
Scheduling tasks sharing files on heterogeneous master-slave platforms

Arnaud Giersch1, Yves Robert2, and Frédéric Vivien2

1: ICPS/LSIIT, UMR CNRS–ULP 7005, Strasbourg, France
2: LIP, UMR CNRS–ENS Lyon–INRIA–UCBL 5668

École normale supérieure de Lyon, France
Arnaud.Giersch@icps.u-strasbg.fr, {Yves.Robert,Frederic.Vivien}@ens-lyon.fr

Abstract

This paper is devoted to scheduling a large collection of
independent tasks onto heterogeneous clusters. The tasks
depend upon (input) files which initially reside on a mas-
ter processor. A given file may well be shared by several
tasks. The role of the master is to distribute the files to the
processors, so that they can execute the tasks. The objec-
tive for the master is to select which file to send to which
slave, and in which order, so as to minimize the total ex-
ecution time. The contribution of this paper is twofold.
On the theoretical side, we establish complexity results
that assess the difficulty of the problem. On the practical
side, we design several new heuristics, which are shown
to perform as efficiently as the best heuristics in [4, 3] al-
though their cost is an order of magnitude lower.

1. Introduction

In this paper, we are interested in scheduling inde-
pendent tasks onto heterogeneous clusters. These inde-
pendent tasks depend upon files (corresponding to in-
put data, for example), and difficulty arises from the
fact that some files may well be shared by several tasks.

This paper is motivated by the work of Casanova,
Legrand, Zagorodnov, and Berman [4, 3], who target
the scheduling of tasks in APST, the AppLeS Parame-
ter Sweep Template [2]. APST is a grid-based environ-
ment whose aim is to facilitate the mapping of applica-
tion to heterogeneous platforms. Typically, an APST
application consists of a large number of independent
tasks, with possible input data sharing (see [4, 3] for
a detailed description of a real-world application). By
large we mean that the number of tasks is usually at
least one order of magnitude larger than the number
of available computing resources. When deploying an
APST application, the intuitive idea is to map tasks

that depend upon the same files onto the same compu-
tational resource, so as to minimize communication re-
quirements. Casanova et al. [4, 3] have considered three
heuristics designed for completely independent tasks
(no input file sharing) that were proposed in [9]. They
have modified these three heuristics (originally called
Min-min, Max-min, and Sufferage in [9]) to adapt them
to the additional constraint that input files are shared
between tasks. As was already pointed out, the num-
ber of tasks to schedule is expected to be very large,
and special attention should be devoted to keeping the
cost of the scheduling heuristics reasonably low.

In this paper, we restrict to the same special case of
the scheduling problem as Casanova et al. [4, 3]: we as-
sume the existence of a master processor, which serves
as the repository for all files. The role of the master is
to distribute the files to the processors, so that they can
execute the tasks. The objective for the master is to se-
lect which file to send to which slave, and in which or-
der, so as to minimize the total execution time. This
master-slave paradigm has a fundamental limitation:
communications from the master may well become the
true bottleneck of the overall scheduling scheme. Al-
lowing for inter-slave communications, and/or for dis-
tributed file repositories, should certainly be the sub-
ject of future work. However, we believe that concen-
trating on the simpler master-slave paradigm is a first
but mandatory step towards a full understanding of
this challenging scheduling problem.

The contribution of this paper is twofold. On the
theoretical side, we establish complexity results that
assess the difficulty of the problem. On the practical
side, we design several new heuristics, which are shown
to perform as efficiently as the best heuristics in [4, 3]
although their cost is an order of magnitude lower.

The rest of the paper is organized as follows. The
next section (Section 2) is devoted to the precise and
formal specification of our scheduling problem, which

we denote as TasksSharingFiles. Next, in Section 3,
we state complexity results, which include the NP-
completeness of the very specific instance of the prob-
lem where all files and tasks have the same size. Then,
Section 4 deals with the design of low-cost polynomial-
time heuristics to solve the TasksSharingFiles prob-
lem. We report some experimental data in Section 5.
Finally, we state some concluding remarks in Section 6.

