Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
aae4d8a87f0d03f522b71fa4bc157bafa066560d
[simgrid.git] / src / kernel / routing / DragonflyZone.cpp
1 /* Copyright (c) 2014-2021. The SimGrid Team. All rights reserved.          */
2
3 /* This program is free software; you can redistribute it and/or modify it
4  * under the terms of the license (GNU LGPL) which comes with this package. */
5
6 #include "simgrid/kernel/routing/DragonflyZone.hpp"
7 #include "simgrid/kernel/routing/NetPoint.hpp"
8 #include "src/surf/network_interface.hpp"
9
10 #include <boost/algorithm/string/classification.hpp>
11 #include <boost/algorithm/string/split.hpp>
12 #include <numeric>
13 #include <string>
14
15 XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_route_cluster_dragonfly, surf_route_cluster, "Dragonfly Routing part of surf");
16
17 namespace simgrid {
18 namespace kernel {
19 namespace routing {
20
21 DragonflyZone::DragonflyZone(const std::string& name) : ClusterZone(name) {}
22
23 DragonflyZone::Coords DragonflyZone::rankId_to_coords(int rankId) const
24 {
25   // coords : group, chassis, blade, node
26   Coords coords;
27   coords.group   = rankId / (num_chassis_per_group_ * num_blades_per_chassis_ * num_nodes_per_blade_);
28   rankId         = rankId % (num_chassis_per_group_ * num_blades_per_chassis_ * num_nodes_per_blade_);
29   coords.chassis = rankId / (num_blades_per_chassis_ * num_nodes_per_blade_);
30   rankId         = rankId % (num_blades_per_chassis_ * num_nodes_per_blade_);
31   coords.blade   = rankId / num_nodes_per_blade_;
32   coords.node    = rankId % num_nodes_per_blade_;
33   return coords;
34 }
35
36 void DragonflyZone::rankId_to_coords(int rankId, unsigned int coords[4]) const // XBT_ATTRIB_DEPRECATED_v330
37 {
38   const auto s_coords = rankId_to_coords(rankId);
39   coords[0]           = s_coords.group;
40   coords[1]           = s_coords.chassis;
41   coords[2]           = s_coords.blade;
42   coords[3]           = s_coords.node;
43 }
44
45 void DragonflyZone::set_link_characteristics(double bw, double lat, s4u::Link::SharingPolicy sharing_policy)
46 {
47   ClusterZone::set_link_characteristics(bw, lat, sharing_policy);
48   if (sharing_policy == s4u::Link::SharingPolicy::SPLITDUPLEX)
49     num_links_per_link_ = 2;
50 }
51
52 void DragonflyZone::set_topology(unsigned int n_groups, unsigned int groups_links, unsigned int n_chassis,
53                                  unsigned int chassis_links, unsigned int n_routers, unsigned int routers_links,
54                                  unsigned int nodes)
55 {
56   num_groups_     = n_groups;
57   num_links_blue_ = groups_links;
58
59   num_chassis_per_group_ = n_chassis;
60   num_links_black_       = chassis_links;
61
62   num_blades_per_chassis_ = n_routers;
63   num_links_green_        = routers_links;
64
65   num_nodes_per_blade_ = nodes;
66 }
67
68 s4u::DragonflyParams DragonflyZone::parse_topo_parameters(const std::string& topo_parameters)
69 {
70   std::vector<std::string> parameters;
71   std::vector<std::string> tmp;
72   boost::split(parameters, topo_parameters, boost::is_any_of(";"));
73
74   if (parameters.size() != 4)
75     xbt_die("Dragonfly are defined by the number of groups, chassis per groups, blades per chassis, nodes per blade");
76
77   // Blue network : number of groups, number of links between each group
78   boost::split(tmp, parameters[0], boost::is_any_of(","));
79   if (tmp.size() != 2)
80     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
81
82   unsigned int n_groups;
83   try {
84     n_groups = std::stoi(tmp[0]);
85   } catch (const std::invalid_argument&) {
86     throw std::invalid_argument(std::string("Invalid number of groups:") + tmp[0]);
87   }
88
89   unsigned int n_blue;
90   try {
91     n_blue = std::stoi(tmp[1]);
92   } catch (const std::invalid_argument&) {
93     throw std::invalid_argument(std::string("Invalid number of links for the blue level:") + tmp[1]);
94   }
95
96   // Black network : number of chassis/group, number of links between each router on the black network
97   boost::split(tmp, parameters[1], boost::is_any_of(","));
98   if (tmp.size() != 2)
99     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
100
101   unsigned int n_chassis;
102   try {
103     n_chassis = std::stoi(tmp[0]);
