handle, e7_handle, e9_handle}));
+    }
+  }
 }
\ No newline at end of file