2. Framework

In this section, we formally state the optimization
problem to be solved.

� �
� �
� �
� �

� �
� �
� �

�
�
�
�

�
�
�

�
�
�
�

�
�
�

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

	
	
	

�
�
�

�
�
�
�

� �
� �
� �
� �

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�F1 F9F8F7F6F5F4F3F2

T1 T2 T3 T4 T6 T7 T8 T9 T10T5 T11 T12 T13

File

Task

Figure 1. Bipartite graph gathering the relations
between the files and the tasks.

2.1. Tasks and files

The problem is to schedule a set of n tasks T =
{T1, T2, . . . , Tn}. Theses tasks have different sizes: the
weight of task Tj is tj , 1 ≤ j ≤ n. There are no de-
pendence constraints between the tasks, so they can
be viewed as independent.

However, the execution of each task depends upon
one or several files, and a given file may be shared
by several tasks. Altogether, there are m files in the
set F = {F1, F2, . . . , Fm}. The size of file Fi is fi,
1 ≤ i ≤ m. We use a bipartite graph G = (V, E) to
represent the relations between files and tasks. The set
of nodes in the graph G is V = F ∪ T , and there is
an edge ei,j : Fi → Tj in E if and only if task Tj de-
pends on file Fi. Intuitively, files Fi such that ei,j ∈ E
correspond to some data that is needed for the execu-
tion of Tj to begin. The processor that will have to exe-
cute task Tj will need to receive all the files Fi such that
ei,j ∈ E before it can start the execution of Tj . See Fig-
ure 1 for a small example, with m = 9 files and n = 13
tasks. For instance, task T1 depends upon files F1 and
F2 (in this example all tasks depend upon two files ex-
actly; in the general case, each task depends upon an
arbitrary number of files).

To summarize, the bipartite graph G = (V, E), where
each node in V = F ∪ T is weighted by fi or tj , and

where edges in E represent the relations between the
files and the tasks, gathers all the information on the
application.

...

P0

P1 P2 Pp

c1 cpc2

Master

Slave

(w1) (wp)(w2)

Figure 2. Heterogeneous fork-graph.

2.2. Platform graph

The tasks are scheduled and executed on a master-
slave heterogeneous platform. We consider a fork-graph
(see Figure 2) with a master-processor P0 and p slaves
Pi, 1 ≤ i ≤ p. Each slave Pq has a (relative) cycle time
wq: it takes tj ·wq time-units to execute task Tj on pro-
cessor Pq. We let P denote the platform graph.

The master processor P0 initially holds all the m
files in F . The slaves are responsible for executing the n
tasks in T . Before it can execute a task Tj , a slave must
have received from the master all the files that Tj de-
pends upon. For communications, we use the one-port
model: the master can only communicate with a sin-
gle slave at a given time-step. We let cq denote the
inverse of the bandwidth of the link between P0 and
Pq, so that fi · cq time-units are required to send file
Fi from the master to slave Pq. We assume that com-
munications can overlap computations on the slaves: a
slave can process one task while receiving the files nec-
essary for the execution of another task.

Coming back to the example of Figure 1, assume
that we have a two-slave schedule such that tasks T1

to T6 are executed by slave P1, and tasks T7 to T13 are
executed by slave P2. Overall, P1 will receive six files
(F1 to F4, F6 and F7), and P2 will receive five files (F5

to F9). In this schedule, files F6 and F7 must be sent
to both slaves.

To summarize, we assume a fully heterogeneous
master-slave paradigm: slaves have different speeds and
links have different capacities. Communications from
the master are serial, and may well become the ma-
jor bottleneck.

2.3. Objective function

The objective is to minimize the total execution
time. The execution is terminated when the last task

has been completed. The schedule must decide which
tasks will be executed by each slave. It must also de-
cide the ordering in which the master sends the files to
the slaves. We stress two important points:

• Some files may well be sent several times, so that
several slaves can independently process tasks that
depend upon these files.

