
Scheduling tasks sharing files

on heterogeneous master-slave platforms

Arnaud Giersch a,∗, Yves Robert b, Frédéric Vivien b

aICPS/LSIIT, UMR CNRS–ULP 7005
Parc d’Innovation, Bd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France

bLIP, UMR CNRS–ENS Lyon–INRIA–UCBL 5668
École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

Abstract

This paper is devoted to scheduling a large collection of independent tasks onto
heterogeneous clusters. The tasks depend upon (input) files which initially reside
on a master processor. A given file may well be shared by several tasks. The role
of the master is to distribute the files to the processors, so that they can execute
the tasks. The objective for the master is to select which file to send to which slave,
and in which order, so as to minimize the total execution time. The contribution of
this paper is twofold. On the theoretical side, we establish complexity results that
assess the difficulty of the problem. On the practical side, we design several new
heuristics, which are shown to perform as efficiently as the best heuristics in [1,2]
although their cost is an order of magnitude lower.

Key words: Scheduling, Heterogeneous clusters, Independent tasks, File-sharing,
Heuristics.

1 Introduction

In this paper, we are interested in scheduling independent tasks onto hetero-
geneous clusters. These independent tasks depend upon files (corresponding
to input data, for example), and difficulty arises from the fact that some files
may well be shared by several tasks.

∗ Corresponding author. Tel.: +33 3 90 24 45 42; fax: +33 3 90 24 45 47.
Email addresses: Arnaud.Giersch@icps.u-strasbg.fr (Arnaud Giersch),

Yves.Robert@ens-lyon.fr (Yves Robert), Frederic.Vivien@ens-lyon.fr
(Frédéric Vivien).

Preprint submitted to Journal of Systems Architecture November 2004

This paper is motivated by the work of Casanova, Legrand, Zagorodnov, and
Berman [1,2], who target the scheduling of tasks in APST, the AppLeS Pa-
rameter Sweep Template [3]. APST is a grid-based environment whose aim
is to facilitate the mapping of applications to heterogeneous platforms. Typ-
ically, an APST application consists of a large number of independent tasks,
with possible input data sharing (see [1,2] for a detailed description of a real-
world application). By large we mean that the number of tasks is usually at
least one order of magnitude larger than the number of available computing
resources. When deploying an APST application, the intuitive idea is to map
those tasks that depend upon the same files onto the same computational re-
source, so as to minimize communication requirements. Casanova et al. [1,2]
have considered three heuristics designed for completely independent tasks (no
input file sharing) that were proposed in [4]. They have modified these three
heuristics (originally called Min-min, Max-min, and Sufferage in [4]) to adapt
them to the additional constraint that input files are shared between tasks.
As was already pointed out, the number of tasks to schedule is expected to be
very large, and special attention should be devoted to keeping the cost of the
scheduling heuristics reasonably low.

In this paper, we deal with the same scheduling problem as Casanova et
al. [1,2]: we assume the existence of a master processor, which serves as the
repository for all files. The role of the master is to distribute the files to the
processors, so that they can execute the tasks. The objective for the master
is to select which file to send to which slave, and in which order, so as to
minimize the total execution time. This master-slave paradigm has a funda-
mental limitation: communications from the master may well become the true
bottleneck of the overall scheduling scheme. Allowing for inter-slave communi-
cations, and/or for distributed file repositories, should certainly be the subject
of future work. However, we believe that concentrating on the simpler master-
slave paradigm is a first but mandatory step towards a full understanding of
this challenging scheduling problem.

The contribution of this paper is twofold. On the theoretical side, we establish
two complexity results that assess the difficulty of the problem:

• The first result shows the NP-completeness of the scheduling problem with
a single slave,
• The second result shows the NP-completeness of the scheduling problem

with two slaves, in the special case where all tasks and files have same size.

On the practical side, we design several new heuristics, which are shown to
perform as efficiently as the best heuristics in [1,2] although their cost is an
order of magnitude lower.

The rest of the paper is organized as follows. The next section (Section 2) is de-

2

voted to the precise and formal specification of our scheduling problem, which
we denote as TasksSharingFiles. Next, in Section 3, we state complex-
ity results, which include the two NP-completeness results already mentioned.
Then, Section 4 deals with the design of low-cost polynomial-time heuristics to
solve the TasksSharingFiles problem. We report some experimental data
in Section 5. Finally, we state some concluding remarks in Section 6.

2 Framework

In this section, we formally state the optimization problem to be solved.

2.1 Tasks and files

The problem is to schedule a set of n tasks T = {T1, T2, . . . , Tn}. Theses
tasks have different sizes: the weight of task Tj is tj, 1 ≤ j ≤ n. There
are no dependence constraints between the tasks, so they can be viewed as
independent.

However, the execution of each task depends upon one or several files, and
a given file may be shared by several tasks. Altogether, there are m files in
the set F = {F1, F2, . . . , Fm}. The size of file Fi is fi, 1 ≤ i ≤ m. We use a
bipartite graph G = (V , E) to represent the relations between files and tasks.
The set of nodes in the graph G is V = F ∪ T , and each node is weighted
by fi or tj, depending upon its membership in F or T . There is an edge
ei,j : Fi → Tj in E if and only if task Tj depends on file Fi. Intuitively, files Fi

such that ei,j ∈ E correspond to some data that is needed for the execution
of Tj to begin. The processor that will have to execute task Tj will need to
receive all the files Fi such that ei,j ∈ E before it can start the execution of
Tj. See Figure 1 for a small example, with m = 9 files and n = 13 tasks. For
instance, task T1 depends upon files F1 and F2, and task T3 depends upon files
F2, F3, F4, and F7.

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

� �
� �
� �
� �

	 	
	 	
	 	

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

T1 T2 T3 T4 T6 T7 T8 T9 T10T5 T11 T12 T13

F1 F9F8F7F6F5F4F3F2

File

Task

Figure 1. Bipartite graph gathering relations between files and tasks.

To summarize, the bipartite application graph G = (V , E), where each node in

3

V = F∪T is weighted by fi or tj, and where edges in E represent the relations
between the files and the tasks, gathers all the information on the application.

2.2 Platform graph

The tasks are scheduled and executed on a master-slave heterogeneous plat-
form. We let P denote the platform graph, which is a fork-graph (see Figure 2)
with a master-processor P0 and p slaves Pi, 1 ≤ i ≤ p. Each slave Pq has
a (relative) cycle time wq: it takes tj · wq time-units to execute task Tj on
processor Pq. We point out that all the results and heuristics of this paper
can straightforwardly be extended to the more general case of inconsistent
execution times, with the terminology of [5]: in that situation, each slave Pq

has a different execution time wj,q for each task Tj, and these times are not
related; then, we would simply replace all terms tj · wq by wj,q.

