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Summary
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● Sequential code : compilation - profiling

● Simple automatic parallelization : openPGI + openACC

● Parallelization with CUDA : from naive to highly optimized 

✔ Naive reduction run by only one thread.

✔ Reduction using shared memory.

✔ Hybrid memory usage : registers/shared memory.

✔ Intra-warp communication (shuffle instructions). 

GPU Parallelization 
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CPU code : algorithm

3GPU Parallelization 

Simple algorithm, based on equation →  ∫
0

1
1

1+x2
.dx=π
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• The outilne of the algorithm is to cut the 
interval [0 ; 1] into nsteps slices, considered 
thin enough.

• We assume that in each slice, the shape 
under the curve is rectanguar. 

• Height is that of the middle point of the slice.
• The greater nsteps, the more accurate the 

result will be.  
• In this case, the computation error is zero 

when nsteps tends towards infinity.
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An estimation of          :  the sequential version
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π

Code c++ : pic.cpp

Compilation with gcc (option -Ofast) 
$ g++ -Ofast -o pic pic.cpp

GPU Parallelization
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An estimation of          :  the sequential version
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π

Performance measurement : Execution with 10⁸ and 10  intervals⁹ intervals

via the time instruction

Via the Nvidia profiler nvprof

GPU Parallelization 
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An estimation of          :  the sequential version
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π

Compilation with openPGI compiler : pgc++
$ pgc++ -fast -Minfo=all,intensity,ccff -Minline -o pic pic.cpp

 
The option -Minfo allows to get some useful feedback before trying to parallelize.

Performance measurement… Not all compilations are equivalents.

GPU Parallelization 

At least, results are equals with a precision of 10-12. 
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Automatic parallelization: openACC  

7GPU Parallelization

● OpenACC can generate hybrid executable code (CPU/GPU). 
● Automatic generation is driven by a set of compilation directives.
● The compiler : openPGI (pgc++).

● Before trying any parallelization, it is mandatory to:
• Use the profiler to identify the more time consuming sequences.
• Find out, among that sequences, those that could be parallelized (on a GPU).
• Determine an appropriate set of ACC directives for each code sequence.

In the sample code pic.cpp, the ‘for’ loop is a candidate for parallelization .

The typical directive to parallelize a C/C++ loop looks like 
#pragma  acc parallel loop

And has to be placed just above the target loop
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Automatic parallelization: openACC    

8GPU Parallelization 

Compilation 
$ pgc++ -fast -Minfo=all,intensity,ccff -Minline \          

-ta=tesla:cuda9.2 -o pic pic.cpp

● The -ta option allows to specify a target for the parallel code.
● In our case, we will target a Nvidia Tesla family GPU, Pascal generation, Titan-X 

model.
● On the host computer, the sdk release version is cuda9.2.

Execution 
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Automatic parallelization: openACC    

9GPU Parallelization 

The compiler output shows that one reduction has been identified (on sum) and that 
compliant code has then been generated.

However, one can write the corresponding directive more explicitely

Execution 

Speedup achieved :
● x30 against the sequential code and pgc++ compiler
● x18 against the sequential code and g++ compiler

WITHOUT ANY EFFORT (ALMOST)
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Automatic parallelization: openACC    

10GPU Parallelization 

A few comments about openACC

● Even common cases can be difficult to solve.
● Managing memory transfers and persistence can be quite challenging.
● Speedups are more difficult to obtain and less impressive.
● A significant overhead is introduced by the compiler, when    

• Transferring data between CPU and GPU,
• Calling fonctions / kernels,
• Choosing non optimal grid dimensions.

● The official documentation of openACC directives
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
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CUDA  / C parallelization
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Outlines
● Nvidia template as a starting point (0_Simple/template) 
● General structure of a CUDA code:

1.Resource allocations (CPU & GPU).
2.Data loading into host’s memory (CPU).
3.Data copy from host memory into GPU memory.
4.Computation of grid dimensions and kernel executions.
5.Copy of the result data from GPU memory to host memory.

Estimation of π
● Simplified structure; no input data to transfer.
● Step by step design and successive refinements. 
● Solutions to some performance limitation parameters.

GPU Parallelization 
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CUDA : step #1
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Idea
● One kernel computes the 1/(1+x²) value associated to each slice of the [0 ; 1] 

interval.
● Each slice value is computed by one thread.
● The number of slices, nbsteps, can be great. We need to check the capacities of 

the GPU regarding the maximum number of concurrent threads. 
● For this purpose, one can use the deviceQuery program

● nbsteps max >2.10  x 1024 = 2.10^12.⁹ intervals

GPU Parallelization 
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CUDA : step #1
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Kernel code 
● The number of concurrent thread is a power of 2, multiple of 32. 
● If nbsteps is not a power of 2, it should be passed to the kernel as a parameter.
● If nbsteps is a power of 2, its value can be guessed by kernels at runtime.

GPU Parallelization 
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CUDA : step #1
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Main.cu source code 
● Memory allocation on GPU to store nbsteps real values.
● Definition of the computing grid dimensions.
● Kernel execution.