• A file sent to some processor remains available for
the rest of the schedule. If two tasks depending on
the same file are scheduled on the same processor,
the file must only be sent once.

We let TasksSharingFiles(G,P) denote the opti-
mization problem to be solved.

���
�

� �� ��� � �� ��� � �� �� �� �

...

(a) Polynomial

(round-robin)

� �� �
� �
� �
� � � �� �

� �

�
� ��

�

�
� � �� �

� �

� �
� �

. . .

(b) Polynomial [1]

� �� ��� � �� ��� ���
�

� �� �� �� �

(c) NP-complete

(this paper)

��
�
����

�
��
�

���
�

���
�

(d) Polynomial [8]

� �� �� �
��� �� �� �

��
�

��
�
�� ���

�

(e) NP-complete

(2-Partition)

� �� �� �
��� �� �� �

��
�

��
�
�� ���

�

(f) Open

Figure 3. Complexity results for the problem of
scheduling tasks sharing files.

3. Complexity

Most scheduling problems are known to be diffi-
cult [10, 5]. However, some particular instances of
the TasksSharingFiles optimization problem have
a polynomial complexity, while the decision problems
associated to other instances are NP-complete. We out-
line several results in this section, which are all gath-
ered in Figure 3. In Figure 3, the pictographs read as
follows: for each of the six case studies, the leftmost di-
agram represents the application graph, and the right-
most diagram represents the platform graph. The ap-
plication graph is made up of files and tasks which all
have the same sizes in situations (a), (b) and (c), while
this is not the case in situations (d), (e) and (f). Tasks
depend upon a single (private) file in situations (a),
(b), (d), and (e), which is not the case in situations
(c) and (f). As for the platform graph, there is a single
slave in situations (d) and (f), and several slaves oth-
erwise. The platform is homogeneous in cases (a) and

(e), and heterogeneous in cases (b) and (c). The six sit-
uations are discussed in the text below.

3.1. With a single slave

The instance of TasksSharingFiles with a single
slave turns out to be more difficult than we would think
intuitively. In the very special case where each task de-
pends upon a single non-shared file, i.e. n = m and
E reduces to n edges ei,i : Fi → Ti, the problem can
be solved in polynomial time (this is situation (d) of
Figure 3). Indeed, it is equivalent to the two-machine
flow-shop problem, and the algorithm of Johnson [8]
can be used to compute the optimal execution time.
According to Johnson’s algorithm we first schedule the
tasks whose communication time (the time needed to
send the file) is smaller than (or equal to) the exe-
cution time in increasing order of the communication
time. Then we schedule the remaining tasks in decreas-
ing order of their execution time.

At the time of this writing, we do not know the com-
plexity of the general instance with one slave (situation
(f) of Figure 3). Because Johnson’s algorithm is quite
intricate, we conjecture that the decision problem as-
sociated to the general instance, where files are shared
between tasks, is NP-complete. We do not even know
what the complexity is when files are shared between
tasks, but all tasks and files have the same size.

3.2. With two slaves

With several slaves, some problem instances have
polynomial complexity. First of all, a greedy round-
robin algorithm is optimal in situation (a) of Figure 3:
each task depends upon a single non-shared file, all
tasks and files have the same size, and the fork plat-
form is homogeneous. If we keep the same hypotheses
for the application graph but move to heterogeneous
slaves (situation (b) of Figure 3), the problem remains
polynomial, but the optimal algorithm becomes com-
plicated: see [1] for a description and proof.

The decision problem associated to the general in-
stance of TasksSharingFiles with two slaves writes
as follows:

Definition 1 (TSF2-DEC(G,P,p = 2,K)). Given a
bipartite application graph G, a heterogeneous platform
P with two slaves (p = 2) and a time bound K, is it pos-
sible to schedule all tasks within K time-steps?