...

Master

Slave

P1 P2 Pp

(wp)(w2)(w1)

c2

P0

c1 cp

Figure 2. Heterogeneous fork-graph.

The master processor P0 initially holds all the m files in F . The slaves are
responsible for executing the n tasks in T . Before it can execute a task Tj, a
slave must have received from the master all the files that Tj depends upon. For
communications, we use the one-port model: the master can only communicate
with a single slave at a given time-step. We let cq denote the inverse of the
bandwidth of the link between P0 and Pq, so that fi ·cq time-units are required
to send file Fi from the master to the slave Pq. We assume that communications
can overlap computations on the slaves: a slave can process one task while
receiving the files necessary for the execution of another task.

Coming back to the example of Figure 1, assume that we have a two-slave
schedule such that tasks T1 to T6 are executed by slave P1, and tasks T7 to T13

are executed by slave P2. Overall, P1 will receive six files (F1 to F4, F6, and
F7), and P2 will receive six files (F4 to F9). In this schedule, three files (F4,
F6, and F7) must be sent to both slaves.

To summarize, we assume a fully heterogeneous master-slave paradigm: slaves
have different speeds and links have different capacities. Communications from
the master are serial, and may well become the major bottleneck.

4

2.3 Objective function

The objective is to minimize the total execution time. The execution is termi-
nated when the last task has been completed. The schedule must decide which
tasks will be executed by each slave. It must also decide the ordering in which
the master sends the files to the slaves. We stress two important points:

• Some files may well be sent several times, so that several slaves can inde-
pendently process tasks that depend upon these files.
• A file sent to some processor remains available for the rest of the schedule.

If two tasks depending on the same file are scheduled on the same processor,
the file must only be sent once to that processor.

To decrease the total execution time, we may will try to limit the amount of
replicated files. By mapping on a same processor tasks depending on a same
file, the communication time will be reduced. But then there is the risk that all
tasks are mapped on a single processor. On the contrary, if we try to balance
the load between the processors, a lot of communications may be induced.
There is a trade-off to be found between these two extreme solutions.

We let TasksSharingFiles(G,P) denote the optimization problem to be
solved.

3 Complexity

Most scheduling problems are known to be difficult [6,7]. However, some par-
ticular instances of the TasksSharingFiles optimization problem have a
polynomial complexity, while the decision problems associated to other in-
stances are NP-complete. We outline several results in this section, which are
all gathered in Figure 3. In Figure 3, the pictographs read as follows: for each
of the six case studies, the leftmost diagram represents the application graph,
and the rightmost diagram represents the platform graph. We draw objects
of different sizes to symbolically represent their heterogeneity. The applica-
tion graph is made up of files and tasks which all have the same sizes in
situations (a), (b), and (c), while this is not the case in situations (d), (e),
and (f). Tasks depend upon a single (private) file in situations (a), (b), (d),
and (e), which is not the case in situations (c) and (f). As for the platform
graph, there is a single slave in situations (d) and (f), and several slaves oth-
erwise. The platform is homogeneous in cases (a) and (e), and heterogeneous
in cases (b) and (c). The six situations are discussed in the text below.

5

�
�
�� � �

� �
�� � �

� �
�� � �

� �
� �� �

...

(a) Polynomial
(round-robin)

� �� �� �
� �
� � � �� �� �

�
� ��

�

�
� � �� �� �

� �
� �

...

(b) Polynomial [8]

� �
� �

�
� � �� �

�
� ��

�
� � �� �

� �
� �

(c) NP-complete
(this paper)

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

(d) Polynomial [9]

� �
� �
� �

�
�

� �
� �
� �

�
�
�

�
�
�

�
�

�
�
�
�

(e) NP-complete
(2-Partition)

� �
� �
� �

�
�

� �
� �
� �

�
�
�

�
�
�

�
�

�
�
�
�

(f) NP-complete
(this paper)

Figure 3. Complexity results for the problem of scheduling tasks sharing files.

3.1 With a single slave

The instance of TasksSharingFiles with a single slave turns out to be more
difficult than we would think intuitively. In the very special case where each
task depends upon a single non-shared file, i.e., n = m and E reduces to
n edges ei,i : Fi → Ti, the problem can be solved in polynomial time (this is
situation (d) of Figure 3). Indeed, it is equivalent to the two-machine flow-shop
problem, and the algorithm of Johnson [9] can be used to compute the optimal
execution time. According to Johnson’s algorithm we first schedule the tasks
whose communication time (the time needed to send the file) is smaller than
(or equal to) the execution time in increasing order of the communication time.
Then we schedule the remaining tasks in decreasing order of their execution
time.

The general instance with a single slave, where files are shared between tasks,
corresponds to situation (f) of Figure 3. One major result of this paper is to
prove the NP-hardness of this instance. Interestingly, this shows that (unless
P=NP) there is no polynomial algorithm to extend Johnson’s algorithm for
general graphs.

The decision problem associated to the general instance of TasksSharing-
Files with a single slave can formally be stated as follows:

Definition 1 (TSF1-Dec(G,P , p = 1, K)). Given a bipartite application
graph G, a platform P with a single slave (p = 1) and a time bound K, is it
possible to schedule all tasks within K time-steps?

Theorem 1. TSF1-Dec(G,P , p = 1, K) is NP-complete.

Proof. Obviously, TSF1-Dec(G,P , p = 1, K) belongs to NP. To prove its

6

completeness, we use a reduction from MEWC, the Maximum Edge-Weighted
Clique problem, which is NP-complete [10]. Consider an arbitrary instance I1
of MEWC: given a complete edge-weighted graph Gc = (Vc, Ec, w), where
w : Ec → N is the weight function, a size bound B, where 3 ≤ B ≤ |Vc|, and a
weight bound W > 0, is there a subset S of B vertices such that

∑
e∈ES

w(e) ≥
W? Here, ES denotes the set of the B · (B−1)/2 edges connecting the vertices
of S. In other words, can we find B vertices inducing a sub-graph of weight at
least W? We point out that the original formulation of MEWC in [10] asks
for a subset of at most B vertices rather than of exactly B vertices, as we do
here. However, it is straightforward to see that our formulation remains NP-
complete (any polynomial algorithm solving our formulation could be invoked
at most |V | times to solve the original formulation).

We construct the following instance I2 of TSF1-Dec(G,P , p = 1, K). We let
F = Vc ∪ {X} and T = Ec ∪ {Tx} (see Figure 4), which defines V = F ∪ T .
There are m = |Vc|+ 1 files, and n = |Ec|+ 1 = (m− 1) · (m− 2)/2 + 1 tasks
(the original graph Gc is complete, hence |Ec| = |Vc| · (|Vc| − 1)/2).

