
Performance Analysis of a Keyed Hash Function based on Discrete and Chaotic
Proven Iterations

Jacques M. Bahi, Jean-François Couchot, and Christophe Guyeux*
University of Franche-Comté, Computer Science Laboratory (LIFC)

Belfort, France
Email: {jacques.bahi, jean-francois.couchot, christophe.guyeux}@univ-fcomte.fr

Abstract—Security of information transmitted through the
Internet is an international concern. This security is guaranteed
by tools like hash functions. However, as security flaws have
been recently identified in the current standard in this domain,
new ways to hash digital media must be investigated. In this
document an original keyed hash function is evaluated. It is
based on chaotic iterations and thus possesses various topological
properties as uniform repartition and sensibility to its initial
condition. These properties make our hash function satisfy the
requirements in this field. This claim is verified qualitatively
and experimentally in this research work, among other things
by realizing simulations of diffusion and confusion.

Keywords-Keyed Hash Function; Internet Security; Mathe-
matical Theory of Chaos; Topology.

I. INTRODUCTION

Hash functions are fundamental tools to guarantee the
quality and security of data exchanges through the Internet.
For instance, they allow to store passwords in a secure manner
or to check whether a download has occurred without any
error. SHA-1 is probably the most widely used hash functions.
It is present in a large panel of security applications and
protocols through the Internet. However, in the last decade,
security flaws have been detected in SHA-1. As the SHA-
2 variants are algorithmically close to SHA-1 and produce
finally message digests on principles similar to the MD4 and
MD5 message digest algorithms, a new hash standard based
on original approaches is then eagerly awaited. In this context,
we have proposed a new hash function in [1]. Based on
chaotic iterations, this function behaves completely different
from approaches followed until now.

However chaos insertion to produce hash functions is
sometimes disputed [2], [3]. Indeed existing chaos-based hash
functions only include “somewhere” some chaotic functions
of real variables like logistic, tent, or Arnold’s cat maps.
It is then supposed that the final hash function preserves
these properties [4], [5], [6], [7]. But, in our opinion, this
claim is not so evident. Moreover, even if these algorithms
are themselves proven to be chaotic, their implementations
on finite machines can result to lost of chaos property.
Among other things, the main reason is that chaotic functions
(embedded in these researches) only manipulate real numbers,
which do not exist in a computer. In [1], the hash function
we have proposed does not simply integrate chaotic maps into
algorithms hoping that the result remains chaotic; we have
conceived an algorithm and have mathematically proven that
it is chaotic. To do both our theory and our implementation
are based on finite integer domains and chaotic iterations.

* Authors in alphabetic order

Chaotic iterations (CIs) were formerly a way to formalize
distributed algorithms through mathematical tools [8]. Thanks
to these CIs, it was thus possible to study the convergence
of synchronous or asynchronous programs over parallel, dis-
tributed, P2P, grid, or GPU platforms, in a view to solve
linear and non-linear systems. CIs have recently revealed
numerous interesting properties of disorder formalized into
the mathematical topology framework. These studies lead to
the conclusion that the chaos of CIs is very intense and
that chaos class can tackle the computer science security
field [9]. As CIs only manipulate binary digits or integers, we
have shown that they are amenable to produce truly chaotic
computer programs. Among other things, CIs have been
applied to pseudo-random number generators [10] and to an
information hiding scheme [11] in the previous sessions of the
International Conference on Evolving Internet. In this paper,
the complete unpredictable behavior of chaotic iterations is
capitalized to produce a truly chaotic keyed hash function.

The remainder of this research work is organized in the
following way. In Section II, basic recalls concerning chaotic
iterations and Devaney’s chaos are recalled. Our keyed hash
function is presented, reformulated, and improved in Sec-
tion III. Performance analyses are presented in the next two
sections: in the first one a qualitative evaluation of this
function is outlined, whereas in the second one it is evaluated
experimentally. This research work ends by a conclusion
section, where our contribution is summarized and intended
future work is given.