Clearly, TSF2-Dec is NP-complete, even if there
are no files at all: in that case, TSF2-Dec reduces to
the scheduling of independent tasks on a two-processor
machine, which itself reduces to the 2-Partition prob-
lem [6] as the tasks have different sizes. This cor-

responds to situation (e) in Figure 3, where we do
not even need the private files. However, this NP-
completeness result does not hold in the strong sense:
in a word, the size of the tasks plays a key role in the
proof, and there are pseudo-polynomial algorithms to
solve TSF2-Dec in the simple case when there are
no files (see the pseudo-polynomial algorithm for 2-
Partition in [6]).

The following theorem states an interesting result:
in the case where all files and tasks have unit size (i.e.
fi = tj = 1), the TSF2-Dec remains NP-complete.
Note that in that case, the heterogeneity only comes
from the computing platform. This corresponds to sit-
uation (c) in Figure 3.

Theorem 1. TSF2-Dec(G,P,p = 2,fi = tj = 1,K)
is NP-complete.

See the research report [7] for a proof.

4. Heuristics

In this section, we first recall the three heuristics
used by Casanova et al. [4, 3]. Next we introduce sev-
eral new heuristics, whose main characteristic is a lower
computational complexity.

4.1. Reference heuristics

Because our work was originally motivated by the
paper of Casanova et al. [4, 3], we have to compare
our new heuristics to those presented by these authors,
which we call reference heuristics. We start with a de-
scription of these reference heuristics.

Structure of the heuristics. All the reference heuristics
are built on the model presented in Figure 4.

1: S ← T S is the set of the tasks that remain to be

scheduled

2: while S 6= ∅ do
3: for each task Tj ∈ S and each processor Pi do
4: Evaluate Objective(Tj , Pi)
5: Pick the “best” couple of a task Tj ∈ S and a

processor Pi according to Objective(Tj , Pi)
6: Schedule Tj on Pi as soon as possible
7: Remove Tj from S

Figure 4. Structure of reference heuristics.

Objective function. For all the heuristics, the objective
function is the same. Objective(Tj , Pi) is indeed the
minimum completion time (MCT) of task Tj if mapped

on processor Pi. Of course, the computation of this
completion time takes into account:

1. the files required by Tj that are already available
on Pi (we assume that any file that once was sent
to processor Pi is still available and do not need
to be resent);

2. the time needed by the master to send the other
files to Pi, knowing what communications are al-
ready scheduled;

3. the tasks already scheduled on Pi.

Chosen task. The heuristics only differ by the defini-
tion of the “best” couple (Tj , Pi). More precisely, they
only differ by the definition of the “best” task. Indeed,
the “best” task Tj is always mapped on its most favor-
able processor (denoted P (Tj)), i.e. on the processor
which minimizes the objective function:

Objective(Tj , P (Tj)) = min
1≤q≤p

Objective(Tj , Pq)

Here is the criterion used for each reference heuristic:

Min-min: the “best” task Tj is the one minimizing
the objective function when mapped on its most
favorable processor; shortest tasks are scheduled
first to avoid gaps at the beginning of the sched-
ule:

Objective(Tj , P (Tj)) = min
Tk∈S

min
1≤l≤p

Objective(Tk, Pl)

Max-min: the “best” task is the one whose objective
function, on its most favorable processor, is the
largest; the idea is that a long task scheduled at
the end would delay the end of the whole execu-
tion:

Objective(Tj , P (Tj)) = max
Tk∈S

min
1≤l≤p

Objective(Tk, Pl)

Sufferage: the “best” task is the one which will be
the most penalized if not mapped on its most fa-
vorable processor but on its second most favorable
processor, i.e. the “best” task is the one maximiz-
ing:

min
Pq 6=P (Tj)

Objective(Tj , Pq)−Objective(Tj , P (Tj))

Sufferage II and Sufferage X: these are refined
version of the Sufferage heuristic. The penalty
of a task is no more computed using the sec-
ond most favorable processor but by consid-
ering the first processor inducing a significant
increase in the completion time. See [4, 3] for de-
tails.