GPU Parallelization 
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CUDA : step #1
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Results & performance
● The final sum is processed on the CPU.
● The data transfer GPU → CPU is highly time consuming (2300 ms).
● Processing time for slice values : # 150 ms.

Conclusion 
● The final sum must be computed on the GPU to avoid transferring a large amount 

of data (on only the overall sum has to be copied in this case).

GPU Parallelization 
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CUDA : step #2

16

Idea
● Modifying the kernel code in order to compute the sum of all the slice values. 
● As a starting point, one can add a sequence that allows thread 0 to add up the 

nsteps values previously computed by the kernel and stored in global memory.

Kernel code
 

GPU Parallelization 
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CUDA : step #2
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Results & performance
● The sum is computed on the GPU.
● No more large vector to transfer GPU → CPU.
● Computing time > 1 minute for 10  slices !!!⁹ intervals

Conclusion
● Only one thread is computing the sum (tid #0, no parallelism).
● Thread #0 waits for all the other threads to complete their tasks before beginning to 

add up values (__syncthreads()). It is mandatory to avoid adding up wrong values.
● The slice values needed to compute the sum are first stored in global memory, then 

they are read from global memory by thread #0, one by one.
● Trying to have a GPU to work like a CPU always lead to a disaster.

GPU Parallelization 
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CUDA : step #3
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Idea
● Modifying the kernel in order to add up the values more cleverly (with parallelism). 
● Storing the values to add up into shared memory, faster than global memory:

✔ 48kB of memory shared by thread block are available. 
✔ Our sum requires 1 double precision value by thread, ie 8 Bytes/thread.
✔ A max number of 1024 threads can be define for each block, ie 8 kB/block  ⇒ 

OK (< 48kB).
✔ No possible direct inter-block communication  partial sums in global memory.⇒ 

● Two options :
1.Reducing the overall global memory amount required + processing the first 

summing stage while computing the slice values.
2.Storing all the slice values into global memory and summing afterwards.

• Option #1 is a bit more efficient but less common  we choose option #2.⇒ 
• We try to write a scalable kernel, ie. that can be launched with various scales of grid 

dimensions.

8 blocks

1 block

GPU Parallelization 
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CUDA : step #3
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log(n) summing algorithm
● Sums are processed inside each thread block (threads_per_bloc).
● Each block sum is then stored into global memory at the very index of the block 

inside the grid. 
● Each kernel execution would divide the size of the vector by threads_per_bloc.
● Before each kernel call, suited grid dimensions have to be computed.

Sum inside a 
block of 16 

threads

GPU Parallelization 
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CUDA : step #3
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kernel code (summup<<<>>>)

GPU Parallelization 
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CUDA : step #3
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Kernel calls summup<<<>>>

GPU Parallelization 
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CUDA : step #3
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Results & performance
● The final sum is stored at index #0 of d_vector.
● Overall computing time (memcpy included) # 0,40s for 10  slices (block size =1024)⁹ intervals
● Overall computing time (memcpy included) # 0,27s for 10  slices (block size =128)⁹ intervals

Divergent Warps 
Modulo operator

GPU Parallelization 
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CUDA : step #4
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Computing the sum inside thread blocks
● No more divergent warps, neither modulo operators

Sum inside 
one block of 
16 threads

GPU Parallelization 
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Performances summary 
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● Estimation of π over 10  slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU Parallelization 
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CUDA : step #5
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Bank conflicts in shared memory
● The shared memory is implemented through 32 4-Byte-width banks.
● Two threads belonging to two different half-warps (#O-15 et #16-31) accessing two 

different datas of the same bank will result in a bank conflict.
● During reading stage for stride=1, each thread reads 2 doubles (16 Bytes).
● Each double spreds out on 2 banks.
● 4-ways bank conflicts cannot be avoided. 

Thread indexes inside a warp

Shared memory bank indexes

Data read from shared 
memory

GPU Parallelization 
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CUDA : step #5
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Shared memory bank conflicts
● At writing stage for stride=1, each thread writes 1 double (8 Bytes).
● There’s an unused memory space between each written value.
● 2-way bank conflict if nothing is done.

Thread indexes in the warp

Shared memory bank indexes

Data write inside shared 
memory

unused banks

GPU Parallelization 
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CUDA : step #5
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Shared memory bank conflicts
● For threads #8-15, #24-31, etc. we add an offset of 1 to the memory address.
● New indexe computation 

✔ shid = tidb + (tidb>>3)&0x1

Indices des threads du warp

Shared memory bank indexes

Data write inside shared 
memory

Unused banks

GPU Parallelization 
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CUDA : step #5
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Thread indexes inside the warp

Shared memory bank indexes

Data write inside shared 
memory

Shared memory bank conflicts
● For threads #8-15, #24-31, etc. we add an offset of 1 to the memory address.
● New indexe computation 

✔ shid = tidb + (tidb>>3)&0x1

GPU Parallelization 
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CUDA : step #5
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Shared memory bank conflicts
● When computing in single precision, its relevant to address the shared memory in a 

contiguous way  no bank conflicts.⇒ 
● In our case, it would not bring additional performance (v6).

