
Load-Balancing Scatter Operations

for Grid Computing ?

Stéphane Genaud a, Arnaud Giersch a,∗, Frédéric Vivien b

aICPS/LSIIT, UMR CNRS–ULP 7005
Parc d’Innovation, Bd Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France

bLIP, UMR CNRS–ENS Lyon–INRIA–UCBL 5668
École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

Abstract

We present solutions to statically load-balance scatter operations in parallel codes
run on grids. Our load-balancing strategy is based on the modification of the data
distributions used in scatter operations. We study the replacement of scatter opera-
tions with parameterized scatters, allowing custom distributions of data. The paper
presents: 1) a general algorithm which finds an optimal distribution of data across
processors; 2) a quicker guaranteed heuristic relying on hypotheses on communica-
tions and computations; 3) a policy on the ordering of the processors. Experimental
results with an MPI scientific code illustrate the benefits obtained from our load-
balancing.

Key words: parallel programming, grid computing, heterogeneous computing,
load-balancing, scatter operation

1 Introduction

Traditionally, users have developed scientific applications with a parallel com-
puter in mind, assuming an homogeneous set of processors linked with an ho-
mogeneous and fast network. However, grids [16] of computational resources

? This research is partially supported by the French Ministry of Research through
the ACI-GRID program.
∗ Corresponding author. Tel.: +33 3 90 24 45 42; fax: +33 3 90 24 45 47.

Email addresses: stephane.genaud@icps.u-strasbg.fr (Stéphane Genaud),
arnaud.giersch@icps.u-strasbg.fr (Arnaud Giersch),
frederic.vivien@ens-lyon.fr (Frédéric Vivien).

Preprint submitted to Parallel Computing 17th March 2003
(reference: PARCO#1390) Revised: 28th May 2004

Final: 26th July 2004



usually include heterogeneous processors, and heterogeneous network links
that are orders of magnitude slower than in a parallel computer. Therefore,
the execution on grids of applications designed for parallel computers usu-
ally leads to poor performance as the distribution of workload does not take
the heterogeneity into account. Hence the need for tools able to analyze and
transform existing parallel applications to improve their performances on het-
erogeneous environments by load-balancing their execution. Furthermore, we
are not willing to fully rewrite the original applications but we are rather seek-
ing transformations which modify the original source code as little as possible.

Among the usual operations found in parallel codes is the scatter operation,
which is one of the collective operations usually shipped with message passing
libraries. For instance, the mostly used message passing library MPI [26] pro-
vides a MPI_Scatter primitive that allows the programmer to distribute even
parts of data to the processors in the MPI communicator.

The less intrusive modification enabling a performance gain in an heteroge-
neous environment consists in using a communication library adapted to het-
erogeneity. Thus, much work has been devoted to that purpose: for MPI, nu-
merous projects including MagPIe [23], MPI-StarT [20], and MPICH-G2 [22],
aim at improving communications performance in presence of heterogeneous
networks. Most of the gain is obtained by reworking the design of collective
communication primitives. For instance, MPICH-G2 performs often better
than MPICH to disseminate information held by a processor to several others.
While MPICH always use a binomial tree to propagate data, MPICH-G2 is
able to switch to a flat tree broadcast when network latency is high [21]. Mak-
ing the communication library aware of the precise network topology is not
easy: MPICH-G2 queries the underlying Globus [15] environment to retrieve
information about the network topology that the user may have specified
through environment variables. Such network-aware libraries bring interest-
ing results as compared to standard communication libraries. However, these
improvements are often not sufficient to attain performance considered ac-
ceptable by users when the processors are also heterogeneous. Balancing the
computation tasks over processors is also needed to really take benefit from
grids.

The typical usage of the scatter operation is to spawn an SPMD computation
section on the processors after they received their piece of data. Thereby, if
the computation load on processors depends on the data received, the scatter
operation may be used as a means to load-balance computations, provided the
items in the data set to scatter are independent. MPI provides the primitive
MPI_Scatterv that allows to distribute unequal shares of data. We claim that
replacing MPI_Scatter by MPI_Scatterv calls parameterized with clever dis-
tributions may lead to great performance improvements at low cost. In terms
of source code rewriting, the transformation of such operations does not re-

2



quire a deep source code re-organization, and it can easily be automated in a
software tool. Our problem is thus to load-balance the execution by comput-
ing a data distribution depending on the processors speeds and network links
bandwidths.

In Section 2 we present our target application, a real scientific application in
geophysics, written in MPI, that we ran to ray-trace the full set of seismic
events of year 1999. In Section 3 we present our load-balancing techniques,
in Section 4 the processor ordering policy we derive from a case study, in
Section 5 our experimental results, in Section 6 the related works, and we
conclude in Section 7.

2 Motivating example

2.1 Seismic tomography

The geophysical code we consider is in the seismic tomography field. The gen-
eral objective of such applications is to build a global seismic velocity model
of the Earth interior. The various velocities found at the different points dis-
cretized by the model (generally a mesh) reflect the physical rock properties
in those locations. The seismic waves velocities are computed from the seis-
mograms recorded by captors located all around the globe: once analyzed, the
wave type, the earthquake hypocenter, and the captor locations, as well as the
wave travel time, are determined.

