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Abstract

We present load-balancing strategies to improve performances of parallel MPI applications
running in a Grid environment. We analyze the data distribution constraints found in two
scientific codes and propose adapted code transformations to load-balance computations. We
present the general framework for our load-balancing techniques. We then describe these
techniques as well as their application to our examples. Experimental results confirm that
adapted source code transformations can improve Grid application performances.

1 Introduction
With the growing popularity of middle-ware dedicated at making so-called Grids of processing
and storage resources, network based computing will soon offer to users a dramatic increase in the
available aggregate processing power. The end-user will benefit from such a computing power only
if new tools are made available to ease the use of such computing resources. Traditionally, many
scientific applications have been developed by users with a parallel computer in mind. Users are
thus used to work on a single host with a single-image file system and most of the time, a unique
memory space (even if it is physically distributed). Furthermore, the parallel code is designed
assuming an homogeneous set of processors with homogeneous and very high bandwidth links
between processors. All these features that make the user comfortable with the system disappear
with clusters or Grids. There are numerous difficulties that should be overcome to make the use
of Grids more popular.
One of the major difficulties lies in the poor performances obtained with most parallel applications
when run on a Grid. There are two major reasons for the lack of performance: first, the processors
available are heterogeneous and hence the work assigned to processors is often unbalanced, and
secondly the network links are orders of magnitude slower on the Grid than in a parallel computer.
Much work has been carried out to take into account such heterogeneous environments for dis-
tributed computing: these efforts range from the optimization of communication libraries to the
migration of processes to balance processors load. Among these techniques, load-balancing is
certainly one of the most useful. Studies on load-balancing generally consider the running pro-
cesses and the physical resources they use, to decide how to load-balance (e.g. [BGW93]). Less
often, load-balancing code is included into the application source code itself so as to improve
performance in some particular cases (e.g. [SWB98]). However, few research works concern load-
balancing strategies specifically guided by the application to be run. The well-known AppLeS
project [BWF+96] uses information drawn from a specific application to schedule the execution
of the application processes, but they do not modify the application source code to improve its
execution. Thus, our project is original in the sense that we study how source code trans-
formations may impact on the performances obtained when running applications on Grids, and
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3 LOAD-BALANCING FOR UNCONSTRAINED DATA DISTRIBUTION

eventually systematically operate these transformations so as to produce programs permanently
adapted to heterogeneous environments. To validate our ideas, we work on some real scientific
applications written with MPI.
This paper presents preliminary results concerning load-balancing techniques we designed and
implemented to improve performances of two scientific applications. We analyze the constraints
inherent to the applications and propose adapted code transformations to load-balance computa-
tions. The paper is organized as follows: the first section explains the general framework for our
load-balancing strategies and the two following sections describe the two test applications. For
each application, we first explain its requirements, which load-balancing may be used and under
which hypotheses. We finish the sections with experimental results. The last section comments
on the code transformations operated and discusses future work.

2 Study framework
Our work is part of the TAG project1 which aims at proposing tools for the end user so as
to improve the usability of Grids. One important step to reach this goal is to identify the key
characteristics of Grid applications in order to design techniques that would enable to write parallel
applications optimized for a Grid environment. In this study, we have rewritten some parts of the
tested applications to introduce load-balancing.
Load-balancing is a natural way to address the problems arising when working in an heterogeneous
environment. Many research works have been conducted in this domain, the greater part of which
usually discern two strategies: static load-balancing and dynamic load-balancing [KK92]. Static
load-balancing attempts to determine appropriate shares of work to distribute to processors at
application startup, while dynamic load-balancing may redistribute part of the work during the
execution to compensate for differences in processors performance. In our work, we try to consider
both alternatives and assess which would be more profitable depending on the application type.
Our study is limited to SPMD applications using a message passing programming model. To
validate our ideas, we work on real programs such as the two scientific applications presented as
motivating examples in the two next sections. The two applications differ by their data distribution
constraints, and we have to encompass how this impacts on the load-balancing strategies to apply.
The first application belongs to the so-called embarrassingly parallel class of applications, which
means that data distribution is unconstrained: it is possible to send any chunk of data to any
process. On the contrary, the second application exhibits data dependencies and hence the data
distribution is constrained. These two different data distribution constraints motivated two distinct
load-balancing answers detailed in the next two sections:

• for unconstrained data distribution, we propose modifications of the source code to allow a
direct data repartition accordingly to the processors and network links speeds,

• for constrained data distribution, we propose a load-balancing technique consisting in emu-
lating real MPI processes: on each machine the transformed code simulates the execution of
more or less processes depending on the processors speed.

