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Abstract—Computing platforms are consuming more and
more energy due to the increasing number of nodes composing
them. To minimize the operating costs of these platforms many
techniques have been used. Dynamic voltage and frequency
scaling (DVFS) is one of them. It reduces the frequency of a
CPU to lower its energy consumption. However, lowering the
frequency of a CPU may increase the execution time of an
application running on that processor. Therefore, the frequency
that gives the best trade-off between the energy consumption and
the performance of an application must be selected.

In this paper, a new online frequency selecting algorithm
for heterogeneous platforms (heterogeneous CPUs) is presented.
It selects the frequencies and tries to give the best trade-off
between energy saving and performance degradation, for each
node computing the message passing iterative application. The
algorithm has a small overhead and works without training or
profiling. It uses a new energy model for message passing iterative
applications running on a heterogeneous platform. The proposed
algorithm is evaluated on the SimGrid simulator while running
the NAS parallel benchmarks. The experiments show that it
reduces the energy consumption by up to 34 % while limiting
the performance degradation as much as possible. Finally, the
algorithm is compared to an existing method, the comparison
results show that it outperforms the latter, on average it saves
4 % more energy while keeping the same performance.

I. INTRODUCTION

The need for more computing power is continually in-
creasing. To partially satisfy this need, most supercomputers
constructors just put more computing nodes in their platform.
The resulting platforms may achieve higher floating point
operations per second (FLOPS), but the energy consumption
and the heat dissipation are also increased. As an example,
the Chinese supercomputer Tianhe-2 had the highest FLOPS
in November 2014 according to the Top500 list [1]. However,
it was also the most power hungry platform with its over 3
million cores consuming around 17.8 megawatts. Moreover,
according to the U.S. annual energy outlook 2014 [2], the
price of energy for 1 megawatt-hour was approximately equal
to $70. Therefore, the price of the energy consumed by the
Tianhe-2 platform is approximately more than $10 million each
year. The computing platforms must be more energy efficient
and offer the highest number of FLOPS per watt possible,
such as the L-CSC from the GSI Helmholtz Center which
became the top of the Green500 list in November 2014 [3].
This heterogeneous platform executes more than 5 GFLOPS
per watt while consuming 57.15 kilowatts.

Besides platform improvements, there are many software
and hardware techniques to lower the energy consumption
of these platforms, such as scheduling, DVFS, . . . DVFS is
a widely used process to reduce the energy consumption of
a processor by lowering its frequency [4]. However, it also
reduces the number of FLOPS executed by the processor which
may increase the execution time of the application running over
that processor. Therefore, researchers use different optimiza-
tion strategies to select the frequency that gives the best trade-
off between the energy reduction and performance degradation
ratio. In [5], a frequency selecting algorithm was proposed to
reduce the energy consumption of message passing iterative
applications running over homogeneous platforms. The results
of the experiments show significant energy consumption re-
ductions. In this paper, a new frequency selecting algorithm
adapted for heterogeneous platform is presented. It selects the
vector of frequencies, for a heterogeneous platform running
a message passing iterative application, that simultaneously
tries to offer the maximum energy reduction and minimum
performance degradation ratio. The algorithm has a very small
overhead, works online and does not need any training or
profiling.

This paper is organized as follows: Section II presents
some related works from other authors. Section III describes
how the execution time of message passing programs can
be predicted. It also presents an energy model that pre-
dicts the energy consumption of an application running over
a heterogeneous platform. Section IV presents the energy-
performance objective function that maximizes the reduction
of energy consumption while minimizing the degradation of
the program’s performance. Section V details the proposed
frequency selecting algorithm then the precision of the pro-
posed algorithm is verified. Section VI presents the results
of applying the algorithm on the NAS parallel benchmarks
and executing them on a heterogeneous platform. It shows
the results of running three different power scenarios and
comparing them. Moreover, it also shows the comparison
results between the proposed method and an existing method.
Finally, in Section VII the paper ends with a summary and
some future works.

II. RELATED WORKS

DVFS is a technique used in modern processors to scale
down both the voltage and the frequency of the CPU while
computing, in order to reduce the energy consumption of



the processor. DVFS is also allowed in GPUs to achieve the
same goal. Reducing the frequency of a processor lowers
its number of FLOPS and may degrade the performance of
the application running on that processor, especially if it is
compute bound. Therefore selecting the appropriate frequency
for a processor to satisfy some objectives, while taking into
account all the constraints, is not a trivial operation. Many
researchers used different strategies to tackle this problem.
Some of them developed online methods that compute the
new frequency while executing the application, such as [6],
[7]. Others used offline methods that may need to run the
application and profile it before selecting the new frequency,
such as [8], [9]. The methods could be heuristics, exact or brute
force methods that satisfy varied objectives such as energy
reduction or performance. They also could be adapted to the
execution’s environment and the type of the application such
as sequential, parallel or distributed architecture, homogeneous
or heterogeneous platform, synchronous or asynchronous ap-
plication, . . .

In this paper, we are interested in reducing energy for
message passing iterative synchronous applications running
over heterogeneous platforms. Some works have already been
done for such platforms and they can be classified into two
types of heterogeneous platforms:

• the platform is composed of homogeneous GPUs and
homogeneous CPUs.

• the platform is only composed of heterogeneous
CPUs.