104   } catch (const std::invalid_argument&) {
105     throw std::invalid_argument(std::string("Invalid number of chassis:") + tmp[0]);
106   }
107
108   unsigned int n_black;
109   try {
110     n_black = std::stoi(tmp[1]);
111   } catch (const std::invalid_argument&) {
112     throw std::invalid_argument(std::string("Invalid number of links for the black level:") + tmp[1]);
113   }
114
115   // Green network : number of blades/chassis, number of links between each router on the green network
116   boost::split(tmp, parameters[2], boost::is_any_of(","));
117   if (tmp.size() != 2)
118     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
119
120   unsigned int n_routers;
121   try {
122     n_routers = std::stoi(tmp[0]);
123   } catch (const std::invalid_argument&) {
124     throw std::invalid_argument(std::string("Invalid number of routers:") + tmp[0]);
125   }
126
127   unsigned int n_green;
128   try {
129     n_green = std::stoi(tmp[1]);
130   } catch (const std::invalid_argument&) {
131     throw std::invalid_argument(std::string("Invalid number of links for the green level:") + tmp[1]);
132   }
133
134   // The last part of topo_parameters should be the number of nodes per blade
135   unsigned int n_nodes;
136   try {
137     n_nodes = std::stoi(parameters[3]);
138   } catch (const std::invalid_argument&) {
139     throw std::invalid_argument(std::string("Last parameter is not the amount of nodes per blade:") + parameters[3]);
140   }
141   return s4u::DragonflyParams({n_groups, n_blue}, {n_chassis, n_black}, {n_routers, n_green}, n_nodes);
142 }
143
144 /* Generate the cluster once every node is created */
145 void DragonflyZone::build_upper_levels(const s4u::ClusterCallbacks& set_callbacks)
146 {
147   generate_routers(set_callbacks);
148   generate_links();
149 }
150
151 void DragonflyZone::generate_routers(const s4u::ClusterCallbacks& set_callbacks)
152 {
153   int id = 0;
154   /* get limiter for this router */
155   auto get_limiter = [this, &id, &set_callbacks](unsigned int i, unsigned int j,
156                                                  unsigned int k) -> resource::LinkImpl* {
157     kernel::resource::LinkImpl* limiter = nullptr;
158     if (set_callbacks.limiter) {
159       const auto* s4u_link =
160           set_callbacks.limiter(get_iface(), {i, j, k, std::numeric_limits<unsigned int>::max()}, --id);
161       if (s4u_link) {
162         limiter = s4u_link->get_impl();
163       }
164     }
165     return limiter;
166   };
167
168   routers_.reserve(num_groups_ * num_chassis_per_group_ * num_blades_per_chassis_);
169   for (unsigned int i = 0; i < num_groups_; i++) {
170     for (unsigned int j = 0; j < num_chassis_per_group_; j++) {
171       for (unsigned int k = 0; k < num_blades_per_chassis_; k++) {
172         routers_.emplace_back(i, j, k, get_limiter(i, j, k));
173       }
174     }
175   }
176 }
177
178 void DragonflyZone::generate_link(const std::string& id, int numlinks, resource::LinkImpl** linkup,
179                                   resource::LinkImpl** linkdown)
180 {
181   XBT_DEBUG("Generating link %s", id.c_str());
182   *linkup   = nullptr;
183   *linkdown = nullptr;
184   if (get_link_sharing_policy() == s4u::Link::SharingPolicy::SPLITDUPLEX) {
185     *linkup = create_link(id + "_UP", std::vector<double>{get_link_bandwidth() * numlinks})
186                   ->set_latency(get_link_latency())
187                   ->seal()
188                   ->get_impl();
189     *linkdown = create_link(id + "_DOWN", std::vector<double>{get_link_bandwidth() * numlinks})
190                     ->set_latency(get_link_latency())
191                     ->seal()
192                     ->get_impl();
193   } else {
194     *linkup = create_link(id, std::vector<double>{get_link_bandwidth() * numlinks})
195                   ->set_latency(get_link_latency())
196                   ->seal()
197                   ->get_impl();
198     *linkdown = *linkup;
199   }
200 }
201
202 void DragonflyZone::generate_links()
203 {
204   static int uniqueId = 0;
205   resource::LinkImpl* linkup;
206   resource::LinkImpl* linkdown;
207
208   unsigned int numRouters = num_groups_ * num_chassis_per_group_ * num_blades_per_chassis_;
209
210   // Links from routers to their local nodes.