3 Load-balancing for unconstrained data distribution

3.1 Motivating example: a geophysical application
We consider for our first experiment a geophysical code in the seismic tomography field. For our
purpose, we only need to roughly sketch one part of the application structure. The input data is
a set of seismic waves, each described by a pair of 3D coordinates (the coordinates of the seism
source and those of the receiving captor) plus the wave type. With these characteristics, a seismic
wave can be modelized by a set of ray paths, that represents the wavefront propagation. Seismic

1TAG stands for Transformations and Adaptations for the Grid (http://grid.u-strasbg.fr/).
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wave characteristics are sufficient to perform the ray-tracing of the whole associated ray path.
Hence, all ray paths can be traced independently. It is also important to note that the ray-tracing
of the various ray paths require a varying amount of computations. The parallelization of the
application, presented in [GGM02], assumes that all available processors are homogeneous (the
implicit target for execution is a parallel computer). The following pseudo-code outlines the main
communication and computation phases:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI_Scatter(raydata, n/P, ..., rbuff, ..., ROOT,MPI_COMM_WORLD);
compute_work(rbuff);

where P is the number of processes involved. The MPI_Scatter instruction is executed by the root
process and the computation processes. In MPI, this primitive means that the process identified as
ROOT performs a send of distinct blocks of n/P elements from the raydata buffer to all processes
of the group while all processes make a receive operation of their respective data in the rbuff
buffer. Figure 1 shows a potential execution of this communication operation, with p1 as root
process.

time
actually sending
idle
computing

or receiving

t0

t1

p2 p3p1

Figure 1: A scatter communication followed by a computation phase.

From this existing implementation, we now examine which transformations would be profitable
for the execution on a Grid. We can quickly think of two manners of load-balancing this kind of
application:

• The first one is dynamic: a classical master/slave scheme is a good candidate solution for
such an heterogeneous environment. In this case, one master process reads small chunks
of the input data set and distributes these chunks to slave processes, which compute the
received piece of data. As soon as a slave process has finished its computations, it asks the
master for a new chunk. The process repeats until the master sends a termination message
to slaves.

• The second one is static: much like the above pseudo-code, the root process distributes the
whole data set in a single communication round, except that it sends unequal shares of data
whose sizes are statically computed on the basis of the processors and network performances.

We have implemented and tested both program transformations, and are particularly interested in
comparing them in terms of performance but also in terms of code rewriting. As far as automatic
program transformation is concerned, the second technique is more interesting, since MPI provides
a MPI_Scatterv primitive that allows such irregular data distribution and hence the program
transformation is more direct. Thus, we focus in our study on the conditions the application must
meet to implement this load-balancing technique, and which performance results can be obtained
with it.
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3.2 Hypotheses for unconstrained data distribution
The static load-balancing technique applies for SPMD programs (also refered to as data-parallel
MPI programs [Geo99]) that contain communication-computation phases. A communication-
computation phase is characterized by a round of simultaneous communications between all pro-
cesses, followed by local computations ended by a global synchronization —that is an explicit
barrier or a synchronization through a second communication round. Note that programs which
follow the Bulk Synchronous Programming model [Val90] are entirely build with successive such
phases.
In the particular case of the geophysical application presented above, there is only one major
communication-computation phase and only one process sends the whole input data set to other
processes. Moreover, we must state further assumptions the programmer must verify before the
load-balancing may take place.

(H1) The data items in the input data set are independent.

(H2) The number of data-items is the only factor in time complexity. Hence, giving any equal-size
part of the domain to a given process will result in the same computation time.

3.3 Static load-balancing of computations and communications
We now introduce some basic metrics to compute the load-balancing: we need a metric to measure
the time spent in a computation phase on a given processor during a given period, and a metric to
evaluate the time spent to send a given volume of data during a given period. Given the changing
state of network links and processors loads, we can ignore the periods at which events occur by
using average values for computation and communication speeds. Our metrics thus only depend
on data size. For a given communication-computation phase, we define:

• compi(d) to be a continuous increasing function that returns the mean time needed to com-
pute d data items on a processor pi and,

• commi(d) to be a continuous increasing function that returns the mean time spent in com-
munication for d data items on a processor pi.