For the first type of platform, the computing intensive par-
allel tasks are executed on the GPUs and the rest are executed
on the CPUs. Luley et al. [10], proposed a heterogeneous
cluster composed of Intel Xeon CPUs and NVIDIA GPUs.
Their main goal was to maximize the energy efficiency of the
platform during computation by maximizing the number of
FLOPS per watt generated. In [11], Kai Ma et al. developed a
scheduling algorithm that distributes workloads proportional to
the computing power of the nodes which could be a GPU or a
CPU. All the tasks must be completed at the same time. In [12],
Rong et al. showed that a heterogeneous (GPUs and CPUs)
cluster that enables DVFS gave better energy and performance
efficiency than other clusters only composed of CPUs.

The work presented in this paper concerns the second
type of platform, with heterogeneous CPUs. Many methods
were conceived to reduce the energy consumption of this
type of platform. Naveen et al. [13] developed a method that
minimizes the value of energy × delay2 (the delay is the sum
of slack times that happen during synchronous communica-
tions) by dynamically assigning new frequencies to the CPUs
of the heterogeneous cluster. Lizhe et al. [14] proposed an
algorithm that divides the executed tasks into two types: the
critical and non critical tasks. The algorithm scales down the
frequency of non critical tasks proportionally to their slack and
communication times while limiting the performance degra-
dation percentage to less than 10 %. In [15], they developed
a heterogeneous cluster composed of two types of Intel and
AMD processors. They use a gradient method to predict the
impact of DVFS operations on performance. In [16] and [17],
the best frequencies for a specified heterogeneous cluster are
selected offline using some heuristic. Chen et al. [18] used a
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Figure 1: Parallel tasks on a heterogeneous platform

greedy dynamic programming approach to minimize the power
consumption of heterogeneous servers while respecting given
time constraints. This approach had considerable overhead. In
contrast to the above described papers, this paper presents the
following contributions :

1) two new energy and performance models for message
passing iterative synchronous applications running
over a heterogeneous platform. Both models take into
account communication and slack times. The models
can predict the required energy and the execution time
of the application.

2) a new online frequency selecting algorithm for het-
erogeneous platforms. The algorithm has a very small
overhead and does not need any training or profiling.
It uses a new optimization function which simultane-
ously maximizes the performance and minimizes the
energy consumption of a message passing iterative
synchronous application.

III. THE PERFORMANCE AND ENERGY CONSUMPTION
MEASUREMENTS ON HETEROGENEOUS ARCHITECTURE

A. The execution time of message passing distributed iterative
applications on a heterogeneous platform

In this paper, we are interested in reducing the energy
consumption of message passing distributed iterative syn-
chronous applications running over heterogeneous platforms.
A heterogeneous platform is defined as a collection of het-
erogeneous computing nodes interconnected via a high speed
homogeneous network. Therefore, each node has different
characteristics such as computing power (FLOPS), energy
consumption, CPU’s frequency range, . . . but they all have
the same network bandwidth and latency.

The overall execution time of a distributed iterative syn-
chronous application over a heterogeneous platform consists
of the sum of the computation time and the communication
time for every iteration on a node. However, due to the
heterogeneous computation power of the computing nodes,
slack times may occur when fast nodes have to wait, during
synchronous communications, for the slower nodes to finish
their computations (see Figure 1). Therefore, the overall exe-



cution time of the program is the execution time of the slowest
task which has the highest computation time and no slack time.

Dynamic Voltage and Frequency Scaling (DVFS) is a
process, implemented in modern processors, that reduces the
energy consumption of a CPU by scaling down its voltage
and frequency. Since DVFS lowers the frequency of a CPU
and consequently its computing power, the execution time
of a program running over that scaled down processor may
increase, especially if the program is compute bound. The
frequency reduction process can be expressed by the scaling
factor S which is the ratio between the maximum and the new
frequency of a CPU as in (1).

S =
Fmax

Fnew
(1)

The execution time of a compute bound sequential program
is linearly proportional to the frequency scaling factor S.
On the other hand, message passing distributed applications
consist of two parts: computation and communication. The
execution time of the computation part is linearly proportional
to the frequency scaling factor S but the communication time
is not affected by the scaling factor because the processors
involved remain idle during the communications [19]. The
communication time for a task is the summation of periods
of time that begin with an MPI call for sending or receiving a
message until the message is synchronously sent or received.

Since in a heterogeneous platform each node has dif-
ferent characteristics, especially different frequency gears,
when applying DVFS operations on these nodes, they may
get different scaling factors represented by a scaling vector:
(S1, S2, . . . , SN ) where Si is the scaling factor of processor
i. To be able to predict the execution time of message passing
synchronous iterative applications running over a heteroge-
neous platform, for different vectors of scaling factors, the
communication time and the computation time for all the tasks
must be measured during the first iteration before applying any
DVFS operation. Then the execution time for one iteration
of the application with any vector of scaling factors can be
predicted using (2).

TNew = max
i=1,2,...,N

(TcpOld i · Si) +MinTcm (2)

Where:
MinTcm = min

i=1,2,...,N
(Tcm i) (3)

where TcpOld i is the computation time of processor i during
the first iteration and MinTcm is the communication time
of the slowest processor from the first iteration. The model
computes the maximum computation time with scaling factor
from each node added to the communication time of the
slowest node. It means only the communication time without
any slack time is taken into account. Therefore, the execution
time of the iterative application is equal to the execution time
of one iteration as in (2) multiplied by the number of iterations
of that application.