The size of file X is 1, and the size of each file corresponding to a node in Vc

is f = W · (2B − 1). The weight of task Tx is x = W · (B2 + 2B − 2). Note
that x ≥ 0 because B ≥ 3. The weight of the task corresponding to an edge
e ∈ Ec is 2W + w(e).

� �� �� �
� �
� �
� �

�
�
�
�

� �
� �
� �
� �

�
�
	
	

{
}

X

Files in Vc

Tasks in Ec
Tx

Figure 4. The bipartite application graph used in the proof of Theorem 1, with
|Vc| = 4.

The relations between tasks and files are defined as follows. First, there is an
edge from file X to each task in T . Second, there is an edge from a node (file)
v ∈ Vc ⊂ F to a node (task) e ∈ Ec ⊂ T if and only if v was one of the two
end-points of edge e in Gc. As a consequence, each edge-task (in T \ {Tx})
exactly depends upon three files (X, and both end-points of the edge). The
computing platform is quite simple: a single slave, with unit communication
and computation time: c1 = w1 = 1. Finally, we define the scheduling bound:

K = 1 + x +
∑
e∈Ec

w(e) + 2W · |Ec|

Clearly, the instance I2 can be constructed in time polynomial in the size of

7

I1. Now we have to show that I2 admits a solution if and only if I1 has one.

Assume first that I1 has a solution, i.e., that Gc possesses B vertices inducing
a sub-graph whose edge-weight is at least W . Let C = {v1, v2, . . . , vB} denote
these B vertices. The intuitive idea to construct the schedule is as follows: after
sending file X, the master sends the B files corresponding to the B nodes in
C. Because these files induce a large amount of work, the slave processor will
have enough work to process while receiving the other files. The idea is to keep
the slave processor active all the time as soon as it has received file X. The
bound K is defined accordingly: the first time-unit is spent receiving X, and
the rest amounts to the sum of all task weights.

The schedule is defined as follows:

(1) At time-step t = 0, file X is sent to the slave.
(2) The master sends the files (corresponding to the nodes) of Vc as soon as

possible, i.e., at time t = 1+(j−1) ·f for the j-th file, 1 ≤ j ≤ |Vc| (recall
that f is the size of each file in Vc). The first B files sent are chosen to
be those in C, in any order. The remaining |Vc| −B files are then sent in
any order.

(3) The slave has an execution queue, which it processes greedily, and in
FIFO order. At time-step t = 1, Tx is available in the queue, and the
slave starts its execution. Upon reception of the first file of Vc, no new
task is ready. But upon reception of the j-th file of Vc, with j ≥ 2, there
are j − 1 new tasks ready for execution: they correspond to all the edges
in Gc whose first end-point is the j-th file, and whose other end-point
is one of the j − 1 files of Vc previously received. These j − 1 tasks are
inserted at the end of the execution queue, in any order.

We have derived a schedule for instance I2, but does it match the execution
bound K? As already mentioned, this is only possible if the slave is never
idle after receiving file X. Let RC(j) denotes the receive capacity of the slave
upon reception of the j-th file from Vc: RC(j) denotes the amount of work
that remains to be executed for the current task and those ready in the queue.
It corresponds to the time the processor can spend, waiting for a new file,
without becoming inactive. Similarly, RC(0) denotes the receive capacity of
the slave upon reception of file X i.e., the time to execute task Tx. Obviously,
we would like RC(j) ≥ f for all j ≥ 0: this would allow the slave to receive a
new file without becoming idle.

Initially, owing to task Tx, we have RC(0) = x. Let Ej denote the set of the
tasks from Ec that only depend on the first j files from Vc sent to the slave.

8

We have RC(1) = x− f (the first file does not grant any work), and

RC(j) = x +
∑
e∈Ej

w(e) + 2W · |Ej| − f · j

for all j ≥ 2. Indeed, this quantity is the sum of the execution times of the
tasks in Ej ∪ {Tx}, minus the time spent to send the first j files. We want to
show that RC(j) ≥ f for all j, 0 ≤ j ≤ |Vc|. We have RC(0) − f = x − f ≥
x − 2f = RC(1) − f . Furthermore, x − 2f = W · (B2 − 2B) ≥ 0, since
B ≥ 3. So RC(0) ≥ f and RC(1) ≥ f . For j ≥ 2, |Ej| = j · (j − 1)/2, and
RC(j)−f =

∑
e∈Ej

w(e)−W +h(j), where h(j) = W · (j−B)2. The minimum
of h(j) is zero, and is obtained for j = B. But due to the choice of the first
B files sent to the slave,

∑
e∈EB

w(e) ≥ W , hence RC(B)− f ≥ 0. For j 6= B,
h(j) ≥ h(B− 1) = h(B +1) = W and RC(j)− f ≥ h(j)−W ≥ 0. Altogether,
this concludes the proof that the total execution of the schedule is equal to
K, hence a solution to I2.

Assume now that I2 has a solution. We have a schedule with executes within
K = 1 + x +

∑
e∈Ec

w(e) + 2W · |Ec| time-units. But K is equal to one plus
the sum of the task weights. Because the slave processor is idle until file X
has been sent, necessarily the first file sent is X, and this emission lasts one
time-unit. After the first time-step, the slave processor must be kept busy all
the time. Letting Ej be the set of the tasks from Ec that only depend of the
first j files of Vc sent to the slave, we must have as previously, RC(j) ≥ f for all
1 ≤ j ≤ |Vc|. For j ≥ 2, we know that RC(j) ≤ x+

∑
e∈Ej

w(e)+2W ·|Ej|−f ·j.
We had an equality before, but maybe the schedule did not send the files as
soon as possible, hence the inequality here. Taking j = B we derive just as
before that RC(B) − f ≤ ∑

e∈EB
w(e) − W . Because the slave is never idle

after receiving the B-th file, we have RC(B) − f ≥ 0, and we derive that∑
e∈EB

w(e) ≥ W . The first B files sent to the slave provide a solution to
I1.

3.2 With two slaves

With several slaves, some problem instances have polynomial complexity. First
of all, a greedy round-robin algorithm is optimal in situation (a) of Figure 3:
each task depends upon a single non-shared file, all tasks and files have the
same size, and the fork platform is homogeneous. If we keep the same hypothe-
ses for the application graph but move to heterogeneous slaves (situation (b)
of Figure 3), the problem remains polynomial, but the optimal algorithm be-
comes complicated: see [8] for a description and proof.