Our objective is to minimize the elapsed time between the synchronization points (t1 − t0 on
figure 1). Assuming (H2)2, a process pi among P processes should receive a share of di (di ∈ N ,
i ∈ [1, P ]) data items from the dataset of size D, such that:

max{compi(di) + commi(di) | i ∈ [1, P ] and
P∑

i=1

di = D} (1)

is minimum. With these notations, the following problem formulation:{
comm1(d′1) + comp1(d′1) = · · · = commP (d′P ) + compP (d′P )
d′1 + d′2 + · · ·+ d′P = D

(2)

for which we search for the d′i ∈ R, implies that the di = round(d′i) satisfy equation (1), where
the function round appropriately rounds the real values d′i. This round process is described in
Appendix B.2.

3.4 Load-balancing scatter operations
When the communication round is a scatter operation (as in our test application), we can precise
the communication cost function and define it as the affine function: commi(d) = bi · d+ li, where
bi and li are the network bandwidth and latency (resp.) from root processor to processor pi.

2Note that without (H2) the problem would be far more complex: we would have to build all partitions of the
data set in P subsets, and for each subset, evaluate the time of all the permutations from subsets to processors.
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Moreover, (H2) implies that the computation cost function compi is linear with the number of
data items so we can let compi be a linear function: compi(d) = ai · d.
Therefore, equation (2) can be written as the following linear system:{

(a1 + b1) · d1 + l1 = (a2 + b2) · d2 + l2 = · · · = (aP + bP ) · dP + lP
d1 + d2 + · · ·+ dP = D

For shortness, let us define ci = ai + bi and T = c1 · d1 + l1. We thus write{
c1 · d1 + l1 = c2 · d2 + l2 = · · · = cP · dP + lP
d1 + d2 + · · ·+ dP = D

For each i we can then write di = T−li
ci

3, which leads to D =
∑P

i=1
T−li

ci
= T ×

∑P
i=1

1
ci
−
∑P

i=1
li
ci

And then have a general expression for T : T =
D+

∑P
i=1

li
ci∑P

i=1
1
ci

From this we can extract a general expression for di:

di =
D +

∑P
j=1

lj
cj
−
∑P

j=1
li
cj

ci · (
∑P

j=1
1
cj

)
(3)

Hardware model We must refine this expression with further assumptions on the networking
capabilities of the nodes. We consider the full overlap, single-port model of [BCF+01] in which a
processor node can simultaneously receive data, send data to at most one destination (full-duplex
network cards), and perform some computation. This model has shown to be realistic in our
experiments, and is representative of a large class of modern machines.
As the root process sends data to processes in turn4 a receiving process actually begins its com-
munication after all previous processes have been served. The root process starts its computation
after all the processes have received their data. This leads to a “stair effect” represented on figure 1
by the end times of the receive operations (black boxes). We call the delay during which a process
pi waits for the communication to actually begin, the startup time, noted si. If we let the root
process be p1, si is defined as: s2 = k

si = si−1 + bi−1 · di−1 (i ∈ [3, P ])
s1 = sP + bP · dP

where k is a system overhead incurred by the preparation of data to be sent by the root process.
The startup time should be integrated as part of the latency parameter (li) in equation (3).
The resolution becomes however not trivial because di depends on d1, . . . , dP . A means to
circumvent the problem is to omit, in a first instance, the latency to compute some initial
di = D/(ci ·

∑P
j=1

1
cj

). From these results we can approximate the startup times. These startup
times can then be cumulated to latency to compute the final di.

3.5 Experimental results
Our experiment consists in the computation of 827,000 ray paths on 16 processors. Processors are
located at two geographically distant sites. All machines run Globus [FK97] and we use MPICH-
G2 [FK98] as message passing library. Table 1 shows the resource repartition across sites as well as
the processors relative ratings. These ratings come from a series of benchmarks we performed on

3This expression as well as the following one are correct because the ci are strictly positives.
4In the MPICH implementation, the order of the destination processes in scatter operations follows the processes

ranks.
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(a) Uniform distribution
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(b) Master slave
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(c) Load-balancing (without network)
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(d) Load-balancing (with network)

Figure 2: Experimental results.