This prediction model is developed from the model to
predict the execution time of message passing distributed
applications for homogeneous architectures [5]. The execution
time prediction model is used in the method to optimize
both the energy consumption and the performance of iterative
methods, which is presented in the following sections.

B. Energy model for heterogeneous platform

Many researchers [20], [21], [22], [4] divide the power
consumed by a processor into two power metrics: the static
and the dynamic power. While the first one is consumed as
long as the computing unit is turned on, the latter is only
consumed during computation times. The dynamic power Pd

is related to the switching activity α, load capacitance CL, the
supply voltage V and operational frequency F , as shown in
(4).

Pd = α · CL · V 2 · F (4)

The static power Ps captures the leakage power as follows:

Ps = V ·Ntrans ·Kdesign · Ileak (5)

where V is the supply voltage, Ntrans is the number of
transistors, Kdesign is a design dependent parameter and Ileak

is a technology dependent parameter. The energy consumed
by an individual processor to execute a given program can be
computed as:

Eind = Pd · Tcp + Ps · T (6)

where T is the execution time of the program, Tcp is the
computation time and Tcp ≤ T . Tcp may be equal to T if
there is no communication and no slack time.

The main objective of DVFS operation is to reduce the
overall energy consumption [23]. The operational frequency F
depends linearly on the supply voltage V , i.e., V = β ·F with
some constant β. This equation is used to study the change
of the dynamic voltage with respect to various frequency
values in [21]. The reduction process of the frequency can be
expressed by the scaling factor S which is the ratio between the
maximum and the new frequency as in (1). The CPU governors
are power schemes supplied by the operating system’s kernel
to lower a core’s frequency. The new frequency Fnew from (1)
can be calculated as follows:

Fnew = S−1 · Fmax (7)

Replacing Fnew in (4) as in (7) gives the following equation
for dynamic power consumption:

PdNew = α · CL · V 2 · Fnew = α · CL · β2 · Fnew
3

= α · CL · V 2 · Fmax · S−3 = PdOld · S−3 (8)

where PdNew and PdOld are the dynamic power consumed
with the new frequency and the maximum frequency respec-
tively.

According to (8) the dynamic power is reduced by a factor
of S−3 when reducing the frequency by a factor of S [21].
Since the FLOPS of a CPU is proportional to the frequency
of a CPU, the computation time is increased proportionally to
S. The new dynamic energy is the dynamic power multiplied
by the new time of computation and is given by the following
equation:

EdNew = PdOld · S−3 · (Tcp · S) = S−2 · PdOld · Tcp (9)

The static power is related to the power leakage of the CPU
and is consumed during computation and even when idle. As
in [21], [22], the static power of a processor is considered
as constant during idle and computation periods, and for all
its available frequencies. The static energy is the static power



multiplied by the execution time of the program. According
to the execution time model in (2), the execution time of the
program is the sum of the computation and the communication
times. The computation time is linearly related to the frequency
scaling factor, while this scaling factor does not affect the
communication time. The static energy of a processor after
scaling its frequency is computed as follows:

ES = Ps · (Tcp · S + Tcm ) (10)

In the considered heterogeneous platform, each processor
i may have different dynamic and static powers, noted as
Pd i and Ps i respectively. Therefore, even if the distributed
message passing iterative application is load balanced, the
computation time of each CPU i noted Tcp i may be different
and different frequency scaling factors may be computed
in order to decrease the overall energy consumption of the
application and reduce slack times. The communication time
of a processor i is noted as Tcm i and could contain slack
times when communicating with slower nodes, see Figure 1.
Therefore, all nodes do not have equal communication times.
While the dynamic energy is computed according to the
frequency scaling factor and the dynamic power of each node
as in (9), the static energy is computed as the sum of the
execution time of one iteration multiplied by the static power of
each processor. The overall energy consumption of a message
passing distributed application executed over a heterogeneous
platform during one iteration is the summation of all dynamic
and static energies for each processor. It is computed as
follows:

E =

N∑
i=1

(S−2
i · Pd i · Tcp i) +

N∑
i=1

(Ps i · ( max
i=1,2,...,N

(Tcp i · Si) +MinTcm )) (11)

Reducing the frequencies of the processors according to the
vector of scaling factors (S1, S2, . . . , SN ) may degrade the
performance of the application and thus, increase the static
energy because the execution time is increased [24]. The
overall energy consumption for the iterative application can
be measured by measuring the energy consumption for one
iteration as in (11) multiplied by the number of iterations of
that application.

IV. OPTIMIZATION OF BOTH ENERGY CONSUMPTION AND
PERFORMANCE

Using the lowest frequency for each processor does not
necessarily give the most energy efficient execution of an
application. Indeed, even though the dynamic power is re-
duced while scaling down the frequency of a processor, its
computation power is proportionally decreased. Hence, the
execution time might be drastically increased and during
that time, dynamic and static powers are being consumed.
Therefore, it might cancel any gains achieved by scaling down
the frequency of all nodes to the minimum and the overall
energy consumption of the application might not be the optimal
one. It is not trivial to select the appropriate frequency scaling
factor for each processor while considering the characteristics
of each processor (computation power, range of frequencies,

dynamic and static powers) and the task executed (computa-
tion/communication ratio). The aim being to reduce the overall
energy consumption and to avoid increasing significantly the
execution time. In our previous work [5], we proposed a
method that selects the optimal frequency scaling factor for
a homogeneous cluster executing a message passing iterative
synchronous application while giving the best trade-off be-
tween the energy consumption and the performance for such
applications. In this work we are interested in heterogeneous
clusters as described above. Due to the heterogeneity of the
processors, a vector of scaling factors should be selected and it
must give the best trade-off between energy consumption and
performance.