The decision problem associated to the general instance of TasksSharing-
Files with two slaves, writes as follows:

9

Definition 2 (TSF2-Dec(G,P , p = 2, K)). Given a bipartite application
graph G, a heterogeneous platform P with two slaves (p = 2), and a time
bound K, is it possible to schedule all tasks within K time-steps?

Clearly, TSF2-Dec is NP-complete, even if there are no files at all: in that
case, TSF2-Dec reduces to the scheduling of independent tasks on a two-
processor machine, which itself reduces to the 2-Partition problem [11] as
the tasks have different sizes. This corresponds to situation (e) in Figure 3,
where we do not even need the private files. However, this NP-completeness
result does not hold in the strong sense: in a word, the size of the tasks
plays a key role in the proof, and there are pseudo-polynomial algorithms to
solve TSF2-Dec in the simple case when there are no files (see the pseudo-
polynomial algorithm for 2-Partition in [11]).

The following theorem states an interesting result: in the case where all files
and tasks have unit size (i.e., fi = tj = 1), the TSF2-Dec remains NP-
complete. Note that in that case, the heterogeneity only comes from the com-
puting platform. This corresponds to situation (c) in Figure 3.

Definition 3 (TSF2-Equal-Dec(G,P , p = 2, fi = tj = 1, K)). Given a
bipartite application graph G such that fi = tj = 1 for all tasks and files, a
heterogeneous platform P with two slaves (p = 2), and a time bound K, is it
possible to schedule all tasks within K time-steps?

Theorem 2. TSF2-Equal-Dec(G,P , p = 2, fi = tj = 1, K) is NP-complete.

Proof. Obviously, TSF2-Equal-Dec(G,P , p = 2, fi = tj = 1, K) belongs
to NP. To prove its completeness, we use a reduction from Clique, which is
NP-complete [11]. Consider an arbitrary instance I1 of Clique: given a graph
Gc = (Vc, Ec), and a bound B, is there a clique in Gc (i.e., a fully connected
sub-graph) of size B? Without loss of generality, we assume that |Vc| ≥ 9 and
6 ≤ B · (B − 1) < |Ec|.

We construct the following instance I2 of TSF2-Equal-Dec(G,P , p = 2,
fi = tj = 1, K). We let F = Vc ∪X and T = Ec ∪ {Ty} (see Figure 5), which
defines V = F ∪T . Here, X is a collection of x = |X| additional files, so there
is a total of |Vc| + x files, one per node in the original graph Gc and one per
new file in X. As for tasks, there are as many tasks as edges in the original
graph Gc, plus an additional task Ty.

The relations between tasks and files are defined as follows. First, there is an
edge from each file in F to task Ty; as a consequence, the slave processor that
will execute Ty will need to have received all the files in F from the master
before it can begin the execution of Ty. Second, there is an edge from a node
(file) v ∈ Vc ⊂ F to a node (task) e ∈ Ec ⊂ T if and only if v was one of the

10

� �
� �
� �
� �

�
�
�
�

� �
� �

�
�

� �
� �
� �
� �

� �
� �
	 	
	 	

�
�

�
�

� �
� �
� �
� �

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1 62 3 4 5 7 8 9
...

f1 fx

79 8969786858374634Ty 12 23 6724

Figure 5. The bipartite application graph used in the proof of Theorem 2.

2 4 9

71

6

8 5

3

Figure 6. The original graph Gc used to build the bipartite graph of Figure 5.

two end-points of edge e in Gc. In the rightmost part of Figure 5, the bipartite
graph has been obtained from the original graph Gc shown in Figure 6. The
files are the nodes in Gc, and the tasks are the edges in Gc. This explains why
each task (edge) exactly depends upon two files (the end-points of the edge).
We see that Gc has a clique of size B = 4 (nodes 6 to 9).

As specified in the problem, all files and tasks have unit size. To complete the
description of the application, we let s = B · (B−1)/2, r = |Ec|−s (note that
s < r by hypothesis), and we define x = (3r−1) · |Vc|−2B +2. We check that
x ≥ 1: indeed, r ≥ 4 and |Vc| ≥ B; we derive x ≥ 9B + 2.

There remains to describe the computing platform. The characteristics of the
two slave processors are: w1 = 3 · |Vc|, w2 = (3 · (r +1) · |Vc|−4)/s, c1 = 1, and
c2 = 2. Note that w2 > w1, because w2−w1 = 3·(r/s−1)·|Vc|+(3·|Vc|−4)/s >
0. Thus, w2 > 2. Finally, we define the scheduling bound:

K = 2 + 3 · (r + 1) · |Vc| = 6 + s · w2.

Clearly, the instance I2 can be constructed in time polynomial in the size of
I1. Now we have to show that I2 admits a solution if and only if I1 has one.

Assume first that I1 has a solution, i.e., that Gc possesses a clique of size B. Let
C = {v1, v2, . . . , vB} denote the B vertices in the clique of Gc. The intuitive
idea is the following: after sending to slave P2 the B files corresponding to
the B nodes in C, P2 will be able to process the s tasks that correspond to
the edges connecting the nodes of C without receiving any extra file from the
master. The schedule is defined as follows:

• First, at time-steps t = 0 and t = 1, two files are sent by the master to P1.

11

These two files are chosen so that they correspond to any two nodes va and
vb of Vc that are connected in Gc (i.e., the edge (va, vb) belongs to Ec) and
that do not both belong to the clique C. Note that such an edge exists, as
the number of edges with their two end-points in C if B · (B − 1)/2 < |Ec|
(by hypothesis). At time-step t = 2, P1 is able to start the execution of
the task that corresponds to the edge (va, vb). P1 terminates this task at
time-step 2 + w1 = 2 + 3 · |Vc|.
• Next, the B files that correspond to the clique C are sent to P2. As soon

as it has received two files, P2 can start executing one task (the two files
correspond to two connected nodes, therefore the task that represents the
edge between them is ready for execution). P2 has received the B files at
time-step 2c1 +B · c2 = 2+2B, i.e., before it completes the execution of the
first task, at time-step 2c1+2c2+w2 = 6+w2 > 6+w1 = 6+3·|Vc| ≥ 6+3B,
because B ≤ |Vc|. Therefore, P2 can process the s tasks corresponding to
edges in the clique C without interruption (i.e., without waiting to receive
more files), until time-step 2c1 + 2c2 + s · w2 = 6 + s · w2 = K.
• Finally, after sending the B files to P2, all files but two are sent to P1: we

do not re-send the first two files, but we send all the others, i.e., |Vc|− 2+x
files. We send the |Vc|−2 files corresponding to nodes in Vc before the x files
corresponding to nodes in X. When P1 terminates its first task, at time-
step 2 + 3 · |Vc|, it has already received the first |Vc| − 2 files (the last one is
received at time-step 2c1 +B · c2 +(|Vc|−2) · c1 = |Vc|+2B). P1 can process
the r tasks corresponding to edges in Gc that do not belong to the clique C
without interruption, until time-step 2c1+r·w1 = K−w1. At that time-step,
P1 has just received the x last files, because (|Vc|+x) · c1 +B · c2 = K−w1.
P1 processes then the last task Ty, and the scheduling terminates within K
times-steps.