our application5. The table also shows the network bandwidths and latencies from node processor
0 that run the root process to any other processor. Hence, the communication speed from the
root process to itself is considered infinite since memory copy delay is negligible as compared to
network communication. These values have been measured either by running a ping application
or by interrogation of a NWS daemon [WSH99] when available.
The first experiment evaluates performances of the original program in which each process receives
an equal amount of data. Non-surprisingly, on figure 2(a), the processes end times largely differ,
thus exhibiting an important imbalance. The second experiment shows the master/slave version
behavior on figure 2(b), which appears well-balanced after we have finely tuned the size of data
chunk sent to slaves. Note that there are only 15 computation processes in this implementation
since the master process only handles data distribution.
Next, we experiment the load-balance of the scatter operation. As mentioned in the application
description, the amount of computations needed for ray paths varies, which contradicts hypothesis
(H2). However, given the numerous ray paths, we have been able to rearrange the data set so that
rays are grouped in small blocks that require approximately the same amount of computations.

5On IRIX and Sun OS we used vendor supplied compilers and gcc on Linux. We arbitrarily chose a rating of 1
for the Intel 800MHz.
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processes 0 1-3 4-5 6-7 8-15
sites Illkirch1 Illkirch2 Montpellier
processor PIII/933 Athlon/1800 PIII/800 R12k/300 R14k/500
processor ratings 1.14 1.61 1.00 0.65 1.05
bandwidth (MB/s) +∞ 7.5 4 0.5
latency (seconds) 0 0.01 0.02 0.67

Table 1: A part of our test Grid with average performance measurements.

We can therefore use formulas from the previous section and measurements from table 1. We had
to convert these measures in rays/second, and apply a corrective coefficient to fit as closely as
possible to the application performances.
To assess important parameters, we have first tried to load-balance using the relative processors
speed ratings only: figure 2(c) shows that omitting the network parameters leaves important
imbalances and gives unsatisfactory results as compared to the master/slave implementation. The
last experiment computes the load-balance using all parameters: figure 2(d) shows the best balance
and confirms the importance of all parameters, especially to take into account the “stair effect”
that clearly appears on figures 2(c) and 2(d). The total communication time in the master/slave
execution is short as compared to the computation time. Consequently, most of the communication
time measured in the scatter implementations actually is idle time. Only a small part of this time
is spent in true communications of data. It is worth to note that the cumulated idle time (the
surface of the “stair effect”) on figure 2(d) is approximately the computation time of one processor.
This explains why with 15 computation processes, the master/slave implementation performs as
well as the best load-balanced scatter with 16 computation processes. Therefore, the load-balanced
scatter operation is efficient up to a a certain number of processors, but the master/slave model
should outperform any scatter operation with many processors.

4 Load-balancing with constrained data distribution

4.1 Motivating example: an application in Plasma Physics
Our example is an application devoted to the numerical simulation of problems in Plasma Physics
and particle beams propagation (e.g. the study of controlled fusion, which seems to be a promising
solution for future energy production). The set of particles is described by a particle density
function f(t, x, v), depending on the time t, the position x, and the velocity v. Its evolution is
modeled by the Vlasov equation whose unknown is function f . The application implements the
PFC resolution method [FSB01] discretizing the Vlasov equation on a mesh of phase space (i.e.
position and velocity space).
The values of the distribution function f at a given time tn are stored in a (large) matrix Fn

where Fn
i,j represents the particle density of position at index i and velocity at index j. The PFC

method defines the values of Fn+1 from the values of Fn by introducing an intermediate matrix
F (1) of same size. Its parallelization has been presented in [VF02].
The parallel code is obtained by using a classical data decomposition technique. Assuming P
identical processors are available, matrices are split into P×P blocks of equal size. Each processor
owns P blocks on a row of Fn and is responsible from the computation of P blocks on a row of
Fn+1. The code for each processor then consists at each time step in computing local blocks of
F (1) from local blocks of Fn (this does not require any communication), communicating blocks of
F (1) in order to perform a global transposition of matrix F (1), computing blocks of Fn+1T from
the received blocks of F (1)T

(without any communication), and communicating blocks of Fn+1T

in order to perform a global transposition of matrix Fn+1T .
These operations are ordered to maximize the overlap of communications by computations. Figure

8 TAG project



4 LOAD-BALANCING WITH CONSTRAINED DATA DISTRIBUTION

3 shows the scheduling of the computation of the blocks on each processor for P = 4. A block
is asynchronously sent as soon as it has been computed and a block on the diagonal is computed
last. Before the next time step, processes synchronize in order to wait for all the blocks to be
received.