From these data, a tomography application reconstructs the event using an
initial velocity model. The wave propagation from the source hypocenter to
a given captor defines a path, that the application evaluates given properties
of the initial velocity model. The time for the wave to propagate along this
evaluated path is then compared to the actual travel time and, in a final step, a
new velocity model that minimizes those differences is computed. This process
is more accurate if the new model better fits numerous such paths in many
locations inside the Earth, and is therefore very computationally demanding.

2.2 The example application

We now outline how the application under study exploits the potential paral-
lelism of the computations, and how the tasks are distributed across processors.
Recall that the input data is a set of seismic waves characteristics each de-
scribed by a pair of 3D coordinates (the coordinates of the earthquake source

3



and those of the receiving captor) plus the wave type. With these character-
istics, a seismic wave can be modeled by a set of ray paths that represents
the wavefront propagation. Seismic wave characteristics are sufficient to per-
form the ray-tracing of the whole associated ray path. Therefore, all ray paths
can be traced independently. The existing parallelization of the application
(presented in [19]) assumes an homogeneous set of processors (the implicit
target being a parallel computer). There is one MPI process per processor.
The following pseudo-code outlines the main communication and computa-
tion phases:

if (rank = ROOT)

raydata ← read n lines from data file;

MPI_Scatter(raydata,n/P,...,rbuff,...,ROOT,MPI_COMM_WORLD);

compute_work(rbuff);

where P is the number of processors involved, and n the number of data items.
The MPI_Scatter instruction is executed by the root and the computation
processors. The processor identified as ROOT performs a send of contiguous
blocks of bn/P c elements from the raydata buffer to all processors of the
group while all processors make a receive operation of their respective data
in the rbuff buffer. For sake of simplicity the remaining (n mod P ) items
distribution is not shown here. Figure 1 shows a potential execution of this
communication operation, with P4 as root processor.

time

idle

receiving

sending

computing

t0

t1

P1 P2 P3 P4

Fig. 1. A scatter communication followed by a computation phase.

2.3 Communication model

Figure 1 outlines the behavior of the scatter operation as it was observed
during the application runs on our test grid (described in Section 5.1). In
the MPICH-G2 implementation we used (v1.2.2.3), when it performs a scat-
ter operation, the root process (P4 on the figure) must have completely sent
one message before it can start sending another message. This behavior corre-
sponds to the one-port model described in [5]. As the root processor sends data
to processors in turn, a receiving processor actually begins its communication

4



after all previous processors have been served. This leads to a“stair effect” rep-
resented on Figure 1 by the end times of the receive operations (black boxes).
The implementation also makes the order of the destination processors follow
the processors ranks.

As noted by Yang and Casanova [30], the one-port model is a common assump-
tion but in some cases, e.g., for WAN connections, the master could send data
to slaves simultaneously to achieve better throughput, and thus a multi-port
model could be used. This solution would however require an appropriate im-
plementation for the scatter operation, and would lead to a more complicated
problem. For a multi-port solution, a model of the network behavior (in par-
ticular when two communications occur in parallel) is needed. This comes to
discover the network characteristics, which is a difficult problem by itself [25].
Indeed we need to know which communications it would be beneficial to do in
parallel, before deciding what communications should take place, and when.

3 Static load-balancing

In this section, we present different ways to solve the optimal data distribu-
tion problem. After briefly presenting our framework, we give two dynamic
programming algorithms, the second one being more efficient than the first
one, but under some additional hypotheses on the cost functions. We finish by
presenting a guaranteed heuristic using linear programming that can be used
to quickly find a very good approximation when the cost functions are affine.

As the overall execution time after load-balancing is rather small, we make the
assumption that the grid characteristics do not change during the computation
and we only consider static load-balancing. Note also that the computed dis-
tribution is not necessarily based on static parameters estimated for the whole
execution: a monitor daemon process (like [29]) running aside the application
could be queried just before a scatter operation to retrieve the instantaneous
grid characteristics.

3.1 Framework

In this paragraph, we introduce some notations, as well as the cost model used
to further derive the optimal data distribution.

We consider a set of p processors: P1, . . . , Pp. Processor Pi is characterized by
1) the time Tcomp(i, x) it takes to compute x data items; 2) the time Tcomm(i, x)
it takes to receive x data items from the root processor. We want to process n

5



data items. Thus, we look for a distribution n1, . . . , np of these data over the
p processors that minimizes the overall computation time. All along the paper
the root processor will be the last processor, Pp (this simplifies expressions as
Pp can only start to process its share of the data items after it has sent the
other data items to the other processors). As the root processor sends data
to processors in turn, processor Pi begins its communication after processors
P1, . . . , Pi−1 have been served, which takes a time

∑i−1
j=1 Tcomm(j, nj). Then the

root takes a time Tcomm(i, ni) to send to Pi its data. Finally Pi takes a time
Tcomp(i, ni) to process its share of the data. Thus, Pi ends its processing at
time:

Ti =
i∑

j=1

Tcomm(j, nj) + Tcomp(i, ni). (1)

The time, T , taken by our system to compute the set of n data items is
therefore:

T = max
1≤i≤p

Ti = max
1≤i≤p

 i∑
j=1

Tcomm(j, nj) + Tcomp(i, ni)

 , (2)

and we are looking for the distribution n1, . . . , np minimizing this duration.