211   for (unsigned int i = 0; i < numRouters; i++) {
212     // allocate structures
213     routers_[i].my_nodes_.resize(num_links_per_link_ * num_nodes_per_blade_);
214     routers_[i].green_links_.resize(num_blades_per_chassis_);
215     routers_[i].black_links_.resize(num_chassis_per_group_);
216
217     for (unsigned int j = 0; j < num_links_per_link_ * num_nodes_per_blade_; j += num_links_per_link_) {
218       std::string id = "local_link_from_router_" + std::to_string(i) + "_to_node_" +
219                        std::to_string(j / num_links_per_link_) + "_" + std::to_string(uniqueId);
220       generate_link(id, 1, &linkup, &linkdown);
221
222       routers_[i].my_nodes_[j] = linkup;
223       if (get_link_sharing_policy() == s4u::Link::SharingPolicy::SPLITDUPLEX)
224         routers_[i].my_nodes_[j + 1] = linkdown;
225
226       uniqueId++;
227     }
228   }
229
230   // Green links from routers to same chassis routers - alltoall
231   for (unsigned int i = 0; i < num_groups_ * num_chassis_per_group_; i++) {
232     for (unsigned int j = 0; j < num_blades_per_chassis_; j++) {
233       for (unsigned int k = j + 1; k < num_blades_per_chassis_; k++) {
234         std::string id = "green_link_in_chassis_" + std::to_string(i % num_chassis_per_group_) + "_between_routers_" +
235                          std::to_string(j) + "_and_" + std::to_string(k) + "_" + std::to_string(uniqueId);
236         generate_link(id, num_links_green_, &linkup, &linkdown);
237
238         routers_[i * num_blades_per_chassis_ + j].green_links_[k] = linkup;
239         routers_[i * num_blades_per_chassis_ + k].green_links_[j] = linkdown;
240         uniqueId++;
241       }
242     }
243   }
244
245   // Black links from routers to same group routers - alltoall
246   for (unsigned int i = 0; i < num_groups_; i++) {
247     for (unsigned int j = 0; j < num_chassis_per_group_; j++) {
248       for (unsigned int k = j + 1; k < num_chassis_per_group_; k++) {
249         for (unsigned int l = 0; l < num_blades_per_chassis_; l++) {
250           std::string id = "black_link_in_group_" + std::to_string(i) + "_between_chassis_" + std::to_string(j) +
251                            "_and_" + std::to_string(k) + "_blade_" + std::to_string(l) + "_" + std::to_string(uniqueId);
252           generate_link(id, num_links_black_, &linkup, &linkdown);
253
254           routers_[i * num_blades_per_chassis_ * num_chassis_per_group_ + j * num_blades_per_chassis_ + l]
255               .black_links_[k] = linkup;
256           routers_[i * num_blades_per_chassis_ * num_chassis_per_group_ + k * num_blades_per_chassis_ + l]
257               .black_links_[j] = linkdown;
258           uniqueId++;
259         }
260       }
261     }
262   }
263
264   // Blue links between groups - Not all routers involved, only one per group is linked to others. Let's say router n of
265   // each group is linked to group n.
266   // FIXME: in reality blue links may be attached to several different routers
267   for (unsigned int i = 0; i < num_groups_; i++) {
268     for (unsigned int j = i + 1; j < num_groups_; j++) {
269       unsigned int routernumi = i * num_blades_per_chassis_ * num_chassis_per_group_ + j;
270       unsigned int routernumj = j * num_blades_per_chassis_ * num_chassis_per_group_ + i;
271       std::string id = "blue_link_between_group_" + std::to_string(i) + "_and_" + std::to_string(j) + "_routers_" +
272                        std::to_string(routernumi) + "_and_" + std::to_string(routernumj) + "_" +
273                        std::to_string(uniqueId);
274       generate_link(id, num_links_blue_, &linkup, &linkdown);
275
276       routers_[routernumi].blue_link_ = linkup;
277       routers_[routernumj].blue_link_ = linkdown;
278       uniqueId++;
279     }
280   }
281 }
282
283 void DragonflyZone::get_local_route(NetPoint* src, NetPoint* dst, Route* route, double* latency)
284 {
285   // Minimal routing version.