The relation between the energy consumption and the
execution time for an application is complex and nonlinear,
Thus, unlike the relation between the execution time and
the scaling factor, the relation between the energy and the
frequency scaling factors is nonlinear, for more details refer
to [19]. Moreover, these relations are not measured using the
same metric. To solve this problem, the execution time is
normalized by computing the ratio between the new execution
time (after scaling down the frequencies of some processors)
and the initial one (with maximum frequency for all nodes) as
follows:

PNorm =
TNew

TOld

=
maxi=1,2,...,N (Tcp i · Si) +MinTcm

maxi=1,2,...,N (Tcp i + Tcm i)
(12)

In the same way, the energy is normalized by computing
the ratio between the consumed energy while scaling down the
frequency and the consumed energy with maximum frequency
for all nodes:

ENorm =
EReduced

EOriginal

=

∑N
i=1 (S

−2
i · Pd i · Tcp i) +

∑N
i=1 (Ps i · TNew )∑N

i=1 (Pd i · Tcp i) +
∑N

i=1 (Ps i · TOld)
(13)

Where EReduced and EOriginal are computed using (11) and
TNew and TOld are computed as in (12).

While the main goal is to optimize the energy and execution
time at the same time, the normalized energy and execution
time curves do not evolve (increase/decrease) in the same
way. According to the equations (12) and (13), the vector
of frequency scaling factors S1, S2, . . . , SN reduce both the
energy and the execution time simultaneously. But the main
objective is to produce maximum energy reduction with min-
imum execution time reduction.

This problem can be solved by making the optimization
process for energy and execution time follow the same evolu-
tion according to the vector of scaling factors. Therefore, the
equation of the normalized execution time is inverted which
gives the normalized performance equation, as follows:

PNorm =
TOld

TNew

=
maxi=1,2,...,N (Tcp i + Tcm i)

maxi=1,2,...,N (Tcp i · Si) +MinTcm
(14)
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Figure 2: The energy and performance relation

Then, the objective function can be modeled in order to
find the maximum distance between the energy curve (13) and
the performance curve (14) over all available sets of scaling
factors. This represents the minimum energy consumption with
minimum execution time (maximum performance) at the same
time, see Figure 2a or Figure 2b. Then the objective function
has the following form:

MaxDist = max
i=1,...F

j=1,...,N

(

Maximize︷ ︸︸ ︷
PNorm(Sij)−

Minimize︷ ︸︸ ︷
ENorm(Sij)) (15)

where N is the number of nodes and F is the number of
available frequencies for each node. Then, the optimal set of
scaling factors that satisfies (15) can be selected. The objective
function can work with any energy model or any power values
for each node (static and dynamic powers). However, the most
important energy reduction gain can be achieved when the
energy curve has a convex form as shown in [22], [21], [6].

V. THE SCALING FACTORS SELECTION ALGORITHM FOR
HETEROGENEOUS PLATFORMS

A. The algorithm details

In this section, Algorithm 1 is presented. It selects the
frequency scaling factors vector that gives the best trade-off
between minimizing the energy consumption and maximizing
the performance of a message passing synchronous iterative
application executed on a heterogeneous platform. It works
online during the execution time of the iterative message
passing program. It uses information gathered during the first
iteration such as the computation time and the communication

Algorithm 1 frequency scaling factors selection algorithm
Require:

Tcp i array of all computation times for all nodes
during one iteration and with highest fre-
quency.

Tcm i array of all communication times for all nodes
during one iteration and with highest fre-
quency.

Fmax i array of the maximum frequencies for all
nodes.

Pd i array of the dynamic powers for all nodes.
Ps i array of the static powers for all nodes.
Fdiffi array of the differences between two succes-

sive frequencies for all nodes.
Ensure: Sopt1, Sopt2 . . . , SoptN is a vector of optimal scaling

factors
1: Scp i ←

maxi=1,2,...,N (Tcpi)

Tcpi

2: Fi ←
Fmax

i

Scpi
, i = 1, 2, · · · , N

3: Round the computed initial frequencies Fi to the closest
one available in each node.

4: if (not the first frequency) then
5: Fi ← Fi + Fdiffi, i = 1, . . . , N.
6: end if
7: TOld ← maxi=1,...,N (Tcp i + Tcm i)

8: EOriginal ←
∑N

i=1 (Pd i · Tcp i + Ps i · TOld)
9: Sopt i ← 1, i = 1, . . . , N.

10: Dist ← 0
11: while (all nodes not reach their minimum frequency) do
12: if (not the last freq. and not the slowest node) then
13: Fi ← Fi − Fdiffi, i = 1, . . . , N.

14: Si ←
Fmax

i

Fi
, i = 1, . . . , N.