Computational complexity. The loop on Step 3 of the
reference heuristics computes the objective function
for any pair of processor and task. For each proces-
sor, this computation has a worst case complexity of
O(|S| + |E|), where E is the set of the edges repre-
senting the relations between files and tasks (see Sec-
tion 2.1). Hence, the overall complexity of the heuris-
tics is: O(p · n2 + p · |E|). The complexity is even worse
for Sufferage II and Sufferage X, as the processors
must be sorted for each task, leading to a complex-
ity of O(p · n2 · log p + p · |E|).

4.2. Structure of the new heuristics

When designing new heuristics, we took special care
to decreasing the computational complexity. The refer-
ence heuristics are very expensive for large problems.
We aimed at designing heuristics which are an order
of magnitude faster, while trying to preserve the qual-
ity of the scheduling produced.

In order to avoid the loop on all the pairs of pro-
cessors and tasks of Step 3 of the reference heuristics,
we need to be able to pick (more or less) in constant
time the next task to be scheduled. Thus we decided to
sort the tasks a priori according to an objective func-
tion. However, since our platform is heterogeneous, the
task characteristics may vary from one processor to the
other. For example, Johnson’s [8] criterion which splits
the tasks into two sets (communication time smaller
than, or greater than, computation time) depends on
the processors characteristics. Therefore, we compute
one sorted list of tasks for each processor. Note that
this sorted list is computed a priori and is not modi-
fied during the execution of the heuristic.

Once the sorted lists are computed, we still have to
map the tasks to the processors and to schedule them.
The tasks are scheduled one-at-a-time. When we want
to schedule a new task, on each processor Pi we evalu-
ate the completion time of the first task (according to
the sorted list) which has not yet been scheduled. Then
we pick the pair task/processor with the lowest comple-
tion time. This way, we obtain the structure of heuris-
tics presented in Figure 5.

We still have to define the objective functions used
to sort the tasks. This is the object of the next section.

4.3. The objective functions

The intuition behind the following six objective
functions is quite obvious:

Duration: we just consider the overall execution time
of the task as if it was the only task to be sched-

1: for any processor Pi do
2: for any task Tj ∈ T do
3: Evaluate Objective(Tj , Pi)
4: Build the list L(Pi) of the tasks sorted according

to the value of Objective(Tj , Pi)
5: while there remain tasks to schedule do
6: for any processor Pi do
7: Let Tj be the first unscheduled task in L(Pi)
8: Evaluate CompletionTime(Tj , Pi)
9: Pick the couple of a task Tj and a processor Pi

minimizing CompletionTime(Tj , Pi)
10: Schedule Tj on Pi as soon as possible
11: Mark Tj as scheduled

Figure 5. Structure of the new heuristics.

uled on the platform:

Objective(Tj , Pi) = tj · wi +
∑

ek,j∈E
fk · ci.

The tasks are sorted by increasing objectives,
which mimics the Min-min heuristic.

Payoff: when mapping a task, the time spent by the
master to send the required files is payed by all the
(waiting) processors as the master can only send
files to a single slave at a time, but the whole sys-
tem gains the completion of the task. Hence, the
following objective function encodes the payoff of
scheduling the task Tj on the processor Pi:

Objective(Tj , Pi) =
tj∑

ek,j∈E fk
.

The tasks are sorted by decreasing payoffs. Fur-
thermore, the order of the tasks does not depend
on the processor, so only one sorted list is re-
quired with this objective function. Note that the
actual objective function to compute the payoff
of scheduling task Tj on processor Pi would be:
Objective(Tj , Pi) = tj ·wi∑

ek,j∈E
fk·ci

; as the factors

wi and ci do not change the relative order of the
tasks on a given processor, we just dropped these
factors.