3.2 An exact solution by dynamic programming

In this section we present two dynamic programming algorithms to compute
the optimal data distribution. The first one only assumes that the cost func-
tions are nonnegative. The second one presents some optimizations that makes
it perform far quicker, but under the additional hypothesis that the cost func-
tions are increasing.

Basic algorithm

We now study Equation (2). The overall execution time is the maximum of
the execution time of P1, and of the other processors:

T = max

Tcomm(1, n1) + Tcomp(1, n1),

max
2≤i≤p

 i∑
j=1

Tcomm(j, nj) + Tcomp(i, ni)

 .

Then, one can remark that all the terms in this equation contain the time
needed for the root processor to send P1 its data. Therefore, Equation (2) can

6



Algorithm 1. Compute an optimal distribution of n data over p processors.
function compute-distribution(n, p)
1: solution[0, p]← cons(0,NIL)
2: cost [0, p]← 0
3: for d← 1 to n do
4: solution[d, p]← cons(d,NIL)
5: cost [d, p]← Tcomm(p, d) + Tcomp(p, d)
6: end for
7: for i← p− 1 downto 1 do
8: solution[0, i]← cons(0, solution[0, i + 1])
9: cost [0, i]← 0

10: for d← 1 to n do
11: (sol ,min)← (0, cost [d, i + 1])
12: for e← 1 to d do
13: m← Tcomm(i, e) + max(Tcomp(i, e), cost [d− e, i + 1])
14: if m < min then
15: (sol ,min)← (e,m)
16: end if
17: end for
18: solution[d, i]← cons(sol , solution[d− sol , i + 1])
19: cost [d, i]← min
20: end for
21: end for
22: return (solution[n, 1], cost [n, 1])

be written:

T = Tcomm(1, n1)

+ max

Tcomp(1, n1), max
2≤i≤p

 i∑
j=2

Tcomm(j, nj) + Tcomp(i, ni)

 .

So, we notice that the time to process n data on processors 1 to p is equal
to the time taken by the root to send n1 data to P1 plus the maximum of 1)
the time taken by P1 to process its n1 data; 2) the time for processors 2 to p
to process n− n1 data. This leads to the dynamic programming Algorithm 1
presented on page 7 (the distribution is expressed as a list, hence the use of
the list constructor “cons”). In Algorithm 1, cost [d, i] denotes the cost of the
processing of d data items over the processors Pi through Pp. solution[d, i] is
a list describing a distribution of d data items over the processors Pi through
Pp which achieves the minimal execution time cost [d, i].

Algorithm 1 has a complexity of O(p · n2), which may be prohibitive. But
Algorithm 1 only assumes that the functions Tcomm(i, x) and Tcomp(i, x) are
nonnegative and null whenever x = 0.

7



Optimized algorithm

If we now make the assumption that Tcomm(i, x) and Tcomp(i, x) are increasing
with x, we can make some optimizations on the algorithm. These optimiza-
tions consist in reducing the bounds of the inner loop (e-loop, lines 12–17 of
Algorithm 1). Algorithm 2, on page 9, presents these optimizations.

Let us explain what changed between the two algorithms. For the following,
remember the hypothesis that Tcomm(i, x) and Tcomp(i, x) are increasing with x.
As Tcomm(i, x) and Tcomp(i, x) are nonnegative, cost [x, i] is obviously increasing
too, and thus cost [d−x, i] is decreasing with x. The purpose of the e-loop is to
find sol in [0, d] such that Tcomm(i, sol)+max(Tcomp(i, sol), cost [d−sol , i+1]) is
minimal. We try 1) to reduce the upper bound of this loop, and 2) to increase
the lower bound.

Let emax be the smallest integer such that Tcomp(i, emax ) ≥ cost [d−emax , i+1].
For all e ≥ emax , we have Tcomp(i, e) ≥ Tcomp(i, emax ) ≥ cost [d − emax , i +
1] ≥ cost [d − e, i + 1], so mine≥emax (Tcomm(i, e) + max(Tcomp(i, e), cost [d −
e, i + 1])) equals to mine≥emax (Tcomm(i, e) + Tcomp(i, e)). As Tcomm(i, e) and
Tcomp(i, e) are both increasing with e, mine≥emax (Tcomm(i, e)+Tcomp(i, e)) equals
to Tcomm(i, emax ) + Tcomp(i, emax ). By using a binary search to find emax (lines
16–26 of Algorithm 2), and by taking care of the cases when emax falls before
0 (line 12) or after d (line 14), we can reduce the upper bound of the e-loop.
To take advantage of this information, the direction of the loop must also be
inverted. Besides that, we know that inside the loop, cost [d−e, i+1] is always
greater than Tcomp(i, e), so the max in the computation of m can be avoided
(line 29).