We have derived a valid solution to our scheduling instance I2.

Assume now that I2 has a solution. We proceed in several steps:

(1) Necessarily, P1 executes task Ty. Otherwise, P2 would execute it, but
Ty requires |Vc| + x files, and the time needed by P2 would be at least
(|Vc| + x) · c2 + w2 = 2 · (K − w1 − 2B) + w2 > 2 · (K − 5 · |Vc|) > K
(because K ≥ 15 · |Vc|), a contradiction.

(2) P1 cannot execute more than (K−2c1)/w1 = r+1 tasks, because it must
have received two files before it can start to process its first task.

(3) All files sent by the master after time-step K − w1 are useless, because
the tasks that they might free for execution will not be terminated at
time-step K, neither by P1 nor by P2 (remember that w2 > w1). Because
P1 executes Ty, it receives |Vc|+x files. But K−w1 = (|Vc|+x) ·c1+B ·c2,
so that P2 cannot receive more than B tasks from the master.

(4) P2 cannot execute more than s tasks, because (K − 2c2)/w2 = (K −
6)/w2 + 2/w2 = s + 2/w2 < s + 1.

12

Overall, a total of r + s + 1 tasks are executed. Since P1 cannot execute more
than r + 1 tasks, and P2 more than s tasks, they do execute r + 1 and s tasks
respectively. But P2 executes s tasks and receives no more than B files: these
files define a clique of size B in Gc, thereby providing a solution to I1.

Finally, we have shown that the decision problem associated with TasksShar-
ingFiles is NP-complete, even in the simple cases where:

(1) there is a single slave, but tasks and files have heterogeneous sizes;
(2) tasks and files have unitary size, but the platform is composed of two

heterogeneous processors connected with links of different bandwidths.

At the time of this writing, we do not know the complexity of the problem
instance where the platform is homogeneous and tasks and files have unitary
size. We do not even know the complexity when there is a single slave (and
homogeneous tasks and sizes).

In the general version of the problem, everything is heterogeneous: the sizes of
the tasks and of the files are different, the slave processors have different speeds
and are connected to the master with links of different bandwidths. Therefore,
in the following, we design polynomial heuristics to solve the TasksSharing-
Files problem, and we assess their performance trough extensive simulations.

4 Heuristics

In this section, we first recall the three heuristics used by Casanova et al. [1,2].
Next we introduce several new heuristics, whose main characteristic is a lower
computational complexity.

4.1 Reference heuristics

Because our work was originally motivated by the paper of Casanova et al. [1,2],
we have to compare our new heuristics to those presented by these authors,
which we call reference heuristics. We start with a description of these refer-
ence heuristics.

4.1.1 Structure of the heuristics.

All the reference heuristics are built on the model presented by Algorithm 1:
while there remain tasks to be scheduled, an objective function is evaluated

13

Algorithm 1. Structure of reference heuristics.
S ← T � S is the set of the tasks that remain to be scheduled1

while S 6= ∅ do2

foreach processor Pi do3

foreach task Tj ∈ S do4

Evaluate Objective(Tj , Pi)5

end6

end7

Pick the “best” couple of a task Tj ∈ S and a processor Pi according to8

Objective(Tj , Pi)
Schedule Tj on Pi as soon as possible9

Remove Tj from S10

end11

for all pairs of a task (which remains to be scheduled) and a processor. The
task that will actually be scheduled, as well as the target processor, are chosen
according to the values of this objective function.

4.1.2 Objective function.

For all the heuristics, the objective function is the same. Objective(Tj, Pi) is
indeed the minimum completion time (MCT) of task Tj if mapped on processor
Pi. Of course, the computation of this completion time takes into account:

(1) the files required by Tj that are already available on Pi (we assume that
any file that once was sent to processor Pi is still available and do not
need to be resent);

(2) the time needed by the master to send the other files to Pi, knowing what
communications are already scheduled;

(3) the tasks already scheduled on Pi.

4.1.3 Chosen task.

The heuristics only differ by the definition of the “best” couple (Tj, Pi). More
precisely, they only differ by the definition of the“best”task. Indeed, the“best”
task Tj is always mapped on its most favorable processor (denoted P (Tj)), i.e.,
on the processor which minimizes the objective function:

Objective(Tj, P (Tj)) = min
1≤q≤p

Objective(Tj, Pq)

Here is the criterion used for each reference heuristic:

Min-min: the “best” task Tj is the one minimizing the objective function
when mapped on its most favorable processor; shortest tasks are scheduled

14

first to avoid gaps at the beginning of the schedule:

Objective(Tj, P (Tj)) = min
Tk∈S

min
1≤l≤p

Objective(Tk, Pl)

Max-min: the “best” task is the one whose objective function, on its most
favorable processor, is the largest; the idea is that a long task scheduled at
the end would delay the end of the whole execution:

Objective(Tj, P (Tj)) = max
Tk∈S

min
1≤l≤p

Objective(Tk, Pl)

Sufferage: the “best” task is the one which will be the most penalized if not
mapped on its most favorable processor but on its second most favorable
processor, i.e., the “best” task is the one maximizing:

min
Pq 6=P (Tj)

Objective(Tj, Pq)−Objective(Tj, P (Tj))

with
Objective(Tj, P (Tj)) = min

1≤l≤p
Objective(Tj, Pl)

Sufferage II and Sufferage X: these are refined version of the Sufferage
heuristic. The penalty of a task is no more computed using the second
most favorable processor but by considering the first processor inducing a
significant increase in the completion time. See [1,2] for details.

4.1.4 Computational complexity.

The loop on Step 3 of the reference heuristics computes the objective func-
tion for any pair of processor and task. For each processor, this computation
has a worst case complexity of O(|S| + |E|), where E is the set of the edges
representing the relations between files and tasks (see Section 2.1). Hence, the
overall complexity of the heuristics is: O(p · n · (n + |E|)). The complexity is
even worse for Sufferage II and Sufferage X, as the processors must be sorted
for each task, leading to a complexity of O(p · n · (n · log p + |E|)).

4.2 Structure of the new heuristics

When designing new heuristics, we took special care to decreasing the com-
putational complexity. The reference heuristics are very expensive for large
problems. We aimed at designing heuristics which are an order of magnitude
faster, while trying to preserve the quality of the schedules produced.