Advance: to keep a processor busy, we need to send
it all the files required by the next task that it will
process, before it ends the execution of the cur-
rent task. Hence the execution of the current task
must be larger than the time required to send the
files. We tried to encode this requirement by con-
sidering the difference of the computation- and
communication-time of a task. Hence the objec-

tive function:

Objective(Tj , Pi) = tj · wi −
∑

ek,j∈E
fk · ci.

The tasks are sorted by decreasing objectives.

Johnson: we sort the tasks on each processor as John-
son does for a two-machine flow shop (see Sec-
tion 3.1).

Communication: as the communications may be a
bottleneck we consider the overall time needed to
send the files a task depends upon as if it was the
only task to be scheduled on the platform:

Objective(Tj , Pi) =
∑

ek,j∈E
fk.

The tasks are sorted by increasing objectives, like
for Duration. As for Payoff, the sorted list is pro-
cessor independent, and only one sorted list is re-
quired with this objective function. This simple
objective function is inspired by the work in [1] on
the scheduling of homogeneous tasks on an hetero-
geneous platform.

Computation: symmetrically, we consider the execu-
tion time of a task as if it was not depending on
any file:

Objective(Tj , Pi) = tj .

The tasks are sorted by increasing objectives. Once
again, the sorted list is processor independent.

4.4. Additional policies

In the definition of the previous objective functions,
we did not take into account the fact that the files are
potentially shared between the tasks. Some of them will
probably be already available on the processor where
the task is to be scheduled, at the time-step we would
try to schedule it. Therefore, on top of the previous ob-
jective functions, we add the following additional poli-
cies. The goal is (to try) to take file sharing into ac-
count.

Shared: In the evaluation of the communication times
performed for the objective functions, we replace
the sum of the file sizes by the weighted sum of the
file sizes divided by the number of tasks depend-
ing on these files. We obtain new objective func-
tions which have the same name than the previous
ones plus the tag “shared”. For example, the ob-
jective function for Duration-shared is

tj · wi +
∑

ek,j∈E

fk

|{Tl | ek,l ∈ E}|
· ci.

Readiness: for a given processor Pi, and at a given
time, the “ready” tasks are the ones whose files
are already all on Pi. Under the Readiness pol-
icy, if there is any ready task on processor Pi at
Step 7 of the heuristics, we pick one ready task in-
stead of the first unscheduled task in the sorted
list L(Pi).

Locality: in order to try to decrease the amount of
file replication, we (try to) avoid mapping a task
Tj on a processor Pi if some of the files that Tj de-
pends upon are already present on another proces-
sor. To implement this policy, we modify Step 7
of the heuristics. Indeed, we no longer consider
the first unscheduled task in L(Pi), but the next
unscheduled task which does not depend on files
present on another processor. If we have scanned
the whole list, and if there remains some unsched-
uled tasks, we restart from the beginning of the list
with the original task selection scheme (first un-
scheduled task in L(Pi)). This can be implemented
with no overhead if each file is tagged with the pro-
cessor (if any) it resides on.

Finally, we obtain as many as 44 variants, since any
combination of the three additional policies may be
used for the six base objective functions.

4.5. Computational complexity

Computing the value of an objective function for all
tasks on all processors has a cost of O(p · (n + |E|)).
So the construction of all the sorted lists has a cost of
O(p · n · log n + p · |E|), except for the heuristics which
only require a single sorted list and whose complexity
is thus O(n · log n + |E|). The execution of the loop at
Step 5 of the heuristics (see Figure 5) has an overall
cost of (p · n · |E|). Hence the overall execution time of
the heuristics is:

O(p · n · (log n + |E|))

We have replaced the term n2 in the complexity of the
reference heuristics by the term n · log n. The experi-
mental results will assert the gain in complexity. Note
that all the additional policies can be implemented
without increasing the complexity of the base cases.

5. Experimental results

In order to compare our heuristics and the reference
heuristics, we have simulated their executions on ran-
domly built platforms and graphs. We have conducted
a very large number of experiments, which we summa-
rize in this section.