II. DISCRETE AND CHAOTIC PROVEN ITERATIONS

This section gives some recalls on topological chaotic
iterations. Let us firstly discuss about domain of iterated
functions. As far as we know, no result rules that the chaotic
behavior of a function that has been theoretically proven
on R remains valid on the floating-point numbers, which
is the implementation domain. Thus, to avoid loss of chaos
this research work presents an alternative, namely to iterate
boolean maps: results that are theoretically obtained in that
domain are preserved during implementations.

Let us denote by Ja; bK the following interval of integers:
{a, a + 1, . . . , b}. A system under consideration iteratively
modifies a collection of n components. Each component
i ∈ J1;nK takes its value xi among the domain B = {0, 1}.
A configuration of the system at discrete time t (also said
at iteration t) is the vector xt = (xt1, . . . , x

t
n) ∈ Bn. In

what follows, the dynamics of the system is particularized
with the negation function ¬ : Bn → Bn such that ¬(x) =
(xi, . . . , xn) where xi is the negation of xi.

In the sequel, the strategy S = (St)t∈N is the sequence
defining which component is updated at time t and St denotes
its t−th term. We introduce the function F¬ that is defined
for the negation function by:

F¬ : J1;nK×Bn → Bn

F¬(s, x)j =

{
xj if j = s
xj otherwise.

With such a notation, configurations are defined for times
t = 0, 1, 2, . . . by:{

x0 ∈ Bn and
xt+1 = F¬(St, xt) .

(1)

Finally, iterations defined in (1), called “chaotic itera-
tions” [8], can be described by the following system{

X0 = ((St)t∈N, x0) ∈ J1;nKN ×Bn

Xk+1 = G¬(Xk)
, (2)

such that

G¬
(
((St)t∈N, x)

)
=
(
σ((St)t∈N), F¬(S0, x)

)
where σ is the function that removes the first term of the
strategy (i.e., S0). Let us remark that the term “chaotic” in
the name of this tool is just an adjective, which has a priori
no link with the mathematical theory of chaos.

In the space X = J1;nKN × Bn we define the distance
between two points X = (S,E), Y = (Š, Ě) ∈ X by

d(X,Y) = de(E, Ě) + ds(S, Š), where

de(E, Ě) =

n∑
k=1

δ(Ek, Ěk), and

ds(S, Š) =
9

n

∞∑
k=1

|Sk − Šk|
10k

.

If the floor value bd(X,Y)c is equal to j, then the systems
E, Ě differ in j cells. In addition, d(X,Y)− bd(X,Y)c is a
measure of the differences between strategies S and Š. More
precisely, this floating part is less than 10−k if and only if the
first k terms of the two strategies are equal. Moreover, if the
kth digit is nonzero, then the kth terms of the two strategies
are different.

With this material it has been already proven that [9]:

• G¬ is a continuous function on a suitable metric space
(X , d),

• iterations as defined in Equ. 2 are regular (i.e., periodic
points of G¬ are dense in X),

• (X , G¬) is topologically transitive (i.e., for any pair of
open sets U, V ⊂ X , there exists some natural number
k > 0 s. t. Gk

¬(U) ∩ V 6= ∅),
• (X , G¬) has sensitive dependence on initial conditions

(i.e., there exists δ > 0 s.t. for any X ∈ X and any
neighborhood V of X , there exist Y ∈ V and k > 0
with d(Gk

¬(X), Gk
¬(Y)) > δ).

To sum up, we have previously established that the three
conditions for Devaney’s chaos hold for chaotic iterations. So
CIs behave chaotically, as it is defined in the mathematical
theory of chaos [12], [13].

III. A CHAOS-BASED KEYED HASH FUNCTION

This section first recalls an informal definition [14], [15]
of Secure Keyed One-Way Hash Function. We next present
our algorithm. Finally, we establish relations between the
algorithm properties inherited from topological results and
requirements of Secure Keyed One-Way Hash Function.

A. Secure Keyed One-Way Hash Function

Definition 1 (Secure Keyed One-Way Hash Function)
Let Γ and Σ be two alphabets, let k ∈ K be a key in a given
key space, let l be a natural numbers which is the length of
the output message, and let h : K × Γ+ → Σl be a function
that associates a message in Σl for each pair of key, word
in K × Γ+. The set of all functions h is partitioned into
classes of functions {hk : k ∈ K} indexed by a key k and
such that hk : Γ+ → Σl is defined by hk(m) = h(k,m) i.e.,
hk generates a message digest of length l.