We cannot proceed the same way to increase the lower bound of the e-loop.
We can however remark that, as the loop has been inverted, e is decreasing, so
cost [d−e, i+1] is increasing. If cost [d−e, i+1] becomes greater than or equal
to min, then for all e′ < e, we have cost [d−e′, i+1] ≥ cost [d−e, i+1] ≥ min,
and as Tcomm(i, x) is nonnegative, Tcomm(i, e′) + cost [d− e′, i + 1] ≥ min. The
iteration can thus be stopped, hence the break (line 33).

In the worst case, the complexity of Algorithm 2 is the same than for Algo-
rithm 1, i.e., O(p · n2). In the best case, it is O(p · n). We implemented both
algorithms, and in practice Algorithm 2 is far more efficient.

In spite of these optimizations, running the implementation of Algorithm 2 is
still time-consuming. Another way to decrease the execution time of these al-
gorithms would be by increasing the granularity, i.e., by grouping data items
into blocks and to consider the repartition of these blocks among the pro-
cessors. This would of course lead to a non-optimal solution. However, since
there are very few constraints on the cost functions, it is impossible in the
general case to bound the error according to the block size. That is why we

8



Algorithm 2. Compute an optimal distribution of n data over p processors (opti-
mized version).

function compute-distribution(n, p)
1: solution[0, p]← cons(0,NIL)
2: cost [0, p]← 0
3: for d← 1 to n do
4: solution[d, p]← cons(d,NIL)
5: cost [d, p]← Tcomm(p, d) + Tcomp(p, d)
6: end for
7: for i← p− 1 downto 1 do
8: solution[0, i]← cons(0, solution[0, i + 1])
9: cost [0, i]← 0

10: for d← 1 to n do
11: if Tcomp(i, 0) ≥ cost [d, i + 1] then
12: (sol ,min)← (0, Tcomm(i, 0) + Tcomp(i, 0))
13: else if Tcomp(i, d) < cost [0, i + 1] then
14: (sol ,min)← (d, Tcomm(i, d) + cost [0, i + 1]))
15: else
16: (emin , emax )← (0, d)
17: e← bd/2c
18: while e 6= emin do
19: if Tcomp(i, e) < cost [d− e, i + 1] then
20: emin ← e
21: else
22: emax ← e
23: end if
24: e← b(emin + emax )/2c
25: end while
26: (sol ,min)← (emax , Tcomm(i, emax ) + Tcomp(i, emax ))
27: end if
28: for e← sol − 1 downto 0 do
29: m← Tcomm(i, e) + cost [d− e, i + 1]
30: if m < min then
31: (sol ,min)← (e,m)
32: else if cost [d− e, i + 1] ≥ min then
33: break
34: end if
35: end for
36: solution[d, i]← cons(sol , solution[d− sol , i + 1])
37: cost [d, i]← min
38: end for
39: end for
40: return (solution[n, 1], cost [n, 1])

9



now present a more efficient heuristic valid for simple cases.

3.3 A guaranteed heuristic using linear programming

In this section, we consider the realistic but less general case when all com-
munication and computation times are affine functions. This new assumption
enables us to code our problem as a linear program. Furthermore, from the
linear programming formulation we derive an efficient and guaranteed heuris-
tic.

Thus, we make the hypothesis that all the functions Tcomm(i, n) and Tcomp(i, n)
are affine in n, increasing, and nonnegative (for n ≥ 0). Equation (2) can then
be coded into the following linear program:


Minimize T such that

∀i ∈ [1, p], ni ≥ 0,∑p
i=1 ni = n,

∀i ∈ [1, p], T ≥ ∑i
j=1 Tcomm(j, nj) + Tcomp(i, ni).

(3)

We must solve this linear program in integer because we need an integer so-
lution. The integer resolution is however very time-consuming.

Fortunately, a nice workaround exists which provides a close approximation:
we can solve the system in rational to obtain an optimal rational solution
n1, . . . , np that we round up to obtain an integer solution n′1, . . . , n

′
p with∑

i n
′
i = n. Let T ′ be the execution time of this solution, T be the time of

the rational solution, and Topt the time of the optimal integer solution. If
|ni − n′i| ≤ 1 for any i, which is easily enforced by the rounding scheme de-
scribed below, then:

Topt ≤ T ′ ≤ Topt +
p∑

j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1). (4)

Indeed,

T ′ = max
1≤i≤p

 i∑
j=1

Tcomm(j, n′j) + Tcomp(i, n′i)

 . (5)

By hypothesis, Tcomm(j, x) and Tcomp(j, x) are nonnegative, increasing, and

10



affine functions. Therefore,

Tcomm(j, n′j) = Tcomm(j, nj + (n′j − nj))