15: end if
16: TNew ← maxi=1,...,N (Tcp i · Si) +MinTcm

17: EReduced ←
∑N

i=1 (S
−2
i · Pd i · Tcp i + Ps i · TNew )

18: PNorm ← TOld

TNew

19: ENorm ← EReduced

EOriginal

20: if (PNorm − ENorm > Dist) then
21: Sopt i ← Si, i = 1, . . . , N.
22: Dist ← PNorm − ENorm

23: end if
24: end while
25: Return Sopt1, Sopt2, . . . , SoptN

Algorithm 2 DVFS algorithm
1: for k = 1 to some iterations do
2: Computations section.
3: Communications section.
4: if (k = 1) then
5: Gather all times of computation and

communication from each node.
6: Call Algorithm 1.
7: Compute the new frequencies from the

returned optimal scaling factors.
8: Set the new frequencies to nodes.
9: end if

10: end for
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Figure 3: Selecting the initial frequencies

time in one iteration for each node. The algorithm is executed
after the first iteration and returns a vector of optimal frequency
scaling factors that satisfies the objective function (15). The
program applies DVFS operations to change the frequencies
of the CPUs according to the computed scaling factors. This
algorithm is called just once during the execution of the
program. Algorithm 2 shows where and when the proposed
scaling algorithm is called in the iterative MPI program.

The nodes in a heterogeneous platform have different com-
puting powers, thus while executing message passing iterative
synchronous applications, fast nodes have to wait for the
slower ones to finish their computations before being able to
synchronously communicate with them as in Figure 1. These
periods are called idle or slack times. The algorithm takes
into account this problem and tries to reduce these slack times
when selecting the frequency scaling factors vector. At first,
it selects initial frequency scaling factors that increase the
execution times of fast nodes and minimize the differences
between the computation times of fast and slow nodes. The
value of the initial frequency scaling factor for each node
is inversely proportional to its computation time that was
gathered from the first iteration. These initial frequency scaling
factors are computed as a ratio between the computation time
of the slowest node and the computation time of the node i as
follows:

Scp i =
maxi=1,2,...,N (Tcp i)

Tcp i

(16)

Using the initial frequency scaling factors computed in (16),
the algorithm computes the initial frequencies for all nodes
as a ratio between the maximum frequency of node i and the
computation scaling factor Scp i as follows:

Fi =
Fmax i

Scp i

, i = 1, 2, . . . , N (17)

If the computed initial frequency for a node is not available in
the gears of that node, it is replaced by the nearest available
frequency. In Figure 3, the nodes are sorted by their computing
power in ascending order and the frequencies of the faster
nodes are scaled down according to the computed initial
frequency scaling factors. The resulting new frequencies are
highlighted in Figure 3. This set of frequencies can be con-
sidered as a higher bound for the search space of the optimal
vector of frequencies because selecting scaling factors higher
than the higher bound will not improve the performance of the

application and it will increase its overall energy consumption.
Therefore the algorithm that selects the frequency scaling
factors starts the search method from these initial frequencies
and takes a downward search direction toward lower fre-
quencies. The algorithm iterates on all remaining frequencies,
from the higher bound until all nodes reach their minimum
frequencies, to compute their overall energy consumption and
performance, and select the optimal frequency scaling factors
vector. At each iteration the algorithm determines the slowest
node according to the equation (2) and keeps its frequency
unchanged, while it lowers the frequency of all other nodes by
one gear. The new overall energy consumption and execution
time are computed according to the new scaling factors. The
optimal set of frequency scaling factors is the set that gives
the highest distance according to the objective function (15).

Figures 2a and 2b illustrate the normalized performance
and consumed energy for an application running on a homo-
geneous platform and a heterogeneous platform respectively
while increasing the scaling factors. It can be noticed that in
a homogeneous platform the search for the optimal scaling
factor should start from the maximum frequency because
the performance and the consumed energy decrease from the
beginning of the plot. On the other hand, in the heterogeneous
platform the performance is maintained at the beginning of the
plot even if the frequencies of the faster nodes decrease until
the computing power of scaled down nodes are lower than the
slowest node. In other words, until they reach the higher bound.
It can also be noticed that the higher the difference between the
faster nodes and the slower nodes is, the bigger the maximum
distance between the energy curve and the performance curve
is while the scaling factors are varying which results in bigger
energy savings. Finally, in a homogeneous platform the energy
consumption is increased when the scaling factor is very high.
Indeed, the dynamic energy saved by reducing the frequency
of the processor is compensated by the significant increase of
the execution time and thus the increased of the static energy.
On the other hand, in a heterogeneous platform this is not the
case.

B. The evaluation of the proposed algorithm

The precision of the proposed algorithm mainly depends
on the execution time prediction model defined in (2) and the
energy model computed by (11). The energy model is also
significantly dependent on the execution time model because
the static energy is linearly related to the execution time
and the dynamic energy is related to the computation time.
So, all the works presented in this paper are based on the
execution time model. To verify this model, the predicted
execution time was compared to the real execution time over
SimGrid/SMPI simulator, v3.10 [25], for all the NAS parallel
benchmarks NPB v3.3 [26], running class B on 8 or 9 nodes.
The comparison showed that the proposed execution time
model is very precise, the maximum normalized difference
between the predicted execution time and the real execution
time is equal to 0.03 for all the NAS benchmarks.

