
Date et lieu

PARALLELIZING
a CPU CODE to run on GPU

gilles.perrot@univ-fcomte.fr

Date et lieu

Summary

2

● Sequential code : compilation - profiling

● Simple automatic parallelization : openPGI + openACC

● Parallelization with CUDA : from naive to highly optimized

✔ Naive reduction run by only one thread.

✔ Reduction using shared memory.

✔ Hybrid memory usage : registers/shared memory.

✔ Intra-warp communication (shuffle instructions).

GPU Parallelization

Date et lieu

CPU code : algorithm

3GPU Parallelization

Simple algorithm, based on equation → ∫
0

1
1

1+x2
.dx=π

4

• The outilne of the algorithm is to cut the
interval [0 ; 1] into nsteps slices, considered
thin enough.

• We assume that in each slice, the shape
under the curve is rectanguar.

• Height is that of the middle point of the slice.
• The greater nsteps, the more accurate the

result will be.
• In this case, the computation error is zero

when nsteps tends towards infinity.

Date et lieu

An estimation of : the sequential version

4

π

Code c++ : pic.cpp

Compilation with gcc (option -Ofast)
$ g++ -Ofast -o pic pic.cpp

GPU Parallelization

Date et lieu

An estimation of : the sequential version

5

π

Performance measurement : Execution with 10⁸ and 10 intervals⁹ intervals

via the time instruction

Via the Nvidia profiler nvprof

GPU Parallelization

Date et lieu

An estimation of : the sequential version

6

π

Compilation with openPGI compiler : pgc++
$ pgc++ -fast -Minfo=all,intensity,ccff -Minline -o pic pic.cpp

The option -Minfo allows to get some useful feedback before trying to parallelize.

Performance measurement… Not all compilations are equivalents.

GPU Parallelization

At least, results are equals with a precision of 10-12.

Date et lieu

Automatic parallelization: openACC

7GPU Parallelization

● OpenACC can generate hybrid executable code (CPU/GPU).
● Automatic generation is driven by a set of compilation directives.
● The compiler : openPGI (pgc++).

● Before trying any parallelization, it is mandatory to:
• Use the profiler to identify the more time consuming sequences.
• Find out, among that sequences, those that could be parallelized (on a GPU).
• Determine an appropriate set of ACC directives for each code sequence.

In the sample code pic.cpp, the ‘for’ loop is a candidate for parallelization .

The typical directive to parallelize a C/C++ loop looks like
#pragma acc parallel loop

And has to be placed just above the target loop

Date et lieu

Automatic parallelization: openACC

8GPU Parallelization

Compilation
$ pgc++ -fast -Minfo=all,intensity,ccff -Minline \

-ta=tesla:cuda9.2 -o pic pic.cpp

● The -ta option allows to specify a target for the parallel code.
● In our case, we will target a Nvidia Tesla family GPU, Pascal generation, Titan-X

model.
● On the host computer, the sdk release version is cuda9.2.

Execution

Date et lieu

Automatic parallelization: openACC

9GPU Parallelization

The compiler output shows that one reduction has been identified (on sum) and that
compliant code has then been generated.

However, one can write the corresponding directive more explicitely

Execution

Speedup achieved :
● x30 against the sequential code and pgc++ compiler
● x18 against the sequential code and g++ compiler

WITHOUT ANY EFFORT (ALMOST)

Date et lieu

Automatic parallelization: openACC

10GPU Parallelization

A few comments about openACC

● Even common cases can be difficult to solve.
● Managing memory transfers and persistence can be quite challenging.
● Speedups are more difficult to obtain and less impressive.
● A significant overhead is introduced by the compiler, when

• Transferring data between CPU and GPU,
• Calling fonctions / kernels,
• Choosing non optimal grid dimensions.