≤ Tcomm(j, nj + |n′j − nj|)
≤ Tcomm(j, nj) + Tcomm(j, |n′j − nj|)
≤ Tcomm(j, nj) + Tcomm(j, 1)

and we have an equivalent upper bound for Tcomp(j, n′j). Using these upper
bounds to over-approximate the expression of T ′ given by Equation (5) we
obtain:

T ′ ≤ max
1≤i≤p

 i∑
j=1

(Tcomm(j, nj) + Tcomm(j, 1)) + Tcomp(i, ni) + Tcomp(i, 1)

 (6)

which implies Equation (4) knowing that Topt ≤ T ′, T ≤ Topt , and finally that
T = max1≤i≤p(

∑i
j=1 Tcomm(j, nj) + Tcomp(i, ni)).

Rounding scheme

Our rounding scheme is trivial: first we round, to the nearest integer, the non
integer ni which is nearest to an integer. Doing so we obtain n′i and we make
an approximation error of e = n′i − ni (with |e| < 1). If e is negative (resp.
positive), ni was underestimated (resp. overestimated) by the approximation.
Then we round to its ceiling (resp. floor), one of the remaining njs which is the
nearest to its ceiling dnje (resp. floor bnjc), we obtain a new approximation
error of e = e + n′j − nj (with |e| < 1), and so on until there only remains
to approximate only one of the nis, say nk. Then we let n′k = nk + e. The
distribution n′1, . . . , n

′
p is thus integer,

∑
1≤i≤p n′i = d, and each n′i differs from

ni by less than one.

3.4 Choice of the root processor

We make the assumption that, originally, the n data items that must be pro-
cessed are stored on a single computer, denoted C. A processor of C may or
may not be used as the root processor. If the root processor is not on C, then
the whole execution time is equal to the time needed to transfer the data from
C to the root processor, plus the execution time as computed by one of the
previous algorithms and heuristic. The best root processor is then the proces-
sor minimizing this whole execution time, when picked as root. This is just
the result of a minimization over the p candidates.

11



4 A case study: solving in rational with linear communication and
computation times

In this section we study a simple and theoretical case. This case study will
enable us to define a policy on the order in which the processors must receive
their data.

We make the hypothesis that all the functions Tcomm(i, n) and Tcomp(i, n) are
linear in n. In other words, we assume that there are constants λi and µi such
that Tcomm(i, n) = λi · n and Tcomp(i, n) = µi · n. (Note that λp = 0 with our
hypotheses.) Also, we only look for a rational solution and not an integer one
as we should. In other words, we are going to solve our problem in the divisible
load framework [10].

We show in Section 4.3 that, in this simple case, the processor ordering lead-
ing to the shortest execution time is quite simple. Before that we prove in
Section 4.2 that there always is an optimal (rational) solution in which all the
working processors have the same ending time. We also show the condition for
a processor to receive a share of the whole work. As this condition comes from
the expression of the execution duration when all processors have to process a
share of the whole work and finishes at the same date, we begin by studying
this case in Section 4.1. Finally, in Section 4.4, we derive from our case study
a guaranteed heuristic for the general case.

4.1 Execution duration

Theorem 1 (Execution duration) If we are looking for a rational solution,
if each processor Pi receives a (non empty) share ni of the whole set of n data
items and if all processors end their computation at a same date t, then the
execution duration is

t =
n∑p

i=1
1

λi+µi
·∏i−1

j=1
µj

λj+µj

(7)

and processor Pi receives

ni =
1

λi + µi

·

i−1∏
j=1

µj

λj + µj

 · t (8)

data to process.

PROOF. We want to express the execution duration, t, and the number of
data processor Pi must process, ni, as functions of n. Equation (2) states that

12



processor Pi ends its processing at time: Ti =
∑i

j=1 Tcomm(j, nj) + Tcomp(i, ni).

So, with our current hypotheses: Ti =
∑i

j=1 λj ·nj+µi·ni. Thus, n1 = t/(λ1+µ1)
and, for i ∈ [2, p],

Ti = Ti−1 − µi−1 · ni−1 + (λi + µi) · ni.

As, by hypothesis, all processors end their processing at the same time, then
Ti = Ti−1 = t, ni = µi−1/(λi + µi) · ni−1, and we find Equation (8).

To express the execution duration t as a function of n we just sum Equation (8)
for all values of i in [1, p]:

n =
p∑

i=1

ni =
p∑

i=1

1

λi + µi

·

i−1∏
j=1

µj

λj + µj

 · t
which is equivalent to Equation (7). 2

In the rest of this paper we note:

D(P1, . . . , Pp) =
1∑p

i=1
1

λi+µi
·∏i−1

j=1
µj

λj+µj

.

and so we have t = n ·D(P1, . . . , Pp) under the hypotheses of Theorem 1.