Since the proposed algorithm is not an exact method, it
does not test all the possible solutions (vectors of scaling
factors) in the search space. To prove its efficiency, it was
compared on small instances to a brute force search algorithm
that tests all the possible solutions. The brute force algorithm



Table I: Heterogeneous nodes characteristics

Node Simulated Max Min Diff. Dynamic Static
type GFLOPS Freq. Freq. Freq. power power

GHz GHz GHz
1 40 2.50 1.20 0.100 20 W 4 W
2 50 2.66 1.60 0.133 25 W 5 W
3 60 2.90 1.20 0.100 30 W 6 W
4 70 3.40 1.60 0.133 35 W 7 W

was applied to different NAS benchmarks classes with different
number of nodes. The solutions returned by the brute force
algorithm and the proposed algorithm were identical and the
proposed algorithm was on average 10 times faster than the
brute force algorithm. It has a small execution time: for a
heterogeneous cluster composed of four different types of
nodes having the characteristics presented in Table I, it takes
on average 0.04 ms for 4 nodes and 0.15 ms on average for 144
nodes to compute the best scaling factors vector. The algorithm
complexity is O(F · N), where F is the maximum number
of available frequencies, and N is the number of computing
nodes. The algorithm needs from 12 to 20 iterations to select
the best vector of frequency scaling factors that gives the
results of the next sections.

VI. EXPERIMENTAL RESULTS

To evaluate the efficiency and the overall energy con-
sumption reduction of Algorithm 1, it was applied to the
NAS parallel benchmarks NPB v3.3 which is composed of
synchronous message passing applications. The experiments
were executed on the simulator SimGrid/SMPI which offers
easy tools to create a heterogeneous platform and run message
passing applications over it. The heterogeneous platform that
was used in the experiments, had one core per node because
just one process was executed per node. The heterogeneous
platform was composed of four types of nodes. Each type
of nodes had different characteristics such as the maximum
CPU frequency, the number of available frequencies and the
computational power, see Table I. The characteristics of these
different types of nodes are inspired from the specifications of
real Intel processors. The heterogeneous platform had up to
144 nodes and had nodes from the four types in equal propor-
tions, for example if a benchmark was executed on 8 nodes,
2 nodes from each type were used. Since the constructors of
CPUs do not specify the dynamic and the static power of their
CPUs, for each type of node they were chosen proportionally
to its computing power (FLOPS). In the initial heterogeneous
platform, while computing with highest frequency, each node
consumed an amount of power proportional to its computing
power (which corresponds to 80 % of its dynamic power and
the remaining 20 % to the static power), the same assumption
was made in [5], [21]. Finally, These nodes were connected
via an Ethernet network with 1 Gbit/s bandwidth.

A. The experimental results of the scaling algorithm

The proposed algorithm was applied to the seven parallel
NAS benchmarks (EP, CG, MG, FT, BT, LU and SP) and the
benchmarks were executed with the three classes: A, B and
C. However, due to the lack of space in this paper, only the
results of the biggest class, C, are presented while being run
on different number of nodes, ranging from 8 to 128 or 144

Table II: Running NAS benchmarks on 8 and 9 nodes

Program Execution Energy Energy Performance Distance
name time/s consumption/J saving% degradation%

CG 36.11 3263.49 31.25 7.12 24.13
MG 8.99 953.39 33.78 6.41 27.37
EP 40.39 5652.81 27.04 0.49 26.55
LU 218.79 36149.77 28.23 0.01 28.22
BT 166.89 23207.42 32.32 7.89 24.43
SP 104.73 18414.62 24.73 2.78 21.95
FT 51.10 4913.26 31.02 2.54 28.48

Table III: Running NAS benchmarks on 16 nodes

Program Execution Energy Energy Performance Distance
name time/s consumption/J saving% degradation%

CG 31.74 4373.90 26.29 9.57 16.72
MG 5.71 1076.19 32.49 6.05 26.44
EP 20.11 5638.49 26.85 0.56 26.29
LU 144.13 42529.06 28.80 6.56 22.24
BT 97.29 22813.86 34.95 5.80 29.15
SP 66.49 20821.67 22.49 3.82 18.67
FT 37.01 5505.60 31.59 6.48 25.11

Table IV: Running NAS benchmarks on 32 and 36 nodes

Program Execution Energy Energy Performance Distance
name time/s consumption/J saving% degradation%

CG 32.35 6704.21 16.15 5.30 10.85
MG 4.30 1355.58 28.93 8.85 20.08
EP 9.96 5519.68 26.98 0.02 26.96
LU 99.93 67463.43 23.60 2.45 21.15
BT 48.61 23796.97 34.62 5.83 28.79
SP 46.01 27007.43 22.72 3.45 19.27
FT 28.06 7142.69 23.09 2.90 20.19

Table V: Running NAS benchmarks on 64 nodes

Program Execution Energy Energy Performance Distance
name time/s consumption/J saving% degradation%

CG 46.65 17521.83 8.13 1.68 6.45
MG 3.27 1534.70 29.27 14.35 14.92
EP 5.05 5471.11 27.12 3.11 24.01
LU 73.92 101339.16 21.96 3.67 18.29
BT 39.99 27166.71 32.02 12.28 19.74
SP 52.00 49099.28 24.84 0.03 24.81
FT 25.97 10416.82 20.15 4.87 15.28