P0

P1

P2

P3

Asynchronous block send initializationBlock being computed

1st operation
in one iteration

2nd operation 3rd operation Last operation

Figure 3: Matrix transposition in 4 operations with 4 processors.

4.2 Hypotheses for constrained data distribution
This code has been written for an homogeneous parallel machine. We now consider the problem
of tuning it to an architecture with heterogeneous processors. We therefore investigate a code
transformation which can be applied in such a case. This transformation addresses the codes
which have the following characteristics:

(H1) The code works with any number of processors, and for any given number of processors, the
workload is evenly spread over the processors (the code allocates an equal share of workload
to each processor of a parallel machine).

(H2) The workload of any processor only depends on the amount of data to be processed (it does
not depend on data values).

(H3) Data are structured and the computation of any datum depends on some other data in the
same structure.

(H4) The way the data structure is distributed onto processors determines the cost of communica-
tions and there exists a best data distribution pattern to be preserved.

The workload is the amount of work, i.e. a mixture of the algorithm complexity and the data
amount. It results in a given computation time on each processor. If the algorithm complexity is
a linear function of the data size, then workload spreading is equivalent to data spreading.

4.3 Load-balancing possibilities
We address programs for which the data distribution pattern is dictated by the algorithm. In this
application the constraint lies in the requirement to transpose the matrix elements. Though we can
not make a matrix element-wise redistribution as in the application of section 3.1 (hence the con-
strained data distribution), one possibility is to distribute matrix blocks whose size would depend
on processors speed. However, as the blocks transfer durations are different for each processor
in this case, overlapping of communication and computation is lower since send and receive op-
erations are no more synchronized. In the homogeneous version described above, blocks are sent
simultaneously on each processor, thus maximizing overlapping. It therefore seems worthwhile
investigating some other solutions which can preserve the data distribution pattern.
In such applications where computations can be spread over any number of processes, a naive
solution to achieve load balancing is to assign more than one process per processor. For instance,
given 2 processors, one being 1.5 faster than the other it is possible to perform a load balance by

9 TAG project



4 LOAD-BALANCING WITH CONSTRAINED DATA DISTRIBUTION

launching 3 processes on the fastest machine, 2 on the other one. Such a procedure implies a lot
of system overhead, due to inter-process communications and time-sharing mechanisms.
An idea to avoid this, is to rewrite the code in such a way that only one real process would
be launched on each processor. This process will compute all data given to the n processes we
intended to run on the given processor, i.e. will emulate or serialize the parallel execution of the
n processes. This idea is the basis of our code transformation.

4.4 Code modification
Our transformation is sketched on figure 4. As said previously, the transformation consists in
emulating several processes by a single one. Since the initial code is SPMD, it decomposes into
successive computation and communication phases. Communication phases mainly are sequences
of calls to MPI communication functions. As the same code is executed by each process, any
process of the initial program carries out one instance of the successive phases. Figure 4 on the
left shows four phases of the initial program for two processes. Two such processes are emulated
by a single process of the transformed code. Right hand side of figure 4 shows the content of
the single process. Its code is built by combining the phases. The computation phases are put
together and similarly for the communication phases. The MPI calls in the communication phases
have to be changed in order to map emulated processes onto real processes and perform memory
copy instead of communications when sender and receiver are on the same processor.

CompA2

CompA1

CompB1
CompB2

CompA2
CommA2

CompB2

CommB2

CommA1

CompB1

Initial code Transformed code

Two processes

Two emulated processes
One process

CommB1
CommB2

CommA2

CommA1

CommB1

CompA1

Figure 4: Code transformation.

Moreover, blocking point-to-point communications such as MPI_Send have to be replaced by their
non-blocking versions (e.g. MPI_Isend) in order to avoid deadlock situations by letting the system
handle communications. One call to a collective communication has to be performed only once
on a processor, no matter the number of emulated processes it holds. Some collective communi-
cations such as MPI_Barrier do not require any other changes. Some others do. For instance, a
MPI_Scatter that spreads equally all data from one processor to all others should be replaced by a
MPI_Scatterv that allows an irregular spreading so as to distribute chunks of data proportionally
to the number of emulated processes on each processor.