4.2 Simultaneous endings

In this paragraph we exhibit a condition on the costs functions Tcomm(i, n)
and Tcomp(i, n) which is necessary and sufficient to have an optimal rational
solution where each processor receives a non-empty share of data, and all
processors end at the same date. This tells us when Theorem 1 can be used
to find a rational solution to our system.

Theorem 2 (Simultaneous endings) Given p processors, P1, . . . , Pi, . . . ,
Pp, whose communication and computation duration functions Tcomm(i, n) and
Tcomp(i, n) are linear in n, there exists an optimal rational solution where each
processor receives a non-empty share of the whole set of data, and all proces-
sors end their computation at the same date, if and only if

∀i ∈ [1, p− 1], λi ≤ D(Pi+1, . . . , Pp).

PROOF. The proof is made by induction on the number of processors. If
there is only one processor, then the theorem is trivially true. We shall next

13



prove that if the theorem is true for p processors, then it is also true for p + 1
processors.

Suppose we have p+1 processors P1, . . . , Pp+1. An optimal solution for P1, . . . ,
Pp+1 to compute n data items is obtained by giving α · n items to P1 and
(1−α) ·n items to P2, . . . , Pp+1 with α in [0, 1]. The end date for the processor
P1 is then t1(α) = (λ1 + µ1) · n · α.

As the theorem is supposed to be true for p processors, we know that there ex-
ists an optimal rational solution where processors P2 to Pp+1 all work and finish
their work simultaneously, if and only if, ∀i ∈ [2, p], λi ≤ D(Pi+1, . . . , Pp+1). In
this case, by Theorem 1, the time taken by P2, . . . , Pp+1 to compute (1−α) ·n
data is (1− α) · n ·D(P2, . . . , Pp+1). So, the processors P2, . . . , Pp+1 all end at
the same date t2(α) = λ1 · n · α + k · n · (1− α) = k · n + (λ1 − k) · n · α with
k = D(P2, . . . , Pp+1).

If λ1 ≤ k, then t1(α) is strictly increasing, and t2(α) is decreasing. More-
over, we have t1(0) < t2(0) and t1(1) > t2(1), thus the whole end date
max(t1(α), t2(α)) is minimized for an unique α in ]0, 1[, when t1(α) = t2(α).
In this case, each processor has some data to compute and they all end at the
same date.

On the contrary, if λ1 > k, then t1(α) and t2(α) are both strictly increasing,
thus the whole end date max(t1(α), t2(α)) is minimized for α = 0. In this case,
processor P1 has nothing to compute and its end date is 0, while processors
P2 to Pp+1 all end at a same date k · n.

Thus, there exists an optimal rational solution where each of the p+ 1 proces-
sors P1, . . . , Pp+1 receives a non-empty share of the whole set of data, and all
processors end their computation at the same date, if and only if, ∀i ∈ [1, p],
λi ≤ D(Pi+1, . . . , Pp+1). 2

The proof of Theorem 2 shows that any processor Pi satisfying the condition
λi > D(Pi+1, . . . , Pp) is not interesting for our problem: using it will only
increase the whole processing time. Therefore, we just forget those processors
and Theorem 2 states that there is an optimal rational solution where the
remaining processors are all working and have the same end date.

4.3 Processor ordering policy

As we have stated in Section 2.3, the root processor sends data to processors in
turn and a receiving processor actually begins its communication after all pre-
vious processors have received their shares of data. Moreover, in the MPICH

14



implementation of MPI, the order of the destination processors in scatter op-
erations follows the processor ranks defined by the program(mer). Therefore,
setting the processor ranks influence the order in which the processors start to
receive and process their share of the whole work. Equation (7) shows that in
our case the overall computation time is not symmetric in the processors but
depends on their ordering. Therefore we must carefully defines this ordering
in order to speed-up the whole computation. It appears that in our current
case, the best ordering is quite simple:

Theorem 3 (Processor ordering policy) When all functions Tcomm(i, n)
and Tcomp(i, n) are linear in n, and when we are only looking for a rational
solution, then the smallest execution time is achieved when the processors (the
root processor excepted) are ordered in decreasing order of their bandwidth
(from P1, the processor connected to the root processor with the highest band-
width, to Pp−1, the processor connected to the root processor with the smallest
bandwidth), the last processor being the root processor, and not taking into
account the processing powers of the processors.

PROOF. We consider any ordering P1, . . . , Pp, of the processors, except that
Pp is the root processor (as we have explained in Section 3.1). We consider
any transposition π which permutes two neighbors, but let the root processor
untouched. In other words, we consider any order Pπ(1), . . . , Pπ(p) of the pro-
cessors such that there exists k ∈ [1, p − 2], π(k) = k + 1, π(k + 1) = k, and
∀j ∈ [1, p] \ {k, k + 1}, π(j) = j (note that π(p) = p).

Without any loss of generality we can assume that in both orderings all pro-
cessors whose ranks are between k + 2 and p receive a non-empty share of the
whole data set. Indeed, for any i ∈ [k+2, p], Pi = Pπ(i). Hence the condition for
Pi to receive a non empty share of the whole data set in the original ordering
is the same than the condition for Pπ(i) to receive a non empty share of the
whole data set in the new ordering, according to Theorem 2. Therefore, we do
not need to bother considering the processors of rank greater than or equal to
k + 2 which receive an empty share of the data in the original ordering.