Table VI: Running NAS benchmarks on 128 and 144 nodes

Program Execution Energy Energy Performance Distance
name time/s consumption/J saving% degradation%

CG 56.92 41163.36 4.00 1.10 2.90
MG 3.55 2843.33 18.77 10.38 8.39
EP 2.67 5669.66 27.09 0.03 27.06
LU 51.23 144471.90 16.67 2.36 14.31
BT 37.96 44243.82 23.18 1.28 21.90
SP 64.53 115409.71 26.72 0.05 26.67
FT 25.51 18808.72 12.85 2.84 10.01

nodes depending on the benchmark being executed. Indeed,
the benchmarks CG, MG, LU, EP and FT had to be executed
on 1, 2, 4, 8, 16, 32, 64, or 128 nodes. The other benchmarks
such as BT and SP had to be executed on 1, 4, 9, 16, 36, 64,
or 144 nodes.

The overall energy consumption was computed for each
instance according to the energy consumption model (11),
with and without applying the algorithm. The execution time
was also measured for all these experiments. Then, the energy
saving and performance degradation percentages were com-
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Figure 4: The energy and performance for all NAS benchmarks
running with a different number of nodes

puted for each instance. The results are presented in Tables
II, III, IV, V and VI. All these results are the average values
from many experiments for energy savings and performance
degradation. The tables show the experimental results for
running the NAS parallel benchmarks on different numbers of
nodes. The experiments show that the algorithm significantly
reduces the energy consumption (up to 34 %) and tries to limit
the performance degradation. They also show that the energy
saving percentage decreases when the number of computing
nodes increases. This reduction is due to the increase of the
communication times compared to the execution times when
the benchmarks are run over a higher number of nodes. Indeed,
the benchmarks with the same class, C, are executed on
different numbers of nodes, so the computation required for
each iteration is divided by the number of computing nodes.
On the other hand, more communications are required when
increasing the number of nodes so the static energy increases
linearly according to the communication time and the dynamic
power is less relevant in the overall energy consumption.
Therefore, reducing the frequency with Algorithm 1 is less
effective in reducing the overall energy savings. It can also be
noticed that for the benchmarks EP and SP that contain little
or no communications, the energy savings are not significantly
affected by the high number of nodes. No experiments were
conducted using bigger classes than D, because they require a
lot of memory (more than 64 GB) when being executed by the
simulator on one machine. The maximum distance between
the normalized energy curve and the normalized performance
for each instance is also shown in the result tables. It decrease
in the same way as the energy saving percentage. The tables
also show that the performance degradation percentage is not

significantly increased when the number of computing nodes
is increased because the computation times are small when
compared to the communication times.

Figures 4a and 4b present the energy saving and per-
formance degradation respectively for all the benchmarks
according to the number of used nodes. As shown in the
first plot, the energy saving percentages of the benchmarks
MG, LU, BT and FT decrease linearly when the number of
nodes increase. While for the EP and SP benchmarks, the
energy saving percentage is not affected by the increase of
the number of computing nodes, because in these benchmarks
there are little or no communications. Finally, the energy
saving of the CG benchmark significantly decreases when
the number of nodes increase because this benchmark has
more communications than the others. The second plot shows
that the performance degradation percentages of most of the
benchmarks decrease when they run on a big number of nodes
because they spend more time communicating than computing,
thus, scaling down the frequencies of some nodes has less
effect on the performance.

B. The results for different power consumption scenarios

The results of the previous section were obtained while
using processors that consume during computation an overall
power which is 80 % composed of dynamic power and of 20 %
of static power. In this section, these ratios are changed and
two new power scenarios are considered in order to evaluate
how the proposed algorithm adapts itself according to the static
and dynamic power values. The two new power scenarios are
the following:

• 70 % of dynamic power and 30 % of static power

• 90 % of dynamic power and 10 % of static power

The NAS parallel benchmarks were executed again over
processors that follow the new power scenarios. The class
C of each benchmark was run over 8 or 9 nodes and the
results are presented in Tables VII and VIII. These tables
show that the energy saving percentage of the 70 %-30 %
scenario is smaller for all benchmarks compared to the energy
saving of the 90 %-10 % scenario. Indeed, in the latter more
dynamic power is consumed when nodes are running on their
maximum frequencies, thus, scaling down the frequency of
the nodes results in higher energy savings than in the 70 %-
30 % scenario. On the other hand, the performance degradation
percentage is smaller in the 70 %-30 % scenario compared
to the 90 %-10 % scenario. This is due to the higher static
power percentage in the first scenario which makes it more
relevant in the overall consumed energy. Indeed, the static
energy is related to the execution time and if the performance
is degraded the amount of consumed static energy directly
increases. Therefore, the proposed algorithm does not really
significantly scale down much the frequencies of the nodes
in order to limit the increase of the execution time and thus
limiting the effect of the consumed static energy.