A class {hk : k ∈ K} is a Secure Keyed One-Way Hash
Function if it satisfies the following properties:

1) the function hk is keyed one-way. That is,
a) Given k and m, it is easy to compute hk(m) .
b) Without knowledge of k, it is hard to find m when

hk(m) is given and to find hk(m) when only m
is given.

2) The function hk is keyed collision free, that is, without
the knowledge of k it is difficult to find two distinct
messages m and m′ s.t. hk(m) = hk(m′).

3) Images of function hk has to be uniformly distributed
in Σl in order to counter statistical attacks.

4) Length l of produced image has to be larger than 128
bits in order to counter birthday attacks.

5) Key space size has to be sufficiently large in order to
counter exhaustive key search.

Let us now present our hash function that is based on
chaotic iterations as defined in Section II. The hash value
message is obtained as the last configuration resulting from
chaotic iterations of G¬.

We then have to define the pair X0 = ((St)t∈N, x0), i.e.,
the strategy and the initial configuration x0.

B. Computing x0

The first step of the algorithm is to transform the message
in a normalized n = 256 bits sequence x0. This size n
of the digest can be changed, mutatis mutandis, if needed.
Here, this first step is close to the pre-treatment of the SHA-
1 hash function, but it can easily be replaced by any other
compression method.

To illustrate this step, we take an example, our original text
is: “The original text”.

Each character of this string is replaced by its ASCII code
(on 7 bits). Following the SHA-1 algorithm, first we append
a “1” to this string, which is then

10101001 10100011 00101010 00001101 11111100
10110100 11100111 11010011 10111011 00001110
11000100 00011101 00110010 11111000 11101001.

Next we append the block 1111000, which is the binary
value of this string length (120), and finally another “1” is
added:

10101001 10100011 00101010 00001101 11111100

10110100 11100111 11010011 10111011 00001110
11000100 00011101 00110010 11111000 11101001
11110001.

The whole string is copied, but in the opposite direction:

10101001 10100011 00101010 00001101 11111100
10110100 11100111 11010011 10111011 00001110
11000100 00011101 00110010 11111000 11101001
11110001 00011111 00101110 00111110 10011001
01110000 01000110 11100001 10111011 10010111
11001110 01011010 01111111 01100000 10101001
10001011 0010101.

The string whose length is a multiple of 512 is obtained,
by duplicating enough this string and truncating at the next
multiple of 512. This string, in which the whole original text
is contained, is denoted by D. Finally, we split our obtained
string into blocks of 256 bits and apply to them the exclusive-
or function, from the first two blocks to the last one. It results
a 256 bits sequence, that is in our example:

11111010 11100101 01111110 00010110 00000101
11011101 00101000 01110100 11001101 00010011
01001100 00100111 01010111 00001001 00111010
00010011 00100001 01110010 01000011 10101011
10010000 11001011 00100010 11001100 10111000
01010010 11101110 10000001 10100001 11111010
10011101 01111101.

The configuration x0 is the result of this pre-treatment and is
a sequence of n = 256 bits. Notice that some distinct texts
lead to the same string.

Let us build now the strategy (St)t∈N that depends on both
the original message and a given key.

C. Computing (St)t∈N

To obtain the strategy S, an intermediate sequence (ut)t∈N

is constructed from D, as follows:
1) D is split into blocks of 8 bits. Let (ut)t∈N be the finite

sequence where ut is the decimal value of the tth block.
2) A circular rotation of one bit to the left is applied to

D (the first bit of D is put on the end of D). Then the
new string is split into blocks of 8 bits another time.
The decimal values of those blocks are added to (ut).

3) This operation is repeated again 6 times.
Because of the function θ 7−→ 2θ (mod 1) is known to be

chaotic in the sense of Devaney [12], we define the strategy
(St)t∈N with:

St = (ut + 2× St−1 + t) mod 256,

which is then highly sensitive to initial conditions and then to
changes of the original text. On the one hand, when a keyed
hash function is desired, this sequence (St)t∈N is initialized
with the given key k (i.e., S0 = k). On the other hand, it is
initialized to u0 if the hash function is unkeyed.