● The official documentation of openACC directives
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf

Date et lieu

CUDA / C parallelization

11

Outlines
● Nvidia template as a starting point (0_Simple/template)
● General structure of a CUDA code:

1.Resource allocations (CPU & GPU).
2.Data loading into host’s memory (CPU).
3.Data copy from host memory into GPU memory.
4.Computation of grid dimensions and kernel executions.
5.Copy of the result data from GPU memory to host memory.

Estimation of π
● Simplified structure; no input data to transfer.
● Step by step design and successive refinements.
● Solutions to some performance limitation parameters.

GPU Parallelization

Date et lieu

CUDA : step #1

12

Idea
● One kernel computes the 1/(1+x²) value associated to each slice of the [0 ; 1]

interval.
● Each slice value is computed by one thread.
● The number of slices, nbsteps, can be great. We need to check the capacities of

the GPU regarding the maximum number of concurrent threads.
● For this purpose, one can use the deviceQuery program

● nbsteps max >2.10 x 1024 = 2.10^12.⁹ intervals

GPU Parallelization

Date et lieu

CUDA : step #1

13

Kernel code
● The number of concurrent thread is a power of 2, multiple of 32.
● If nbsteps is not a power of 2, it should be passed to the kernel as a parameter.
● If nbsteps is a power of 2, its value can be guessed by kernels at runtime.

GPU Parallelization

Date et lieu

CUDA : step #1

14

Main.cu source code
● Memory allocation on GPU to store nbsteps real values.
● Definition of the computing grid dimensions.
● Kernel execution.

GPU Parallelization

Date et lieu

CUDA : step #1

15

Results & performance
● The final sum is processed on the CPU.
● The data transfer GPU → CPU is highly time consuming (2300 ms).
● Processing time for slice values : # 150 ms.

Conclusion
● The final sum must be computed on the GPU to avoid transferring a large amount

of data (on only the overall sum has to be copied in this case).

GPU Parallelization

Date et lieu

CUDA : step #2

16

Idea
● Modifying the kernel code in order to compute the sum of all the slice values.
● As a starting point, one can add a sequence that allows thread 0 to add up the

nsteps values previously computed by the kernel and stored in global memory.

Kernel code

GPU Parallelization

Date et lieu

CUDA : step #2

17

Results & performance
● The sum is computed on the GPU.
● No more large vector to transfer GPU → CPU.
● Computing time > 1 minute for 10 slices !!!⁹ intervals

Conclusion
● Only one thread is computing the sum (tid #0, no parallelism).
● Thread #0 waits for all the other threads to complete their tasks before beginning to

add up values (__syncthreads()). It is mandatory to avoid adding up wrong values.
● The slice values needed to compute the sum are first stored in global memory, then

they are read from global memory by thread #0, one by one.
● Trying to have a GPU to work like a CPU always lead to a disaster.

GPU Parallelization

Date et lieu

CUDA : step #3

18

Idea
● Modifying the kernel in order to add up the values more cleverly (with parallelism).
● Storing the values to add up into shared memory, faster than global memory:

✔ 48kB of memory shared by thread block are available.
✔ Our sum requires 1 double precision value by thread, ie 8 Bytes/thread.
✔ A max number of 1024 threads can be define for each block, ie 8 kB/block ⇒

OK (< 48kB).
✔ No possible direct inter-block communication partial sums in global memory.⇒

● Two options :
1.Reducing the overall global memory amount required + processing the first

summing stage while computing the slice values.
2.Storing all the slice values into global memory and summing afterwards.

• Option #1 is a bit more efficient but less common we choose option #2.⇒
• We try to write a scalable kernel, ie. that can be launched with various scales of grid

dimensions.

8 blocks

1 block

GPU Parallelization

Date et lieu

CUDA : step #3

19

log(n) summing algorithm
● Sums are processed inside each thread block (threads_per_bloc).
● Each block sum is then stored into global memory at the very index of the block

inside the grid.
● Each kernel execution would divide the size of the vector by threads_per_bloc.
● Before each kernel call, suited grid dimensions have to be computed.