Here is an example which focuses on the application of our program transformation on a piece of
the code in Plasma Physics. For sake of simplicity, we only give pseudo-codes.

Initial pseudo-code of processor pi (i = 1..2):
/* computation phase */
compute(Ai);

/* communication phase */
MPI_Isend(..., Ai, desti, ...);
MPI_Irecv(..., Bi, srci, ...);

This piece of code corresponds to the computation of one block of matrix and its transmission in
order to perform the block transposition.

10 TAG project



4 LOAD-BALANCING WITH CONSTRAINED DATA DISTRIBUTION

Transformed pseudo-code of processor p:
/* computation phase */
for (i = 1..2)

compute(Ai);

/* communication phase */
for (i = 1..2) {

if (proc_of(desti) 6= p) MPI_Isend(..., Ai, proc_of(desti), ...);
else skip;

if (proc_of(srci) 6= p) MPI_Irecv(..., Bi, proc_of(srci), ...);
else Bi = Asrci;

}

The communication phase examines the destination (resp. source) of the messages that have to be
sent (resp. received) by the current emulated process. If the source and the destination emulated
processes are embedded in the same process, then a memory copy is performed (Bi = Asrci). If
they are on distinct processes (proc_of(desti) 6= p), then a real communication is performed
between processes of rank proc_of(desti) and proc_of(desti).

4.5 Workload sharing
The transformed code is parameterized by a workload sharing provided at start up. A workload
sharing is defined by a vector (ni)i∈[1,P ] ∈ NP where ni is the number of emulated processes
that should be allocated to processor pi, i ∈ [1, P ]. We must provide the transformed code with
a sharing that divides the workload so that the execution time will be roughly the same on all
processors. This can be achieved by allocating to each processor pi a number ni of emulated
processes proportional to its speed rating.

4.6 Experimental results
For our experiments, we use our code in Plasma Physics and a subset of our test Grid made of
four processors (for P = 4): one R10k (referred to as p1), one R12k (p2) and two Athlon (p3 and
p4).
Finding how many emulated processes are to be assigned to processors is a difficult problem. In a
first instance, we approximate the number of emulated process from the speed ratings6 of table 1.
We choose n1=1, n2=2, n3=4 and n4=4 meaning for instance that an Athlon is rated four times
better than a R10k. The results reported below in table 2 show significant gains in performance.
Note however that work is under study to use theoretical results from [BDRV99] so as to find the
optimal number of emulated processes. New experiments are currently undertaken to evaluate the
extra gain that can be obtained with this method.
In order to validate our code transformation, we measured the wall clock time of:

1. The initial application without load balancing, i.e., with the same amount of data on
each processor.

2. The initial application with a basic load balancing using the system to run several processes
on a single processor. We spawn one process on the R10k, two processes on the R12k, and
four processes on each of the two Athlon.

3. The transformed application with 11 emulated processes according to the workload sharing
defined by the speed ratings.

In the second case, we checked that several processes truly run on one processor7. Experiments
were done for 32, 48, and 64 points of discretization in each dimension of the phase space, which

6The R10k processor has a rating of 0.46.
7On monoprocessor machines, like the PC’s, this is obviously true. On the parallel machines, we had to modify

the Globus job-manager to make this feasible.
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6 CONCLUSION

means that the total number of points of matrices Fn and F (1) was 324, 484, and 644 respectively
(that is 16 MB, 80 MB, and 256 MB of memory). Results are reported on table 2. We notice that
time loss due to system overhead decreases as data size increases. Modified algorithm is always
better than non-modified algorithm, may there be or not system load-balancing.

Size No load balancing System load balancing Software load balancing
324 342 525 301
484 2005 2223 1874
644 5380 4752 4404

Table 2: Elapsed time (seconds).