Both new power scenarios are compared to the old one in
Figure 5a. It shows the average of the performance degrada-
tion, the energy saving and the distances for all NAS bench-
marks of class C running on 8 or 9 nodes. The comparison
shows that the energy saving ratio is proportional to the



Table VII: The results of the 70 %-30 % power scenario

Program Energy Energy Performance Distance
name consumption/J saving% degradation%

CG 4144.21 22.42 7.72 14.70
MG 1133.23 24.50 5.34 19.16
EP 6170.30 16.19 0.02 16.17
LU 39477.28 20.43 0.07 20.36
BT 26169.55 25.34 6.62 18.71
SP 19620.09 19.32 3.66 15.66
FT 6094.07 23.17 0.36 22.81

Table VIII: The results of the 90 %-10 % power scenario

Program Energy Energy Performance Distance
name consumption/J saving% degradation%

CG 2812.38 36.36 6.80 29.56
MG 825.43 38.35 6.41 31.94
EP 5281.62 35.02 2.68 32.34
LU 31611.28 39.15 3.51 35.64
BT 21296.46 36.70 6.60 30.10
SP 15183.42 35.19 11.76 23.43
FT 3856.54 40.80 5.67 35.13

Table IX: Comparing the proposed algorithm

Program Energy saving % Perf. degradation % Distance
name EDP MaxDist EDP MaxDist EDP MaxDist

CG 27.58 31.25 5.82 7.12 21.76 24.13
MG 29.49 33.78 3.74 6.41 25.75 27.37
LU 19.55 28.33 0.00 0.01 19.55 28.22
EP 28.40 27.04 4.29 0.49 24.11 26.55
BT 27.68 32.32 6.45 7.87 21.23 24.43
SP 20.52 24.73 5.21 2.78 15.31 21.95
FT 27.03 31.02 2.75 2.54 24.28 28.48

dynamic power ratio: it is increased when applying the 90 %-
10 % scenario because at maximum frequency the dynamic
energy is the most relevant in the overall consumed energy and
can be reduced by lowering the frequency of some processors.
On the other hand, the energy saving decreases when the
70 %-30 % scenario is used because the dynamic energy is
less relevant in the overall consumed energy and lowering
the frequency does not return big energy savings. Moreover,
the average of the performance degradation is decreased when
using a higher ratio for static power (e.g. 70 %-30 % scenario
and 80 %-20 % scenario). Since the proposed algorithm opti-
mizes the energy consumption when using a higher ratio for
dynamic power the algorithm selects bigger frequency scaling
factors that result in more energy saving but less performance,
for example see Figure 5b. The opposite happens when using
a higher ratio for static power, the algorithm proportionally
selects smaller scaling values which result in less energy saving
but also less performance degradation.

C. The comparison of the proposed scaling algorithm

In this section, the scaling factors selection algorithm,
called MaxDist, is compared to Spiliopoulos et al. algorithm
[7], called EDP. They developed a green governor that regu-
larly applies an online frequency selecting algorithm to reduce
the energy consumed by a multicore architecture without
degrading much its performance. The algorithm selects the
frequencies that minimize the energy and delay products,
EDP = energy × delay using the predicted overall energy
consumption and execution time delay for each frequency.
To fairly compare both algorithms, the same energy and
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execution time models, equations (11) and (7), were used for
both algorithms to predict the energy consumption and the
execution times. Also Spiliopoulos et al. algorithm was adapted
to start the search from the initial frequencies computed using
the equation (17). The resulting algorithm is an exhaustive
search algorithm that minimizes the EDP and has the initial
frequencies values as an upper bound.

Both algorithms were applied to the parallel NAS bench-
marks to compare their efficiency. Table IX presents the results
of comparing the execution times and the energy consumption
for both versions of the NAS benchmarks while running the
class C of each benchmark over 8 or 9 heterogeneous nodes.
The results show that our algorithm provides better energy
savings than Spiliopoulos et al. algorithm, on average it results
in 29.76 % energy saving while their algorithm returns just
25.75 %. The average of performance degradation percentage
is approximately the same for both algorithms, about 4 %.

For all benchmarks, our algorithm outperforms Spiliopou-
los et al. algorithm in terms of energy and performance trade-
off, see Figure 6, because it maximizes the distance between
the energy saving and the performance degradation values
while giving the same weight for both metrics.



VII. CONCLUSION

In this paper, a new online frequency selecting algorithm
has been presented. It selects the best possible vector of
frequency scaling factors that gives the maximum distance (op-
timal trade-off) between the predicted energy and the predicted
performance curves for a heterogeneous platform. This algo-
rithm uses a new energy model for measuring and predicting
the energy of distributed iterative applications running over
heterogeneous platforms. To evaluate the proposed method, it
was applied on the NAS parallel benchmarks and executed over
a heterogeneous platform simulated by SimGrid. The results
of the experiments showed that the algorithm reduces up to
34 % the energy consumption of a message passing iterative
method while limiting the degradation of the performance. The
algorithm also selects different scaling factors according to the
percentage of the computing and communication times, and
according to the values of the static and dynamic powers of
the CPUs. Finally, the algorithm was compared to Spiliopoulos
et al. algorithm and the results showed that it outperforms their
algorithm in terms of energy-time trade-off.

In the near future, this method will be applied to real
heterogeneous platforms to evaluate its performance in a real
study case. It would also be interesting to evaluate its scal-
ability over large scale heterogeneous platforms and measure
the energy consumption reduction it can produce. Afterward,
we would like to develop a similar method that is adapted to
asynchronous iterative applications where each task does not
wait for other tasks to finish their works. The development of
such a method might require a new energy model because the
number of iterations is not known in advance and depends on
the global convergence of the iterative system.
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