286   // TODO : non-minimal random one, and adaptive ?
287
288   if (dst->is_router() || src->is_router())
289     return;
290
291   XBT_VERB("dragonfly getLocalRoute from '%s'[%u] to '%s'[%u]", src->get_cname(), src->id(), dst->get_cname(),
292            dst->id());
293
294   if ((src->id() == dst->id()) && has_loopback()) {
295     resource::LinkImpl* uplink = get_uplink_from(node_pos(src->id()));
296
297     route->link_list_.push_back(uplink);
298     if (latency)
299       *latency += uplink->get_latency();
300     return;
301   }
302
303   const auto myCoords     = rankId_to_coords(src->id());
304   const auto targetCoords = rankId_to_coords(dst->id());
305   XBT_DEBUG("src : %u group, %u chassis, %u blade, %u node", myCoords.group, myCoords.chassis, myCoords.blade,
306             myCoords.node);
307   XBT_DEBUG("dst : %u group, %u chassis, %u blade, %u node", targetCoords.group, targetCoords.chassis,
308             targetCoords.blade, targetCoords.node);
309
310   DragonflyRouter* myRouter      = &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
311                                         myCoords.chassis * num_blades_per_chassis_ + myCoords.blade];
312   DragonflyRouter* targetRouter  = &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
313                                             targetCoords.chassis * num_blades_per_chassis_ + targetCoords.blade];
314   DragonflyRouter* currentRouter = myRouter;
315
316   if (has_limiter()) { // limiter for sender
317     route->link_list_.push_back(get_uplink_from(node_pos_with_loopback(src->id())));
318   }
319
320   // node->router local link
321   route->link_list_.push_back(myRouter->my_nodes_[myCoords.node * num_links_per_link_]);
322   if (latency)
323     *latency += myRouter->my_nodes_[myCoords.node * num_links_per_link_]->get_latency();
324
325   if (targetRouter != myRouter) {
326     // are we on a different group ?
327     if (targetRouter->group_ != currentRouter->group_) {
328       // go to the router of our group connected to this one.
329       if (currentRouter->blade_ != targetCoords.group) {
330         if (currentRouter->limiter_)
331           route->link_list_.push_back(currentRouter->limiter_);
332         // go to the nth router in our chassis
333         route->link_list_.push_back(currentRouter->green_links_[targetCoords.group]);
334         if (latency)
335           *latency += currentRouter->green_links_[targetCoords.group]->get_latency();
336         currentRouter = &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
337                                   myCoords.chassis * num_blades_per_chassis_ + targetCoords.group];
338       }
339
340       if (currentRouter->chassis_ != 0) {
341         // go to the first chassis of our group
342         if (currentRouter->limiter_)
343           route->link_list_.push_back(currentRouter->limiter_);
344         route->link_list_.push_back(currentRouter->black_links_[0]);
345         if (latency)
346           *latency += currentRouter->black_links_[0]->get_latency();
347         currentRouter =
348             &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + targetCoords.group];
349       }
350
351       // go to destination group - the only optical hop
352       route->link_list_.push_back(currentRouter->blue_link_);
353       if (currentRouter->limiter_)
354         route->link_list_.push_back(currentRouter->limiter_);
355       if (latency)
356         *latency += currentRouter->blue_link_->get_latency();
357       currentRouter =
358           &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + myCoords.group];
359     }
360
361     // same group, but same blade ?
362     if (targetRouter->blade_ != currentRouter->blade_) {
363       if (currentRouter->limiter_)
364         route->link_list_.push_back(currentRouter->limiter_);
365       route->link_list_.push_back(currentRouter->green_links_[targetCoords.blade]);
366       if (latency)
367         *latency += currentRouter->green_links_[targetCoords.blade]->get_latency();
368       currentRouter =
369           &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + targetCoords.blade];
370     }
371
372     // same blade, but same chassis ?