5.1. Experimental platforms

Processors: we have recorded the cycle time of the
different computers used in our laboratories (in
Lyon and Strasbourg). From this set of values,
we randomly pick values whose difference with the
mean value was less than the standard deviation.
This way we define a realistic and heterogeneous
set of 20 processors.

Communication links: the 20 communica-
tion links between the master and the slave are
built along the same principles as the set of pro-
cessors.

Communication to computation cost ratio: The
absolute values of the communication link band-
widths or of the processors speeds have no
meaning (in real life they are application de-
pendent and must be pondered by application
characteristics). We are only interested by the rel-
ative values of the processors speeds, and of
the communication links bandwidths. There-
fore, we normalize processor and communica-
tion characteristics. Also, we arbitrarily impose
the communication-to-computation cost ra-
tio, so as to model three main types of problems:
computation intensive (ratio=0.1), communica-
tion intensive (ratio=10), and intermediate (ra-
tio=1).

5.2. Tasks graphs

We run the heuristics on the following four types of
tasks graphs. In each case, the size of the files and tasks
are randomly and uniformly taken between 0.5 and 5.

Two-one: each task depends on exactly two files: one
file which is shared with some other tasks, and one
un-shared file.

Random: each task randomly depends on 1 up to 50
files.

Partitioned: this is a type of graph intermediate be-
tween the two previous ones; the graph is divided
into 20 chunks of 100 tasks, and on each chunk
each task randomly depends on 1 up to 10 files.
The whole graph contains at least 20 different con-
nected components.

Forks: each graph contains 100 fork graphs, where
each fork graph is made up of 20 tasks depend-
ing on a single and same file.

Each of our graphs contains 2000 tasks and 2500 files,
except for the fork graphs which also contain 2000 tasks
but only 100 files.

In order to avoid any interference between the graph
characteristics and the communication-to-computation
cost ratio, we normalize the sets of tasks and files so
that the sum of the file sizes equals the sum of the task
sizes times the communication-to-computation cost ra-
tio.

5.3. Results

Table 1 summarizes all the experiments. In this ta-
ble, we report the best ten heuristics, together
with their cost. This is a summary of 12, 000 ran-
dom tests (1, 000 tests over all four graph types
and three communication-to-computation cost ra-
tios). Each test involves 49 heuristics (5 reference
heuristics and 44 combinations for our new heuris-
tics). For each test, we compute the ratio of the perfor-
mance of all heuristics over the best heuristic, which
gives us a relative performance. The best heuristic dif-
fers from test to test, which explains why no heuristic
in Table 1 can achieve an average relative perfor-
mance exactly equal to 1. In other words, the best
heuristic is not always the best of each test, but it is
closest to the best of each test in the average. The op-
timal relative performance of 1 would be achieved by
picking, for any of the 12, 000 tests, the best heuris-
tic for this particular case. (For each test, the relative
cost is computed along the same guidelines, us-
ing the fastest heuristic.)

We see that Sufferage gives the best results: in av-
erage, it is within 11% of the optimal. The next nine
heuristics closely follow: they are within 13% to 14.7%
of the optimal. Out of these nine heuristics, only Min-
min is a reference heuristic. Clearly, the readiness pol-
icy has a major impact on the results.

In Table 1, we also report computational costs (CPU
time needed by each heuristic). The theoretical analy-
sis is confirmed: our new heuristics are at least an or-
der of magnitude faster than the reference heuristics.

