
GPUCPU

GPGPU Revolutionizes Computing
Latency Processor + Throughput processor

Low Latency or High Throughput?

CPU

Optimized for low-latency

access to cached data sets

Control logic for out-of-order

and speculative execution

GPU

Optimized for data-parallel,

throughput computation

Architecture tolerant of

memory latency

More transistors dedicated to

computation

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1 T2 T3 T4

Processing Flow

1. Copy input data from CPU memory to GPU

memory

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus

Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCIe Bus

GPU ARCHITECTURE

GPU Architecture:
Two Main Components

Global memory
Analogous to RAM in a CPU server
Accessible by both GPU and CPU
Currently up to 32 GB
Bandwidth currently up to 1.13 TB/s for Volta V100

ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
Perform the actual computations
Each SM has its own:

Control units, registers, execution pipelines, caches

D
R

A
M

 I/
F

G
ig

a
T

h
re

ad
H

O
S

T
 I/

F
D

R
A

M
 I/

F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

GPU Architecture – Volta
Streaming Multiprocessor (SM)

64 CUDA cores per SM
80 SMs

16.4 Tops, fp32

8.2 Tops, fp64

 4 warp schedulers
Up to 2048 threads
concurrently

4 special-function units

Up to 96KB shared mem

64KB 32-bit registers-

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

GPU Architecture – Volta:
CUDA Core

Floating point & Integer unit
IEEE 754-2008 floating-point
standard

Fused multiply-add (FMA)
instruction for both single and
double precision

Logic unit

Move, compare unit

Branch unit

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

GPU Architecture – Volta:
Memory System

L1
128KB per SM shared with texture

Hardware-managed

Aggregate bandwidth:

Shared memory
User-managed scratch-pad

Hardware will not evict until threads overwrite

0-96KB per SM (managed by program)

Aggregate bandwidth per GPU: 10TB/s

13TB/s

GPU Architecture – Volta:
Memory System

ECC protection:

DRAM
ECC supported for GDDR5 memory

All major internal memories are ECC protected
Register file, L1 cache, L2 cache

C2050 Specifications

Processor clock 1.53 GHz

of CUDA cores 5120

Peak floating-point perf 16.4 Tflops (SP)

Memory clock 877 MHz

Memory bus width 4096 bits

Memory size 32 GB

Overview of Volta V100-DGXS

CUDA PROGRAMMING MODEL

Anatomy of a CUDA C/C++ Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA C/C++ Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

Compiling CUDA C Applications

void serial_function(…) {

...

}

void other_function(int ...) {

...

}

void saxpy_serial(float ...) {

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

void main() {

float x;

saxpy_serial(..);

...

}

NVCC

(Open64)
CPU Compiler

CUDA C

Functions

CUDA object

files

Rest of C

Application

CPU object

files
Linker

CPU-GPU

Executable

Modify into

Parallel

CUDA C code

CUDA C : C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code

CUDA C : C with a few keywords

Kernel: function called by the host that executes on the GPU
Can only access GPU memory

No variable number of arguments

No static variables

Functions must be declared with a qualifier:
__global__ : GPU kernel function launched by CPU, must return void

__device__ : can be called from GPU functions

__host__ : can be called from CPU functions (default)

__host__ and __device__ qualifiers can be combined

CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

CUDA Kernels: Parallel Threads

A kernel is a function executed

on the GPU as an array of

threads in parallel

All threads execute the same

code, can take different paths

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadIdx.x];

float y = func(x);

output[threadIdx.x] = y;

CUDA Kernels: Subdivide into Blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

GPU

Kernel Execution

• Each kernel is executed on

one device

• Multiple kernels can execute

on a device at one time

…
…
…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a

core

CUDA core

CUDA thread block

• Each block is executed by

one SM and does not migrate

• Several concurrent blocks can

reside on one SM depending

on the blocks’ memory

requirements and the SM’s

memory resources

…

CUDA Streaming

Multiprocessor

CUDA kernel grid

...

Thread blocks allow cooperation

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Threads may need to cooperate:

Cooperatively load/store blocks of

memory all will use

Share results with each other or

cooperate to produce a single result

Synchronize with each other

Thread blocks allow scalability

Blocks can execute in any order, concurrently or sequentially

This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel Grid

Launch

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

CUDA MEMORY SYSTEM

Memory hierarchy

Thread:

Registers

Memory hierarchy

Thread:

Registers

Local memory

Local Local Local Local Local Local Local

Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory

Memory hierarchy : Shared memory

__shared__ int a[SIZE];

Allocated per thread block, same

lifetime as the block

Accessible by any thread in the

block

Latency: a few cycles

High aggregate bandwidth:

14 * 32 * 4 B * 1.15 GHz / 2 = 1.03 TB/s

Several uses:

Sharing data among threads in a

block

User-managed cache (reducing

gmem accesses)

Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory

All blocks:

Global memory

Memory hierarchy : Global memory

Accessible by all threads of any

kernel

Data lifetime: from allocation to

deallocation by host code
cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t

count)

cudaFree (void* pointer)

Latency: 400-800 cycles

Bandwidth: 156 GB/s

Note: requirement on access pattern to

reach peak performance

CUDA DEVELOPMENT RESOURCES

CUDA Programming Resources

CUDA Toolkit

Compiler, libraries, and documentation

Free download for Windows, Linux, and MacOS

GPU Computing SDK

Code samples

Whitepapers

Instructional materials on NVIDIA Developer site

CUDA introduction & optimization webinar: slides and audio

Parallel programming course at University of Illinois UC

Tutorials

Forums

GPU Tools

Profiler

Available for all supported OSs

Command-line or GUI

Sampling signals on GPU for:

Memory access parameters

Execution (serialization, divergence)

Debugger

Linux: cuda-gdb

Windows: Parallel Nsight

Runs on the GPU

Questions?