In order to avoid the loop on all the pairs of processors and tasks of Step 3 of
the reference heuristics, we need to be able to pick (more or less) in constant

15

Algorithm 2. Structure of the new heuristics.
foreach processor Pi do1

foreach task Tj ∈ T do2

Evaluate Objective(Tj , Pi)3

end4

Build the list L(Pi) of the tasks sorted according to the value of5

Objective(Tj , Pi)
end6

while there remain tasks to schedule do7

foreach processor Pi do8

Let Tj be the first unscheduled task in L(Pi)9

Evaluate CompletionTime(Tj , Pi)10

end11

Pick the couple of a task Tj and a processor Pi minimizing12

CompletionTime(Tj , Pi)
Schedule Tj on Pi as soon as possible13

Mark Tj as scheduled14

end15

time the next task to be scheduled. Thus we decided to sort the tasks a priori
according to an objective function. However, since our platform is heteroge-
neous, the task characteristics may vary from one processor to the other. For
example, Johnson’s [9] criterion which splits the tasks into two sets (commu-
nication time smaller than, or greater than, computation time) depends on
the processors characteristics. Therefore, we compute one sorted list of tasks
for each processor. Note that this sorted list is computed a priori and is not
modified during the execution of the heuristic.

Once the sorted lists are computed, we still have to map the tasks to the pro-
cessors and to schedule them. The tasks are scheduled one-at-a-time. When we
want to schedule a new task, on each processor Pi we evaluate the completion
time of the first task (according to the sorted list) which has not yet been
scheduled. Then we pick the pair task/processor with the lowest completion
time. This way, we obtain the structure of heuristics presented by Algorithm 2.

We still have to define the objective functions used to sort the tasks. This is
the object of the next section.

4.3 The objective functions

The intuition behind the following six objective functions is quite obvious:

Duration: we just consider the overall execution time of the task as if it was

16

the only task to be scheduled on the platform:

Objective(Tj, Pi) = tj · wi +
∑

ek,j∈E
fk · ci.

The tasks are sorted by increasing objectives, which mimics the Min-min
heuristic.

Payoff: when mapping a task, the time spent by the master to send the
required files is payed by all the (waiting) processors as the master can
only send files to a single slave at a time, but the whole system gains the
completion of the task. Hence, the following objective function encodes the
payoff of scheduling the task Tj on the processor Pi:

Objective(Tj, Pi) =
tj∑

ek,j∈E fk

.

The tasks are sorted by decreasing payoffs. Note that the actual objective
function to compute the payoff of scheduling task Tj on processor Pi would
be: Objective(Tj, Pi) = tj · wi/(

∑
ek,j∈E fk · ci); as the factors wi and ci

do not change the relative order of the tasks on a given processor, we just
dropped these factors. Furthermore, the order of the tasks does not depend
on the processor, so only one sorted list is required with this objective
function.

Advance: to keep a processor busy, we need to send it all the files required
by the next task that it will process, before it ends the execution of the
current task. Hence the execution of the current task must be larger than
the time required to send the files. We tried to encode this requirement by
considering the difference of the computation- and communication-time of
a task, i.e., the advance earned due to the execution of this task. Hence the
objective function:

Objective(Tj, Pi) = tj · wi −
∑

ek,j∈E
fk · ci.

The tasks are sorted by decreasing objectives.
Johnson: we sort the tasks on each processor as Johnson does for a two-

machine flow shop (see Section 3.1).
Communication: as the communications may be a bottleneck we consider

the overall time needed to send the files a task depends upon as if it was
the only task to be scheduled on the platform:

Objective(Tj, Pi) =
∑

ek,j∈E
fk.

The tasks are sorted by increasing objectives, like for Duration. As for
Payoff, the sorted list is processor independent, and only one sorted list
is required with this objective function. This simple objective function is

17

inspired by the work in [8] on the scheduling of homogeneous tasks on an
heterogeneous platform.

Computation: symmetrically, we consider the execution time of a task as if
it was not depending on any file:

Objective(Tj, Pi) = tj.

The tasks are sorted by increasing objectives. Once again, the sorted list is
processor independent.

4.4 Additional policies

In the definition of the previous objective functions, we did not take into
account the fact that the files are potentially shared between the tasks. Some
of them will probably be already available on the processor where the task
is to be scheduled, at the time-step we would try to schedule it. Therefore,
on top of the previous objective functions, we add the following additional
policies. The goal is (to try) to take file sharing into account.

Shared: when a file is sent to a processor, it is beneficial to all tasks depending
upon it. We try to express this idea by using, in the objective functions,
weighted sizes for the files. The weighted size of a file is obtained by dividing
its size by the number of tasks that are dependent upon the file. For example,
the objective function for Duration+shared is

tj · wi +
∑

ek,j∈E

fk

|{Tl | ek,l ∈ E}|
· ci.

Readiness: for a given processor Pi, and at a given time, the “ready” tasks
are the ones whose files are already all on Pi. Under the Readiness policy, if
there is any ready task on processor Pi at Step 9 of the heuristics, we pick
one ready task instead of the first unscheduled task in the sorted list L(Pi).

Locality: in order to try to decrease the amount of file replication, we (try
to) avoid mapping a task Tj on a processor Pi if some of the files that Tj

depends upon are already present on another processor. To implement this
policy, we modify Step 9 of the heuristics. Indeed, we no longer consider
the first unscheduled task in L(Pi), but the next unscheduled task which
does not depend on files present on another processor. If we have scanned
the whole list, and if there remains some unscheduled tasks, we restart
from the beginning of the list with the original task selection scheme (first
unscheduled task in L(Pi)).

Finally, we obtain as many as 44 variants, since any combination of the three
additional policies may be used for the six base objective functions, except for

18

Shared which does not impact Computation.

4.5 Computational complexity

Overall, there are |E| dependence relations between tasks and files. Thus, com-
puting the value of an objective function for all tasks on all processors has a
cost of O(p · (n + |E|)), except for heuristic Computation for which the cost
is O(p · n), as the relations between tasks and files are not considered. So the
construction of all the sorted lists has a cost of O(p · n · log n + p · |E|) for
heuristics Duration, Advance, and Johnson (p lists), of O(n · log n + |E|) for
heuristics Payoff and Communication (a single list), and of O(n · log n) for
heuristic Computation (a single list). If we denote by ∆T , one plus the max-
imum number of files that a task depends upon, the execution of the loop at
Step 7 of the heuristics (see Algorithm 2) has an overall cost of O(p · n ·∆T).
Note that n ·∆T ≥ |E|. Hence the overall execution time of the heuristics is:

O(p · n · (log n + ∆T))

for heuristics using several lists (Duration, Advance, and Johnson), and

O(n · log n + p · n ·∆T)

for the others (Payoff, Communication, and Computation). We have replaced
the term n + |E| in the complexity of the reference heuristics by the term
log n + ∆T . The experimental results will assert the gain in complexity.