Sum inside a
block of 16

threads

GPU Parallelization

Date et lieu

CUDA : step #3

20

kernel code (summup<<<>>>)

GPU Parallelization

Date et lieu

CUDA : step #3

21

Kernel calls summup<<<>>>

GPU Parallelization

Date et lieu

CUDA : step #3

22

Results & performance
● The final sum is stored at index #0 of d_vector.
● Overall computing time (memcpy included) # 0,40s for 10 slices (block size =1024)⁹ intervals
● Overall computing time (memcpy included) # 0,27s for 10 slices (block size =128)⁹ intervals

Divergent Warps
Modulo operator

GPU Parallelization

Date et lieu

CUDA : step #4

23

Computing the sum inside thread blocks
● No more divergent warps, neither modulo operators

Sum inside
one block of
16 threads

GPU Parallelization

Date et lieu

Performances summary

24

● Estimation of π over 10 slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU Parallelization

Date et lieu

CUDA : step #5

25

Bank conflicts in shared memory
● The shared memory is implemented through 32 4-Byte-width banks.
● Two threads belonging to two different half-warps (#O-15 et #16-31) accessing two

different datas of the same bank will result in a bank conflict.
● During reading stage for stride=1, each thread reads 2 doubles (16 Bytes).
● Each double spreds out on 2 banks.
● 4-ways bank conflicts cannot be avoided.

Thread indexes inside a warp

Shared memory bank indexes

Data read from shared
memory

GPU Parallelization

Date et lieu

CUDA : step #5

26

Shared memory bank conflicts
● At writing stage for stride=1, each thread writes 1 double (8 Bytes).
● There’s an unused memory space between each written value.
● 2-way bank conflict if nothing is done.

Thread indexes in the warp

Shared memory bank indexes

Data write inside shared
memory

unused banks

GPU Parallelization

Date et lieu

CUDA : step #5

27

Shared memory bank conflicts
● For threads #8-15, #24-31, etc. we add an offset of 1 to the memory address.
● New indexe computation

✔ shid = tidb + (tidb>>3)&0x1

Indices des threads du warp

Shared memory bank indexes

Data write inside shared
memory

Unused banks

GPU Parallelization

Date et lieu

CUDA : step #5

28

Thread indexes inside the warp

Shared memory bank indexes

Data write inside shared
memory

Shared memory bank conflicts
● For threads #8-15, #24-31, etc. we add an offset of 1 to the memory address.
● New indexe computation

✔ shid = tidb + (tidb>>3)&0x1

GPU Parallelization

Date et lieu

CUDA : step #5

29

Shared memory bank conflicts
● When computing in single precision, its relevant to address the shared memory in a

contiguous way no bank conflicts.⇒
● In our case, it would not bring additional performance (v6).

GPU Parallelization

Date et lieu

Performance summary

30

Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

● Estimation of π over 10 slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization

Date et lieu

CUDA : step #7

31

Idea
● With kernel v5, lot of threads are idle.
● Half of all the threads are idle as soon as the very first iteration.
● Combining the first addition with the data loading into global memory.
● Caution if nbsteps is not a multiple of 2.
● Padding the vector size to the next power of 2 (nextPow2() function).

Modified kernel code

GPU Parallelization

Date et lieu

CUDA : step #7

32

Modified kernel calls

GPU Parallelization

Date et lieu

Performance summary

33

Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

GPU CUDA v7 190 ms 42,1 GB/s

● Estimation of π over 10 slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization

Date et lieu

CUDA : step #8

34

Idea
● Iterations after iteration, less and less threads are active.
● When stride ≤ 32, only one warp is still active.
● Inside a warp, as all instructions are executed synchronously

 ⇒ _syncthreads()is now useless
 ⇒ if(tidb < stride)is now useless

Modified kernel code

GPU Parallelization

Date et lieu

Performance summary

35

Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

GPU CUDA v7/v8 190 ms 42,1 GB/s

● Estimation of π over 10 slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization

Date et lieu

CUDA : step #9

36

Idea
● Optimising the kernel <<<computeNstore>>> by using specific instructions.