GPU Parallelization 
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Performance summary
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Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

● Estimation of π over 10  slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization 
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CUDA : step #7
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Idea 
● With kernel v5, lot of threads are idle. 
● Half of all the threads are idle as soon as the very first iteration.
● Combining the first addition with the data loading into global memory.
● Caution if nbsteps is not a multiple of 2.
● Padding the vector size to the next power of 2 (nextPow2() function).

Modified kernel code

GPU Parallelization 
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CUDA : step #7

32

Modified kernel calls 

GPU Parallelization 
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Performance summary
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Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

GPU CUDA v7 190 ms 42,1 GB/s

● Estimation of π over 10  slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization 
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CUDA : step #8
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Idea
● Iterations after iteration, less and less threads are active.
● When stride ≤ 32, only one warp is still active.
● Inside a warp, as all instructions are executed synchronously 

 ⇒ _syncthreads()is now useless
 ⇒ if(tidb < stride)is now useless

Modified kernel code

GPU Parallelization 
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Performance summary
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Version Duration Throughput

CPU gcc 1440 ms 5.5 GB/s

CPU openPGI 2358 ms 3.4 GB/s

GPU openPGI 270 ms 30 GB/s

GPU CUDA v3 270 ms 30 GB/s

GPU CUDA v4 220 ms 36.4 GB/s

GPU CUDA v5 200 ms 40,0 GB/s

GPU CUDA v7/v8 190 ms 42,1 GB/s

● Estimation of π over 10  slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization 
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CUDA : step #9
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Idea
● Optimising the kernel <<<computeNstore>>> by using specific instructions.

● Profiler  93 ms with 512 threads/block (almost no impact).⇒ 
● The fastest memory on a GPU chip is represented by its registers.
● GPU registers:

✔ Limited amount : 255 per thread, 64K x 4Bytes max per block.
✔ Maximal speed : no latency, no bank conflicts.
✔ No possible indexing  no loops on array elements.⇒ 

● Intra-warp register instructions:
● __shfl_sync, 
● __shfl_up_sync, 
● __shfl_down_sync, 
● __shfl_xor_sync 

GPU Parallelization 
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CUDA : step #9

37

Warp level instructions
Example 1

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Example1

tid+offset >31 
 returns ⇒ tid

tid+offset<32 
 returns ⇒           

    tid+offset

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Example 1 : sum over one warp

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Example 2 : sum over one block

__device__ function processing the sum over one warp

Each thread calling this function would execute the __shfl_down_sync() 
instructions and then would return its own value stored in val.

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Example 2 : sum over one block
__device__ function processing the sum over one block

To store warp sums
(max 32 in each block).

Warp id in the block =wid,  
Thread id in the warp =lane.

Just for demo, one puts values 
in val.

Sums inside warps.

Sum is held by thread #0 of the 
warp (lane #0).

Set-upvalues for second stage. 
If blockDim <1024, 0-padding.

Warp sum lane #0 = block sum

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Example 2 : sum over one block

Kernel processing the sum over one block

Kernel calling the function.

kernel call with 1
block of 1024 threads.

Résultat

Correct result.

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Processing the sum over a vector of values

If nb blocks > 1024, pre-
summation

Thread #0 in each block holds 
the sum of its own block

nb of values

La somme globale est obtenue en deux temps

Max 1024 blocks
Block sums

Sum of sums

GPU Parallelization 
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CUDA : step #9
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Warp level instructions
Estimation of π

GPU Parallelization 
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Performance summary
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Version Duration Throughput

CPU gcc 1440 ms 5.5 Go/s

CPU openPGI 2358 ms 3.4 Go/s

GPU openPGI 270 ms 30 Go/s

GPU CUDA v3 270 ms 30 Go/s

GPU CUDA v4 220 ms 36.4 Go/s

GPU CUDA v5 200 ms 40,0 Go/s

GPU CUDA v7/v8 190 ms 42,1 Go/s

GPU CUDA v9 118 ms 67,8 Go/s

● Estimation of π over 10  slices; ⁹ intervals
● Double precision real computation;
● Memory throughput (D)

● maximum Titan-X : bus width x clock frequency/2
● Dmax = 384 x 3505/2 8 = 336 GB/s
● D = nbsteps x 8 Bytes / duration

GPU Parallelization 
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Connecting to IUTBM cluster nodes
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● ssh login@cluster2 (or cluster1 or cluster3)

If needed, first log in on slayer with 
● ssh login@slayer.iut-bm.univ-fcomte.fr

For more convenience, edit your ~/.ssh/config and add some useful things: 
Host *
     ForwardAgent yes
     ForwardX11 no
     ForwardX11Trusted yes
     Port 22
     Protocol 2
     ServerAliveInterval 60
     ServerAliveCountMax 30

Host cluster2
    Hostname cluster2
    User login
    ProxyCommand ssh -W %h:%p login@slayer

GPU Parallelization 
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