D. Computing the digest

To construct the digest, chaotic iterations of G¬ are realized
with initial state X0 = ((St)t∈N, x0) as defined above.
The result of these iterations is a n = 256 bits vector.
Its components are taken 4 per 4 bits and translated into
hexadecimal numbers, to obtain the hash value:

63A88CB6AF0B18E3BE828F9BDA4596A6
A13DFE38440AB9557DA1C0C6B1EDBDBD.

As a comparison if we replace “The original text” by “the
original text”, the hash function returns:

33E0DFB5BB1D88C924D2AF80B14FF5A7
B1A3DEF9D0E831194BD814C8A3B948B3.

We then investigate qualitative properties of this algorithm.

IV. QUALITATIVE ANALYSIS

We show in this section that, as a consequence of recalled
theoretical results, this hash function tends to verify desired
informal properties of a secure keyed one-way hash function.

A. The avalanche criteria

Let us first focus on the avalanche criteria, which means
that a difference of one bit between two given medias has
to lead to completely different digest. In our opinion, this
criteria is implied by the topological properties of sensitive
dependence to the initial conditions, expansivity, and Lya-
punov exponent. These notions are recalled below.

First, a function f has a constant of expansivity equal to ε
if an arbitrarily small error on any initial condition is always
magnified till ε. In our iteration context and more formally,
the function G¬ verifies the expansivity property if there exists
some constant ε > 0 such that for any X and Y in X , X 6= Y ,
we can find a k ∈ N s.t. d(Gk

¬(X), Gk
¬(Y)) > ε. We have

proven in [16] that, (X , G¬) is an expansive chaotic system.
Its constant of expansivity is equal to 1.

Next, some dynamical systems are highly sensitive to small
fluctuations into their initial conditions. The constants of
sensibility and expansivity have been historically defined to
illustrate this fact. However, in some cases, these variations
can become enormous, can grow in an exponential manner
in a few iterations, and neither sensitivity nor expansivity
are able to measure such a situation. This is why Alexander
Lyapunov has proposed a new notion being able to evaluate
the amplification speed of these fluctuations we now recall:

Definition 2 (Lyapunov Exponent) Let be given an itera-
tive system x0 ∈ X and xt+1 = f(xt). Its Lyapunov exponent
is defined by:

lim
t→+∞

1

t

t∑
i=1

ln
∣∣ f ′ (xi−1)∣∣

By using a topological semi-conjugation between X and R,
we have proven in [9] that For almost all X0, the Lyapunov
exponent of chaotic iterations G¬ with X0 as initial condition
is equal to ln(n).

Let us now explain why the topological properties of our
hash function lead to the avalanche effect. Due to the sensitive
dependence to the initial condition, two close media can
possibly lead to significantly different digests. The expansivity
property implies that these similar medias mostly lead to very
different hash values. Finally, a Lyapunov exponent greater
than 1 lead to the fact that these two close media will always
finish to have very different digests.

B. Preimage Resistance

Let us now discuss about the first preimage resistance of
our unkeyed hash function denoted by h. Indeed, as recalled
previously, an adversary given a target image D should not
be able to find a preimage M such that h(M) = D. One

reason (among many) why this property is important is that
on most computer systems user passwords are stored as
the cryptographic hash of the password instead of just the
plaintext password. Thus an attacker who gains access to the
password file cannot use it to then gain access to the system,
unless it is able to invert target message digest of the hash
function.

We now explain why, topologically speaking, our hash
function is resistant to preimage attacks. Let m be the message
to hash, (S, x0) its normalized version (i.e., the initial state
of our chaotic iterations), and M = h(m) the digest of m by
using our method. So chaotic iterations with initial condition
(S,M) and iterate function G¬ have x0 as final state. Thus
it is impossible to invert the hash process with a view to
obtain the normalized message by using the digest. Such an
attempt is equivalent to try to forecast the future evolution
of chaotic iterations by only using a partial knowledge of
its initial condition. Indeed, as M is known but not S, the
attacker has an incertitude on the initial condition. he only
knows that this value is into an open ball of radius 1 centered
at the point M , and the number of terms of such a ball is
infinite.