We denote by ∆(i, p) the time needed by the set of processors Pi, Pi+1, . . . , Pp

to optimally process a data of unit size. Symmetrically, we denote by ∆π(i, p)
the time needed by the set of processors Pπ(i), Pπ(i+1), . . . , Pπ(p) to optimally
process a data of unit size. Because of the previous remark, we know that for
any value of i ∈ [k + 2, p], ∆(i, p) = ∆π(i, p) = D(Pi, . . . , Pp).

We ultimately want to show that an optimal solution, when the processors are
ordered in decreasing order of their bandwidth, achieves the shortest execution
time possible. Proving that λk+1 < λk implies that ∆(1, p) ≥ ∆π(1, p) will lead
to this result. We start by showing that ∆(k, p) ≥ ∆π(k, p). We have two cases

15



to study:

(1) In any optimal solution for the ordering Pk, Pk+1, Pk+2, . . . , Pp at most
one of the two processors Pk and Pk+1 receives a non empty share of
data.
Any such optimal solution is also feasible under the ordering Pk+1, Pk,
Pk+2, . . . , Pp. Therefore, ∆π(k, p) ≤ ∆(k, p).

(2) There is an optimal solution for the ordering Pk, Pk+1, Pk+2, . . . , Pp in
which both Pk and Pk+1 receive a non empty share of data.
Then, ∆(k, p) = D(Pk, . . . , Pp). For ∆π(k, p), things are a bit more com-
plicated. If, for any i in [k, p−1], λπ(i) ≤ D(Pπ(i+1), . . . , Pπ(p)), Theorems 2
and 1 apply, and thus:

∆π(k, p) =
1∑p

i=k
1

λπ(i)+µπ(i)
·∏i−1

j=k
µπ(j)

λπ(j)+µπ(j)

. (9)

On the opposite, if there exists at least one value i in [k, p− 1] such that
λπ(i) > D(Pπ(i+1), . . . , Pπ(p)), then Theorem 2 states that the optimal
execution time cannot be achieved on a solution where each processor
receives a non-empty share of the whole set of data and all processors
end their computation at the same date. Therefore, any solution where
each processor receives a non-empty share of the whole set of data and all
processors end their computation at the same date leads to an execution
time strictly greater than ∆π(k, p) and:

∆π(k, p) <
1∑p

i=k
1

λπ(i)+µπ(i)
·∏i−1

j=k
µπ(j)

λπ(j)+µπ(j)

. (10)

Equations (9) and (10) are summarized by:

∆π(k, p) ≤ 1∑p
i=k

1
λπ(i)+µπ(i)

·∏i−1
j=k

µπ(j)

λπ(j)+µπ(j)

(11)

and proving the following implication:

λk+1 < λk ⇒
1∑p

i=k
1

λπ(i)+µπ(i)
·∏i−1

j=k
µπ(j)

λπ(j)+µπ(j)

< ∆(k, p) (12)

will prove that indeed ∆π(k, p) < ∆(k, p). Hence, we study the sign of

σ =
1∑p

i=k
1

λπ(i)+µπ(i)
·∏i−1

j=k
µπ(j)

λπ(j)+µπ(j)

− 1∑p
i=k

1
λi+µi

·∏i−1
j=k

µj

λj+µj

.

As, in the above expression, both denominators are obviously (strictly)

16



positive, the sign of σ is the sign of:

p∑
i=k

1

λi + µi

·
i−1∏
j=k

µj

λj + µj

−
p∑

i=k

1

λπ(i) + µπ(i)

·
i−1∏
j=k

µπ(j)

λπ(j) + µπ(j)

. (13)

We want to simplify the second sum in Equation (13). Thus we remark
that for any value of i ∈ [k + 2, p] we have:

i−1∏
j=k

µπ(j)

λπ(j) + µπ(j)

=
i−1∏
j=k

µj

λj + µj

. (14)

In order to take advantage of the simplification proposed by Equation (14),
we decompose the second sum in Equation (13) in three terms: the terms
for k, for k + 1, and then the sum from k + 2 to p:

p∑
i=k

1

λπ(i) + µπ(i)

·
i−1∏
j=k

µπ(j)

λπ(j) + µπ(j)

=
1

λk+1 + µk+1

+
1

λk + µk

· µk+1

λk+1 + µk+1

+
p∑

i=k+2

1

λi + µi

·
i−1∏
j=k

µj

λj + µj

. (15)

Then we report the result of Equation (15) in Equation (13) and we
suppress the terms common to both sides of the “ − ” sign. This way, we
obtain that σ has the same sign than:

1

λk + µk

+
1

λk+1 + µk+1

· µk

λk + µk

− 1

λk+1 + µk+1

− 1

λk + µk

· µk+1

λk+1 + µk+1

which is equivalent to:

λk+1 − λk

(λk + µk) · (λk+1 + µk+1)
.