● Profiler 93 ms with 512 threads/block (almost no impact).⇒
● The fastest memory on a GPU chip is represented by its registers.
● GPU registers:

✔ Limited amount : 255 per thread, 64K x 4Bytes max per block.
✔ Maximal speed : no latency, no bank conflicts.
✔ No possible indexing no loops on array elements.⇒

● Intra-warp register instructions:
● __shfl_sync,
● __shfl_up_sync,
● __shfl_down_sync,
● __shfl_xor_sync

GPU Parallelization

Date et lieu

CUDA : step #9

37

Warp level instructions
Example 1

GPU Parallelization

Date et lieu

CUDA : step #9

38

Warp level instructions
Example1

tid+offset >31
 returns ⇒ tid

tid+offset<32
 returns ⇒

 tid+offset

GPU Parallelization

Date et lieu

CUDA : step #9

39

Warp level instructions
Example 1 : sum over one warp

GPU Parallelization

Date et lieu

CUDA : step #9

40

Warp level instructions
Example 2 : sum over one block

__device__ function processing the sum over one warp

Each thread calling this function would execute the __shfl_down_sync()
instructions and then would return its own value stored in val.

GPU Parallelization

Date et lieu

CUDA : step #9

41

Warp level instructions
Example 2 : sum over one block
__device__ function processing the sum over one block

To store warp sums
(max 32 in each block).

Warp id in the block =wid,
Thread id in the warp =lane.

Just for demo, one puts values
in val.

Sums inside warps.

Sum is held by thread #0 of the
warp (lane #0).

Set-upvalues for second stage.
If blockDim <1024, 0-padding.

Warp sum lane #0 = block sum

GPU Parallelization

Date et lieu

CUDA : step #9

42

Warp level instructions
Example 2 : sum over one block

Kernel processing the sum over one block

Kernel calling the function.

kernel call with 1
block of 1024 threads.

Résultat

Correct result.

GPU Parallelization

Date et lieu

CUDA : step #9

43

Warp level instructions
Processing the sum over a vector of values

If nb blocks > 1024, pre-
summation

Thread #0 in each block holds
the sum of its own block

nb of values

La somme globale est obtenue en deux temps

Max 1024 blocks
Block sums

Sum of sums

GPU Parallelization

Date et lieu

CUDA : step #9

44

Warp level instructions
Estimation of π

GPU Parallelization

Date et lieu

Performance summary

45

Version Duration Throughput

CPU gcc 1440 ms 5.5 Go/s

CPU openPGI 2358 ms 3.4 Go/s

GPU openPGI 270 ms 30 Go/s

GPU CUDA v3 270 ms 30 Go/s

GPU CUDA v4 220 ms 36.4 Go/s

GPU CUDA v5 200 ms 40,0 Go/s

GPU CUDA v7/v8 190 ms 42,1 Go/s

GPU CUDA v9 118 ms 67,8 Go/s

● Estimation of π over 10 slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization

Date et lieu

Connecting to IUTBM cluster nodes

46

● ssh login@cluster2 (or cluster1 or cluster3)

If needed, first log in on slayer with
● ssh login@slayer.iut-bm.univ-fcomte.fr

For more convenience, edit your ~/.ssh/config and add some useful things:
Host *
 ForwardAgent yes
 ForwardX11 no
 ForwardX11Trusted yes
 Port 22
 Protocol 2
 ServerAliveInterval 60
 ServerAliveCountMax 30

Host cluster2
 Hostname cluster2
 User login
 ProxyCommand ssh -W %h:%p login@slayer

GPU Parallelization

mailto:login@cluster2

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46