With such an incertitude on the initial condition, and due
to the numerous chaos properties possessed by the chaotic
iterations (as these stated in Section IV-A), this prediction is
impossible. Furthermore, due to the transitivity property, it is
possible to reach all of the normalized medias, when starting
to iterate into this open ball. Indeed, it is possible to establish
that, all of these possible normalized medias can be obtained
in at most 256 iterations, and we iterate at least 519 times
to obtain our hash value (c.f. Proposition 2 below). Finally,
to find the normalized media does not imply the discovery of
the original plain-text.

V. QUANTITATIVE AND EXPERIMENTAL EVALUATIONS

Let us first give some examples of hash values before
discussing about the algorithm complexity.

A. Hash values

Let us now consider our hash function with n = 128. To
give illustration of the confusion and diffusion properties, we
will use this function to generate hash values in the following
cases:

Case 1. The original text message is the poem Ulalume
(E.A.Poe), which is constituted by 104 lines, 667
words, and 3754 characters.

Case 2. We change serious by nervous in the verse “Our
talk had been serious and sober”

Case 3. We replace the last point ‘.’ with a coma ‘,’.
Case 4. In “The skies they were ashen and sober”, skies

becomes Skies.
Case 5. The new original text is the binary value of the

Figure 1.
Case 6. We add 1 to the gray value of the pixel located in

position (123,27).
Case 7. We substract 1 to the gray value of the pixel located

in position (23,127).
The corresponding hash values in hexadecimal format are:
Case 1.AC0EA2325BBF956D27C3561977E48B3E1,
Case 2.A6C4AC2F8579BCAB95BAD68468ED102D6,
Case 3.AA538A76E6E38905DA0D35057F1DC1B14,

Figure 1: The original plain-image.

Case 4.A01530A057B6A994FBD3887AF240F849E,
Case 5.ADE188603CFE139864092C7ABCD21AE50,
Case 6.AFF855E5A626532A4AED99BACECC498B1,
Case 7.A65DB95737EFA994DF37C7A6F420E3D07.
These simulation results are coherent with the topological

properties of sensitive dependence to the initial condition,
expansivity, and Lyapunov exponent: any alteration in the
message causes a substantial difference in the final hash value.

B. Algorithm Complexity

In this section is evaluated the complexity of the above hash
function for a size l of the media (in bits).

Proposition 1 The stages of initialization (Sections III-B
and III-C) need O(l) elementary operations to be achieved.

Proof: In this stage only linear operations over binary
tables are achieved, such as: copy, circular shift, or inversion.

Let us consider the digest computation stage (Section III-D).

Proposition 2 The digest computation stage requires less
than 2l + 2 log2(l + 1) + 515 elementary operations.

Proof: The cost of an iteration is reduced to the negation
operation on a bit, which is an elementary operation. Thus,
the second stage is realized in t elementary operations, where
t is the number of terms into the sequence S. But S has the
same number of terms than u, and u and D have the same
size (indeed, to build u, D has been copied 8 times, and bits
of this sequence have been regrouped 8 per 8 to obtain the
terms of u). To sum up, the size of D is equal to the total
number of elementary operations of the digest computation
stage.

The following operations are realized to obtain D.
1) The digit 1 is added: D has l + 1 bits.
2) The binary value of the size is

added, followed by another bit: D has
l + 2 + log2(l + 1) bits.

3) This string is copied after inversion: D has now
2× (l + 2 + log2(l + 1)) bits.

4) Lastly, this string is copied until the next multiple of
512: in the worst situation, 511 bits have been added,
so D has in the worst situation 2l+ 2 log2(l+ 1) + 515
bits.

We can thus conclude that:

Theorem 1 The computation of an hash value is linear with
the hash function presented in this research work.

0 500 1000 1500 2000 2500 3000 3500 4000

20

40

60

80

100

120

(a) Original text (ASCII)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

(b) Digest (Hexadecimal)

Figure 2: Values repartition of Ulalume poem

C. Experimental Evaluation

We focus now on the illustration of the diffusion and
confusion properties [17]. Let us recall that confusion refers
to the desire to make the relationship between the key and the
ciphertext as complex and involved as possible, whereas diffu-
sion means that the redundancy in the statistics of the plaintext
must be "dissipated" in the statistics of the ciphertext. Indeed,
the avalanche criterion is a modern form of the diffusion, as
this term means that the output bits should depend on the
input bits in a very complex way.