Note that all the additional policies can be implemented without increasing
the complexity of the base cases. It is obvious for Shared. Readiness can be
implemented without overhead if we maintain, for all tasks on all processors,
a counter of the number of files that are missing for the task on the processor.
Each time a file is sent, this counter is updated. When a counter comes to
zero, the corresponding task is moved into the set of tasks that are ready for
the processor. For Locality, one just have to remember, for each task, where
the files it depends upon have already been sent: on a single processor (we
keep its number), or already spread over several processors. When a file is
sent to some slave, this flag is updated for all tasks depending upon the file.
In each case, for all tasks on a given processor, there are at most |E| updates.
The additional cost of the Readiness and Shared policies is thus of O(p · |E|),
which is completely absorbed by the overall complexity of the heuristics.

19

5 Experimental results

In order to compare our heuristics and the reference heuristics, we have sim-
ulated their executions on randomly built platforms and graphs. We have
conducted a very large number of experiments, which we summarize in this
section.

5.1 Experimental platforms

Processors: we have recorded the cycle time of the different computers used
in our laboratories (in Lyon and Strasbourg). From this set of values, we
randomly pick values whose difference with the mean value was less than
the standard deviation. This way we define a realistic and heterogeneous set
of 20 processors.

Communication links: the 20 communication links between the master and
the slave are built along the same principles as the set of processors.

Communication to computation cost ratio: The absolute values of the
communication link bandwidths or of the processors speeds have no meaning
(in real life they are application dependent and must be pondered by appli-
cation characteristics). We are only interested by the relative values of the
processors speeds, and of the communication links bandwidths. Therefore,
we normalize processor and communication average characteristics. Also,
we arbitrarily impose the communication-to-computation cost ratio, so as
to model three main types of problems: computation intensive (ratio=0.1),
communication intensive (ratio=10), and intermediate (ratio=1).

5.2 Application graphs

We run the heuristics on the following four types of application graphs. In
each case, the sizes of the files and tasks are randomly and uniformly taken
between 0.5 and 5.

The graphs are schematically represented on Figure 7.

Forks: each graph contains 100 fork graphs, where each fork graph is made
up of 20 tasks depending on a single and same file (fig. 7(a)).

Two-one: each task depends on exactly two files: one file which is shared
with some other tasks, and one unshared file (fig. 7(b)).

Partitioned: the graph is divided into 20 chunks of 100 tasks, and in each
chunk each task randomly depends on 1 up to 10 files. The whole graph
contains at least 20 different connected components (fig. 7(c)).

Random: each task randomly depends on 1 up to 50 files (fig. 7(d)).

20

(a) Forks (b) Two-one

(c) Partitioned (d) Random

Figure 7. The four type of application graphs used in the simulations.

Our objective is to use graphs representative of a large application class. The
fork graphs represent embarrassingly parallel applications. The two-one graphs
come from the original papers by Casanova et al [2,1]. The partitioned graphs
deal with applications encompassing some regularity. The random graphs are
for totally irregular applications. Each of our graphs contains 2,000 tasks and
2,500 files, except for the fork graphs which also contain 2,000 tasks but only
100 files.

In order to avoid any interference between the graph characteristics and the
communication-to-computation cost ratio, we normalize the sets of tasks and
files so that the sum of the file sizes equals the sum of the task sizes times the
communication-to-computation cost ratio.

5.3 Results

Table 1 summarizes all the experiments. In this table, we report the perfor-
mance of the best ten heuristics, together with their cost (i.e., their CPU time).
This is a summary of 12,000 random tests (1,000 tests over all four graph types
and three communication-to-computation cost ratios). Each test involves 49
heuristics (5 reference heuristics and 44 combinations for our new heuristics).
For each test, we compute the ratio of the performance of all heuristics over
the best heuristic, which gives us a relative performance. The best heuristic
differs from test to test, which explains why no heuristic in Table 1 can achieve
an average relative performance exactly equal to 1. In other words, the best
heuristic is not always the best of each test, but it is closest to the best of each
test on average. The optimal relative performance of 1 would be achieved by
picking, for any of the 12,000 tests, the best heuristic for this particular case.
(For each test, the relative cost is computed along the same guidelines, using
the fastest heuristic.) Note that we report extensive simulation results in [12].

We see that Sufferage gives the best results: on average, it is within 11% of
the relative optimal of 1. The next nine heuristics closely follow: they are
within 13% to 14.7% of the relative optimal. Out of these nine heuristics,

21

only Min-min is a reference heuristic. Max-min is almost the worst heuris-
tic. This can be explained as follows: in the beginning, this heuristic advan-
tages tasks that have no files on any slave, generating lots of communications,
and thereby delaying the execution of the following tasks. Despite the addi-
tional time spent to compute the schedule, Sufferage II and Sufferage X do
not achieve as good performance as Sufferage. The variants of Sufferage base
their scheduling choices on a prediction of what would happen if these choices
were not selected. This prediction does not take into account the possible file
transfers due to the scheduling of other tasks. Thus it is not surprising that
Sufferage II and Sufferage X, which try to make predictions in a longer term,
make bigger mistakes, and finally achieve worst results.

Concerning our new heuristics, we can see that the performance of those ap-
pearing in Table 1 closely follows the performance of Min-min. Furthermore,
the standard deviations are lower for our heuristics, which reflects a greater
stability of the results.

On the average, Duration, Computation, and Payoff (along with Readiness)
achieve the best performances. Communication lags well behind. However, the
results for Computation and Communication must be nuanced. The perfor-
mance of Computation degrades as the communication-to-computation cost
ratio increases, while it is the inverse for Communication. This is not surpris-
ing, when looking at the definition of these heuristics. Computation only uses
the computation time of the tasks, hence is more adapted to problems that
are computation intensive. A similar explanation holds for Communication.

Table 1
Relative performance and cost of the best ten heuristics.

Heuristic Relative Standard Relative Standard

performance deviation cost deviation

Sufferage 1.110 0.1641 376.7 153.4

Min-min 1.130 0.1981 419.2 191.7

Computation+readiness 1.133 0.1097 1.569 0.4249

Duration+locality+readiness 1.133 0.1295 1.499 0.4543

Duration+readiness 1.133 0.1299 1.446 0.3672

Payoff+shared+readiness 1.138 0.1260 1.496 0.6052

Payoff+readiness 1.139 0.1266 1.246 0.2494

Payoff+shared+locality+readiness 1.145 0.1265 1.567 0.5765

Payoff+locality+readiness 1.145 0.1270 1.318 0.2329

Computation+locality+readiness 1.147 0.1234 1.618 0.4749

22

Duration, which combines both approaches, is more stable across the different
communication-to computation cost ratios.