5 Related work
The experimental study carried out in [SWB98] compares dynamic versus static load-balancing
strategies in an image rendering ray-tracing application, executed on a network of heterogeneous
workstations. The nature of the application is close enough to the geophysics application for us
to benefit from their conclusions. They conclude that no one scheduling strategy is best for all
load conditions, and recommend to investigate further the possibilities of switching from static
to dynamic load-balancing. Our experiments confirm that static load-balancing requires precise
information about parameters to be efficient whereas the master/slave model naturally adapts to
heterogeneous conditions. Therefore, the variance of conditions could be taken into account to call
one implementation or the other during execution. The idea to encapsulate parameterized code,
optimized for some given architecture, into a high-level library has been proposed by Brewer [Bre95]
and may be of interest in this case. Providing a dedicated library to implement load-balancing is
also proposed by George [Geo99], who addresses the problem of dynamic load-balancing via array
distribution for the class of iterative algorithms with a SPMD implementation. He introduces the
DParLib, a library that allows the programmer to produce statistics about load-balance during
the execution. The information can then be used to redistribute arrays from one iteration to
the other. However, the library does not take into account possible communication-computation
overlaps that we need in our second test application.

6 Conclusion
We have discussed in this paper some program transformation strategies for Grid applications,
aiming at load-balancing the resources workloads. From the observation of some real application
source codes, we have described different situations in which adapted program transformations
can greatly influence the application performances. It appears that the source code must be finely
analyzed to choose which load-balancing solution best matches the problem. In the first example,
we have put forward influent parameters for static load-balancing. In the second example we have
shown that a possible transformation strategy to overcome the constraints on data-distribution
and keep a good communication-computation overlap can be the process emulation technique.
Future work should be done in several directions. We first need to further investigate the com-
munication schemes used in real applications and how they perform in a Grid environment. A
classification of the communication types may be used by a software tool to select appropri-
ate transformation strategies. We also believe the programmer should interact with the tool to
guide program transformations as he can bring useful information about the application. Work in
progress concerns the development of a user-level library containing load-balanced communication
patterns, such as scatter and master/slave communication schemes. Subsequent work should allow
the programmer to insert directives in its code. A transformation tool could then interpret the
directives and insert the appropriate library calls in the code.
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B DISCUSSION ON THE SCATTER LOAD-BALANCING

A Our test Grid
We give here some details on the Grid testbed in which our experiments occured. The testbed is
based on the Globus toolkit [FK97] (version 1.1.4) and MPICH-G2 [FK98] (version 1.2.2.3 with
our home-made patch to make it really cross-platforms).

site resources #procs proc type
Illkirch 1 PCs 6 Intel
Illkirch 2 Origin 2000 52 Mips R10k+R14k
Strasbourg Sun 16 Ultra-Sparc
Clermont PCs 4 Intel
Montpellier Origin 3800 512 Mips R14k

(a) Available resources

processor freq rating
AMD Athlon 1400 1.61
Intel PIII 933 1.13
Intel PIII 800 1.00
MIPS R14k 500 1.05
MIPS R12k 300 0.65
MIPS R10k 195 0.46

(b) Speed ratings

Table 3: The test Grid.

The resources composing the testbed are shown in table 3(a). Table 3(b) gives some of the ratings
we assigned to processors. This ratings come from series of benchmarks we performed on our
applications8. The great heterogeneity of processors is noticeable.
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7.5 4 3.7 0.6 0.5 Illkirch 1 0.67 0.18 0.02 0.02 0.01

30 2.5 0.6 0.2 Illkirch 2 0.74 0.29 0.02 0.002
22 0.6 0.2 Strasbourg 0.74 0.29 0.02

0.26 Clermont 0.57
35 Montpellier 0.002

Table 4: Average Bandwidths and Latencies on the test Grid.

Table 4 shows the network links between the different sites during the period when the experiments
took place. This values have been measured either by running a ping application or by interrogation
of a NWS [WSH99] between two sites.

B Discussion on the scatter load-balancing
We detail in this appendix the developments that lead to results of section 3.3. We first discuss
a known algorithm that can be used to solve equation (1) in appendix B.1. Then, we show that
equation (2) is a shortcut to solve this problem for values d′i in R. From the solutions d′i, the
previous algorithm allows to find optimal values di in N (the algorithm is our round function) and
hence the assertion at the end of section 3.3.
We then infered a generic expression for the case of increasing linear functions.

8On IRIX and Sun OS we used vendor supplied compilers and gcc on Linux. We arbitrarily chose a rating of 1
for the Intel 800MHz.
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B DISCUSSION ON THE SCATTER LOAD-BALANCING

B.1 Minimizing algorithm
The algorithm outlined here has been exposed in [BDRV99] where it is fully explained. We only
exhibit the principles of the algorithm in the following.