1) Uniform repartition for hash values: To show the
diffusion and confusion properties verified by our scheme,
we first give an illustration of the difference of characters
repartition between a plain-text and its hash value when the
original message is again the Ulalume poem. In Figure 2a,
the ASCII codes are localized within a small area, whereas
in Figure 2b the hexadecimal numbers of the hash value are
uniformly distributed.

A similar experiment has been realized with a message
having the same size, but which is only constituted by the
character “0”. The contrast between the plain-text message
and its digest are respectively presented in Figures 3a and 3b.
Even under this very extreme condition, the distribution of the
digest still remains uniform. To conclude, these simulations
tend to indicate that no information concerning the original
message can be found into its hash value, as it is recom-
mended by the Shannon’s diffusion and confusion.

0 500 1000 1500 2000 2500 3000 3500 4000
45

46

47

48

49

50

51

(a) Original text (ASCII)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

(b) Digest (Hexadecimal)

Figure 3: Values repartition of the “00000000” message

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
0

100

200

300

Figure 4: Histogram

2) Behavior through small random changes: We now
consider the following experiment. A first message of 100
bits is randomly generated, and its hash value of size 80
bits is computed. Then one bit is randomly toggled into
this message and the digest of the new message is obtained.
These two hash values are compared by using the hamming
distance, to compute the number Bi of changed bits. This test
is reproduced 10000 times. The corresponding distribution of
Bi is presented in Figure 4.

As desired, Figure 4 show that the distribution is centered
around 40, which reinforces the confidence put into the good
capabilities of diffusion and confusion of the proposed hash
algorithm.

3) Statistic analysis of diffusion and confusion: Finally, we
generate 1000 sequences of 1000 bits, and for each of these
sequences, we toggle one bit, thus obtaining a sequence of
1000 couples of 1000 bits. As previously, the two digests of
each couple i are obtained, and the hamming distance Bi

between these digests are computed. To analyse these results,
the following common statistics are used.

Bmin Bmax B P (%) ∆B ∆P (%)
N = 256 50 92 67.57 52.78 8.89 6.95
N = 512 47 82 65.13 51.11 7.65 5.87
N = 1024 47 81 63.01 52.10 7.51 5.71

Table I: Statistical performance of the proposed hash function

• Mean changed bit number B = 1
N

∑N
i=1Bi.

• Mean changed probability P = B
128 .

• ∆B =

√
1

N − 1

∑N
i=1(Bi −B)2.

• ∆P =

√
1

N − 1

∑N
i=1(Bi

128 − P)2.

The obtained statistics are listed in Table I. Obviously,
both the mean changed bit number B and the mean changed
probability P are close to the ideal values (64 bits and 50%,
respectively), which illustrates the diffusion and confusion
capability of our algorithm. Lastly, as ∆B and ∆P are very
small, these capabilities are very stable.

VI. CONCLUSION

MD5 and SHA-0 have been broken in 2004. An attack
over SHA-1 has been achieved with only 269 operations
(CRYPTO-2005), that is, 2000 times faster than a brute force
attack (that requires 280 operations). Even if 269 operations
still remains impossible to realize on common computers,
such a result based on a previous attack on SHA-0 is a very
important one: it leads to the conclusion that SHA-2 is not as
secure as it is required for the Internet applications. So new
original hash functions must be found.

In this research work, a new hash function has been
presented. The security in this case has been guaranteed by the
unpredictability of the behavior of the proposed algorithms.
The algorithms derived from our approach satisfy important
properties of topological chaos such as sensitivity to initial
conditions, uniform repartition (as a result of the transitivity),
unpredictability, and expansivity. Moreover, its Lyapunov ex-
ponent can be as great as needed. The results expected in our
study have been experimentally checked. The choices made in
this first study are simple: compression function inspired by
SHA-1, negation function for the iteration function, etc. The
aim was not to find the best hash function, but to give simple
illustrated examples to prove the feasibility in using the new
kind of chaotic algorithms in computer science. Finally, we
have shown how the mathematical framework of topological
chaos offers interesting qualitative and qualitative tools to
study the algorithms based on our approach.