Advance, Payoff, and Johnson are all based on the same observation: one
should try to maximize the overlap of the communications by the compu-
tations. They however achieve performances that are very different. In any
case, Advance and its variants perform badly in comparison with the other
heuristics. Among those three heuristics, Payoff is the one with the best per-
formance. It seems that Advance tends to favor tasks with large communica-
tion times. This observation is verified by the fact that it is improved by the
Shared policy, which reduces the importance of communication times. On the
contrary, Payoff may also favor a task with a large communication time, but
only if the advance brought by its computation is really important (much more
than what is required by Advance to schedule this task). Regarding Johnson,
it achieves intermediate performance between Payoff and Advance. Its best
variant (Readiness) achieves an average relative performance of 1.172. John-
son’s algorithm [9], which is optimal without file sharing, does not adapt well
to the general case, where tasks may share files.

A close observation of the results shows us that the differences between the
heuristics are more significant when the communication-to-computation cost
ratio is low. In the opposite case, it is likely that the communications from the
master become the true bottleneck of all scheduling strategies.

As for the additional policies, Readiness brings a real gain. In comparison
with the base heuristics, this policy enhances the performances by more than
8% on average, except for Communication for which the gain is negligible.
Readiness, whose objective is to reduce the number of replicated files, reveals
itself as specially effective. We can observe that, with Communication, tasks
roughly depending on a same set of files tend to be put together in the task
lists. So, when such a task is scheduled on some slave, it induces the transfer of
the concerned files, and the other tasks which follow wind up at the beginning
of the list. Readiness has thus little influence. This phenomenon is perfectly
illustrated for the graphs of type Forks. For those graphs of type Forks, the dif-
ference between Communication and Computation is the most evident. Both
heuristics perform badly in their basic versions, but Computation+readiness
outperforms by 20% all the other heuristics, including the reference heuristics.
It is because of these results for the Fork graphs that Computation+readiness
ended up in Table 1, whereas Communication+readiness did not.

Locality does practically not change the performances of the heuristics. It
seems that this policy, whose goal was to improve the locality with respect to
the use of the files, is not aggressive enough. Shared, our last variant, does only
affect significantly Advance, Duration, and Johnson: the former is improved
(but does not become of good quality), while the last ones are degraded. With

23

Duration and Johnson, it is likely that Shared advantages tasks with large
communication times, instead of those depending on highly shared files, as we
wanted to. Another approach to better take file sharing into account, would
be to reevaluate the ordering of the tasks on the processors, as files are being
transferred.

In Table 1, we also report the computational costs of the heuristics (CPU
time needed by each heuristic). The theoretical analysis is confirmed: our new
heuristics are at least an order of magnitude faster than the reference heuris-
tics.

As a conclusion, given their good performance compared to Sufferage, we
believe that the eight new variants listed in Table 1 provide a very good
alternative to the costly reference heuristics. The Readiness policy brings a
large gain. As for the base heuristics, the simplest idea (among those that we
evaluated) seems to work best: heuristics that only use an estimation of the
execution time of the tasks on the processors. Depending upon the application
graph, Computation+readiness and Duration+readiness are the recommended
heuristics. The former performs better on Fork graphs, but the latter gives
more stable results for all types of graphs.

6 Conclusion

In this paper, we have dealt with the problem of scheduling a large collection of
independent tasks, that may share input files, onto heterogeneous clusters. On
the theoretical side, we have shown new complexity results. On the practical
side, we have improved upon the heuristics proposed by Casanova et al. [1,2].
We have succeeded in designing a collection of new heuristics which have
similar performances but whose computational costs are an order of magnitude
lower.

This work, as the one of Casanova et al., was limited to the master-slave
paradigm. It is intended as a first step towards addressing the challenging
situation where

• input files are distributed among several file servers (several masters) rather
than being located on a single master,
• communication can take place between computational resources (slaves) in

addition to the messages sent by the master(s): some slave may well prop-
agate files to another slave while computing.

We hope that the ideas introduced when designing our heuristics will prove
useful for this difficult scheduling problem. As shown by the preliminary results

24

reported in [13], much work remains to be done to design efficient mapping
and scheduling strategies in a fully decentralized environment.

References

[1] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling
parameter sweep applications in Grid environments, in: Ninth Heterogeneous
Computing Workshop, IEEE Computer Society Press, 2000, pp. 349–363.

[2] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Using simulation to
evaluate scheduling heuristics for a class of applications in Grid environments,
Research Report RR-1999-46, LIP, ENS Lyon, France (Sep. 1999).

[3] F. Berman, High-performance schedulers, in: I. Foster, C. Kesselman (Eds.),
The Grid: Blueprint for a New Computing Infrastructure, Morgan-Kaufmann,
1999, pp. 279–309.

[4] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F. Freund, Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous
computing systems, in: Eight Heterogeneous Computing Workshop, IEEE
Computer Society Press, 1999, pp. 30–44.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, R. F. Freund,
A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems, Journal of Parallel
and Distributed Computing 61 (6) (2001) 810–837.

[6] B. A. Shirazi, A. R. Hurson, K. M. Kavi (Eds.), Scheduling and Load Balancing
in Parallel and Distributed Systems, IEEE Computer Science Press, 1995.

[7] Ph. Chrétienne, E. G. Coffman, Jr., J. K. Lenstra, Z. Liu (Eds.), Scheduling
Theory and its Applications, John Wiley and Sons, 1995.

[8] O. Beaumont, A. Legrand, Y. Robert, A polynomial-time algorithm for
allocating independent tasks on heterogeneous fork-graphs, in: ISCIS XVII,
Seventeenth International Symposium on Computer and Information Sciences,
CRC Press, 2002, pp. 115–119.

[9] S. M. Johnson, Optimal two- and three-stage production schedules with setup
times included, Naval Research Logistics Quarterly 1 (1954) 61–68.

[10] E. M. Macambira, C. C. de Souza, The edge-weighted clique problem:
valid inequalities, facets and polyhedral computations, European Journal of
Operational Research 123 (2) (2000) 346–371.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability, a Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

25

[12] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files on heterogeneous
clusters, Research Report RR-2003-28, LIP, ENS Lyon, France, also available
as INRIA Research Report 4819 (May 2003).

[13] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files from distributed
repositories, in: Euro-Par’04: Parallel Processing, Lecture Notes in Computer
Science, Springer Verlag, 2004, pp. 148–159.

26