Given a natural D and a set of increasing function gi, we call best P -uples d1, . . . , dP those
minimizing max{gi(di) | i ∈ [1, P ]}. The main idea is to recursively construct a best P -uple
d1, . . . , dP such that

∑P
i=1 di = D from a best P -uple d′1, . . . , d

′
P such that

∑P
i=1 d′i = D − 1.

The algorithm is :

when D = 0, di = 0 ∀i

when D > 0, let (d′i)i be a solution for (D − 1). We search an index i0 such that gi(d′i + 1)
is minimal. Then we define a solution (di)i for D by di = d′i ∀ i 6= i0, di0 = d′i0 + 1.

B.2 Shortcut to the algorithm
We try here to reduce the number of operations involved in the calculation of a minimizing solu-
tion. (The complexity of the Minimizing algorithm is P ×D operations.) The main idea is to find
an explicit formula for a solution in R and to use the Minimizing algorithm to find a solution in
N. For this purpose we must start by some remarks.

Let’s note (gi)i=1,...P a family of increasing functions. We remark that if we can find a P -uple
d1, . . . , dP such that

∑P
i=1 di = D and for which g1(d1) = . . . = gP (dP ) then this P -uple minimizes

max{gi(di) | i ∈ [1, P ] and
∑P

i=1 di = D}.

Proof. Consider (di) a P -uple such as described above, and (d′i) another P -uple with sum D.
Because (di) 6= (d′i) and both sums are equals to D there is an index i0 such that d′i0 > di0 , which
implies that gi0(d

′
i0

) ≥ gi0(di0) since gi0 is an increasing function. By assumptions gi0(di0) =
g1(d1) = . . . = gP (dP ) = max{gi(di) | i ∈ [1, P ]}, therefore gi0(d

′
i0

) ≥ max{gi(di) | i ∈ [1, P ]} and
then max{gi(d′i) | i ∈ [1, P ]} ≥ max{gi(di) | i ∈ [1, P ]}.

Note that this result is true whether di are naturals or reals.

If no such P -uple can be found in N but one can be found in R (let’s write it (di)), then the
P -uple (d′i) built on the floor-rounded values of (di) (e.g. d′i = bdic) minimizes max{gi(δi) | i ∈
[1, P ] and

∑P
i=1 δi = D′}, where D′ =

∑P
i=1 d′i.

Proof. Consider (δi) another P -uple with sum D′. There is an index i0 such that δi0 > d′i0 . Beeing
naturals this inequation can be expressed δi0 ≥ d′i0 +1, which implies that gi0(δi0) ≥ gi0(d

′
i0

+1) ≥
gi0(di0). By assumption gi0(di0) = max{gi(di) | i ∈ [1, P ]}, thus gi0(δi0) ≥ max{gi(di) | i ∈ [1, P ]}
and then max{gi(δi) | i ∈ [1, P ]} ≥ max{gi(di) | i ∈ [1, P ]}. Obviously max{gi(d′i) | i ∈ [1, P ]} ≤
max{gi(di) | i ∈ [1, P ]}, which leads to the result.

Starting from this natural solution with sum D′, the Minimizing algorithm allows us to build a
natural P -uple with sum D which minimizes max{gi(di) | i ∈ [1, P ], di ∈ N ,

∑P
i=1 di = D}.

In our work assumptions compi and commi are increasing functions, thus gi = compi + commi

are also increasing functions, which allow us to use the results exposed in this section.
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B DISCUSSION ON THE SCATTER LOAD-BALANCING

B.3 Refinement for linear computations
In section 3.3 we found a general expression for the di. Though we clearly pointed out the fact that
these expressions were correct we can show it more formaly by considering the matrix expression
of system (2): 

c1 −c2 0 0 . . . 0
c1 0 −c3 0 . . . 0
c1 0 0 −c4 . . . 0
...

...
...

...
. . .

...
c1 0 0 0 . . . −cP

1 1 1 1 . . . 1





d1

d2

d3

...
dP−1

dP


=



l2 − l1
l3 − l1
l4 − l1

...
lP − l1

D


By recurence it is easy to show that the determinant of the matrix is

P∑
j=1

(∏P
k=1 ck

cj

)

which implies that there is one solution (di)i and that it is unique. Anyway, that does not involve
that this solution does not have negative elements.

When one of the calculated di is negative, that only means that there is no satisfying solution
to equation (2). In order to find a minimalizing solution in such a case one has to go back to
Minimizing algorithm.
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