In future work, we will investigate other choices of iteration
functions and chaotic strategies. We will try to characterize
topologically the diffusion and confusion capabilities. Other
properties induced by topological chaos will be explored and
their interest for the realization of hash functions will be
deepened.

REFERENCES

[1] J. M. Bahi and C. Guyeux, “Hash functions using chaotic it-
erations,” Journal of Algorithms & Computational Technology,
vol. 4, no. 2, pp. 167–181, 2010.

[2] C. song Zhou and T. lun Chen, “Extracting information masked
by chaos and contaminated with noise: Some considerations
on the security of communication approaches using chaos,”
Physics Letters A, vol. 234, no. 6, pp. 429 – 435, 1997.

[3] W. Guo, X. Wang, D. He, and Y. Cao, “Cryptanalysis on a
parallel keyed hash function based on chaotic maps,” Physics
Letters A, vol. 373, no. 36, pp. 3201 – 3206, 2009.

[4] X. M. Wang, J. S. Zhang, and W. F. Zhang, “One-way hash
function construction based on the extended chaotic maps
switch,” Acta Phys. Sinici., vol. 52, No. 11, pp. 2737–2742,
2003.

[5] D. Xiao, X. Liao, and Y. Wang, “Improving the security of a
parallel keyed hash function based on chaotic maps,” Physics
Letters A, vol. 373, no. 47, pp. 4346 – 4353, 2009.

[6] ——, “Parallel keyed hash function construction based on
chaotic neural network,” Neurocomputing, vol. 72, no. 10-12,
pp. 2288 – 2296, 2009, lattice Computing and Natural Com-
puting (JCIS 2007) / Neural Networks in Intelligent Systems
Designn (ISDA 2007).

[7] D. Xiao, F. Y. Shih, and X. Liao, “A chaos-based hash function
with both modification detection and localization capabilities,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 15, no. 9, pp. 2254 – 2261, 2010.

[8] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear
algebra and its applications, pp. 199–222, 1969.

[9] C. Guyeux, “Le désordre des itérations chaotiques et leur utilité
en sécurité informatique,” Ph.D. dissertation, Université de
Franche-Comté, 2010.

[10] Q. Wang, J. Bahi, C. Guyeux, and X. Fang, “Randomness qual-
ity of CI chaotic generators. application to internet security,”
in INTERNET’2010. The 2nd Int. Conf. on Evolving Internet.
Valencia, Spain: IEEE Computer Society Press, Sep. 2010, pp.
125–130, best Paper award.

[11] C. Guyeux and J. Bahi, “An improved watermarking algorithm
for internet applications,” in INTERNET’2010. The 2nd Int.
Conf. on Evolving Internet, Valencia, Spain, Sep. 2010, pp.
119–124.

[12] R. L. Devaney, An Introduction to Chaotic Dynamical Systems,
2nd ed. Redwood City, CA: Addison-Wesley, 1989.

[13] Knudsen, “Chaos without nonperiodicity,” Amer. Math.
Monthly, vol. 101, 1994.

[14] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, “Keyed hash
functions,” in Cryptography: Policy and Algorithms, ser. Lec-
ture Notes in Computer Science, E. Dawson and J. Golic, Eds.
Springer Berlin / Heidelberg, 1996, vol. 1029, pp. 201–214.

[15] J. Zhang, X. Wang, and W. Zhang, “Chaotic keyed hash func-
tion based on feedforward-feedback nonlinear digital filter,”
Physics Letters A, vol. 362, pp. 439–448, 2007.

[16] C. Guyeux, N. Friot, and J. Bahi, “Chaotic iterations versus
spread-spectrum: chaos and stego security,” in IIH-MSP’10, 6-
th Int. Conf. on Intelligent Information Hiding and Multimedia
Signal Processing, Darmstadt, Germany, Oct. 2010, pp. 208–
211.

[17] C. E. Shannon, “Communication theory of secrecy systems,”
Bell Systems Technical Journal, vol. 28, pp. 656–715, 1949.