We report more detailed performance data in [7].
As a conclusion, given their good performance com-

pared to Sufferage, we believe that the eight new
variants listed in Table 1 provide a very good alter-
native to the costly reference heuristics. The differ-
ences between the heuristics are more significant when
the communication-to-computation cost ratio is low.
In the opposite case, is it likely that the communica-
tions from the master become the true bottleneck of
all scheduling strategies. Computation+readiness
outperforms by 20% all the other heuristics, including
the reference heuristics, for the graphs of type Forks.
However, the Duration+readiness gives more sta-
ble results for all types of graphs. Overall, Computa-

Heuristic Relative Standard Relative Standard
performance deviation cost deviation

Sufferage 1.110 0.1641 376.7 153.4
Min-min 1.130 0.1981 419.2 191.7
Computation+readiness 1.133 0.1097 1.569 0.4249
Duration+locality+readiness 1.133 0.1295 1.499 0.4543
Duration+readiness 1.133 0.1299 1.446 0.3672
Payoff+shared+readiness 1.138 0.1260 1.496 0.6052
Payoff+readiness 1.139 0.1266 1.246 0.2494
Payoff+shared+locality+readiness 1.145 0.1265 1.567 0.5765
Payoff+locality+readiness 1.145 0.1270 1.318 0.2329
Computation+locality 1.147 0.1234 1.618 0.4749
Max-min 1.504 0.4601 392.8 194.0

Table 1. Relative performance and cost of the best ten heuristics and of the worst reference heuristic.

tion+readiness and Duration+readiness are the
recommended heuristics.

6. Conclusion

In this paper, we have dealt with the problem of
scheduling a large collection of independent tasks, that
may share input files, onto heterogeneous clusters. On
the theoretical side, we have shown a new complexity
result. On the practical side, we have improved upon
the heuristics proposed by Casanova et al. [4, 3]. We
have succeeded in designing a collection of new heuris-
tics which have similar performances but whose com-
putational costs are an order of magnitude lower.

This work, as the one of Casanova et al., was lim-
ited to the master-slave paradigm. It is intended as a
first step towards addressing the challenging situation
where

• input files are distributed among several file
servers (several masters) rather than being lo-
cated on a single master,

• communication can take place between computa-
tional resources (slaves) in addition to the mes-
sages sent by the master(s): some slave may well
propagate files to another slave while computing.

We hope that the ideas introduced when designing our
heuristics will prove useful for this difficult scheduling
problem.

References

[1] O. Beaumont, A. Legrand, and Y. Robert. A
polynomial-time algorithm for allocating independent
tasksonheterogeneous fork-graphs. In ISCISXVII, Sev-
enteenth International Symposium On Computer and
Information Sciences, pages 115–119. CRC Press, 2002.

[2] F. Berman. High-performance schedulers. In I. Fos-
ter and C. Kesselman, editors, The Grid: Blueprint for a
NewComputing Infrastructure, pages 279–309.Morgan-
Kaufmann, 1999.

[3] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman. Using Simulation to Evaluate Schedul-
ing Heuristics for a Class of Applications in Grid En-
vironments. Research Report 99-46, Laboratoire de
l’Informatique du Parallélisme, ENS Lyon, Sept. 1999.

[4] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman. Heuristics for Scheduling Parameter Sweep
Applications in Grid Environments. In Ninth Hetero-
geneous Computing Workshop, pages 349–363. IEEE
Computer Society Press, 2000.

[5] P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and
Z. Liu, editors. Scheduling Theory and its Applications.
John Wiley and Sons, 1995.

[6] M. R. Garey and D. S. Johnson. Computers and In-
tractability, a Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1991.

[7] A. Giersch, Y. Robert, and F. Vivien. Scheduling tasks
sharing files on heterogeneous clusters. ResearchReport
RR-2003-28, LIP, ENS Lyon, France, May 2003.

[8] S.M.Johnson. Optimal two-andthree-stageproduction
scheduleswith setup times included. Naval Research Lo-
gistics Quarterly, 1:61–68, 1954.

[9] M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and
R. Freund. Dynamic matching and scheduling of a class
of independent tasks ontoheterogeneous computing sys-
tems. In Eight Heterogeneous Computing Workshop,
pages 30–44. IEEE Computer Society Press, 1999.

[10] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling
and load balancing in parallel and distributed systems.
IEEE Computer Science Press, 1995.