373     if (targetRouter->chassis_ != currentRouter->chassis_) {
374       if (currentRouter->limiter_)
375         route->link_list_.push_back(currentRouter->limiter_);
376       route->link_list_.push_back(currentRouter->black_links_[targetCoords.chassis]);
377       if (latency)
378         *latency += currentRouter->black_links_[targetCoords.chassis]->get_latency();
379     }
380   }
381
382   // router->node local link
383   if (targetRouter->limiter_)
384     route->link_list_.push_back(targetRouter->limiter_);
385   route->link_list_.push_back(
386       targetRouter->my_nodes_[targetCoords.node * num_links_per_link_ + num_links_per_link_ - 1]);
387
388   if (latency)
389     *latency +=
390         targetRouter->my_nodes_[targetCoords.node * num_links_per_link_ + num_links_per_link_ - 1]->get_latency();
391
392   if (has_limiter()) { // limiter for receiver
393     route->link_list_.push_back(get_downlink_to(node_pos_with_loopback(dst->id())));
394   }
395
396   // set gateways (if any)
397   route->gw_src_ = get_gateway(src->id());
398   route->gw_dst_ = get_gateway(dst->id());
399 }
400 } // namespace routing
401 } // namespace kernel
402
403 namespace s4u {
404 DragonflyParams::DragonflyParams(const std::pair<unsigned int, unsigned int>& groups,
405                                  const std::pair<unsigned int, unsigned int>& chassis,
406                                  const std::pair<unsigned int, unsigned int>& routers, unsigned int nodes)
407     : groups(groups), chassis(chassis), routers(routers), nodes(nodes)
408 {
409   if (groups.first == 0)
410     throw std::invalid_argument("Dragonfly: Invalid number of groups, must be > 0");
411   if (groups.second == 0)
412     throw std::invalid_argument("Dragonfly: Invalid number of blue (groups) links, must be > 0");
413   if (chassis.first == 0)
414     throw std::invalid_argument("Dragonfly: Invalid number of chassis, must be > 0");
415   if (chassis.second == 0)
416     throw std::invalid_argument("Dragonfly: Invalid number of black (chassis) links, must be > 0");
417   if (routers.first == 0)
418     throw std::invalid_argument("Dragonfly: Invalid number of routers, must be > 0");
419   if (routers.second == 0)
420     throw std::invalid_argument("Dragonfly: Invalid number of green (routers) links, must be > 0");
421   if (nodes == 0)
422     throw std::invalid_argument("Dragonfly: Invalid number of nodes, must be > 0");
423 }
424
425 NetZone* create_dragonfly_zone(const std::string& name, const NetZone* parent, const DragonflyParams& params,
426                                const ClusterCallbacks& set_callbacks, double bandwidth, double latency,
427                                Link::SharingPolicy sharing_policy)
428 {
429   /* initial checks */
430   if (bandwidth <= 0)
431     throw std::invalid_argument("DragonflyZone: incorrect bandwidth for internode communication, bw=" +
432                                 std::to_string(bandwidth));
433   if (latency < 0)
434     throw std::invalid_argument("DragonflyZone: incorrect latency for internode communication, lat=" +
435                                 std::to_string(latency));
436
437   /* creating zone */
438   auto* zone = new kernel::routing::DragonflyZone(name);
439   zone->set_topology(params.groups.first, params.groups.second, params.chassis.first, params.chassis.second,
440                      params.routers.first, params.routers.second, params.nodes);
441   if (parent)
442     zone->set_parent(parent->get_impl());
443   zone->set_link_characteristics(bandwidth, latency, sharing_policy);
444
445   /* populating it */
446   std::vector<unsigned int> dimensions = {params.groups.first, params.chassis.first, params.routers.first,
447                                           params.nodes};
448   int tot_elements                     = std::accumulate(dimensions.begin(), dimensions.end(), 1, std::multiplies<>());
449   for (int i = 0; i < tot_elements; i++) {
450     kernel::routing::NetPoint* netpoint;
451     Link* limiter;
452     Link* loopback;
453     zone->fill_leaf_from_cb(i, dimensions, set_callbacks, &netpoint, &loopback, &limiter);
454   }
455   zone->build_upper_levels(set_callbacks);
456
457   return zone->get_iface();
458 }
459 } // namespace s4u
460
461 } // namespace simgrid