Therefore, if λk+1 < λk, then σ < 0, Equation (12) holds, and thus
∆π(k, p) < ∆(k, p). Note that if λk+1 = λk, σ = 0 and thus ∆π(k, p) ≤
∆(k, p). As we have made no assumptions on the computational powers
of Pk and Pk+1, this symmetrically shows that ∆π(k, p) ≥ ∆(k, p) and
thus that ∆π(k, p) = ∆(k, p). Therefore, processors which are connected
with the same bandwidth can be set in any order.

We have just proved that ∆π(k, p) ≤ ∆(k, p). We now prove by induction that
for any value of i ∈ [1, k], ∆π(i, p) ≤ ∆(i, p). Once we will have established
this result, we will have that ∆π(1, p) ≤ ∆(1, p) which is exactly our goal.

Let us suppose that the induction is proved from k down to i, and focus on
the case i− 1. We have three cases to consider:

17



(1) λi−1 ≤ ∆π(i, p) ≤ ∆(i, p).
Then, following the proof of Theorem 2, we have:

∆π(i− 1, p) =
1

1
λi−1+µi−1

+ µi−1

(λi−1+µi−1)·∆π(i,p)

and an equivalent formula for ∆(i − 1, p). Therefore, ∆π(i, p) ≤ ∆(i, p)
implies ∆π(i− 1, p) ≤ ∆(i− 1, p).

(2) ∆π(i, p) ≤ λi−1 ≤ ∆(i, p).

Then, ∆π(i− 1, p) = ∆π(i, p) and ∆(i− 1, p) = (λi−1+µi−1)·∆(i,p)
∆(i,p)+µi−1

. Then,

∆(i− 1, p)−∆π(i− 1, p)

=
µi−1 · (∆(i, p)−∆π(i, p)) + (λi−1 −∆π(i, p)) ·∆(i, p)

∆(i, p) + µi−1

.

Then, because of the hypothesis on λi−1 and because of the induction
hypothesis, ∆(i− 1, p)−∆π(i− 1, p) is non-negative.

(3) ∆π(i, p) ≤ ∆(i, p) < λi−1.
Then the result is obvious as ∆π(i−1, p) = ∆π(i, p) and ∆(i, p) = ∆(i−1,
p).

Therefore, the inversion of processors Pk and Pk+1 is profitable if the band-
width from the root processor to processor Pk+1 is higher than the bandwidth
from the root processor to processor Pk. 2

4.4 Consequences for the general case

So, in the general case, how are we going to order our processors? An exact
study is feasible even in the general case, if we know the computation and
communication characteristics of each of the processors. We can indeed con-
sider all the possible orderings of our p processors, use Algorithm 1 to compute
the theoretical execution times, and chose the best result. This is theoretically
possible. In practice, for large values of p such an approach is unrealistic. Fur-
thermore, in the general case an analytical study is of course impossible (we
cannot analytically handle any function Tcomm(i, n) or Tcomp(i, n)).

So, we build from the previous result and we order the processors in decreasing
order of the bandwidth they are connected to the root processor with, except
for the root processor which is ordered last. Even without the previous study,
such a policy should not be surprising. Indeed, the time spent to send its share
of the data items to processor Pi is payed by all the processors from Pi to Pp.
So the first processor should be the one it is the less expensive to send the
data to, and so on. Of course, in practice, things are a bit more complicated

18



as we are working in integers. However, the main idea is roughly the same as
we now show.

We only suppose that all the computation and communication functions are
linear. Then we denote by:

• T rat
opt : the best execution time that can be achieved for a rational distribution

of the n data items, whatever the ordering for the processors.
• T int

opt : the best execution time that can be achieved for an integer distribution
of the n data items, whatever the ordering for the processors.

Note that T rat
opt and T int

opt may be achieved on two different orderings of the pro-
cessors. We take a rational distribution achieving the execution time T rat

opt . We
round it up to obtain an integer solution, following the rounding scheme de-
scribed in Section 3.3. This way we obtain an integer distribution of execution
time T ′ with T ′ satisfying the equation:

T ′ ≤ T rat
opt +

p∑
j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1)

(the proof being the same than for Equation (4)). However, as it is an integer
solution, its execution time is obviously at least equal to T int

opt . Also, an integer
solution being a rational solution, T int

opt is at least equal to T rat
opt . Hence the

bounds:

T int
opt ≤ T ′ ≤ T int

opt +
p∑

j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1)

where T ′ is the execution time of the distribution obtained by rounding up,
according to the scheme of Section 3.3, the best rational solution when the
processors are ordered in decreasing order of the bandwidth they are connected
to the root processor with, except for the root processor which is ordered last.
Therefore, when all the computation and communication functions are linear
our ordering policy is even guaranteed!

5 Experimental results

5.1 Hardware environment

Our experiment consists in the computation of 817,101 ray paths (the full set
of seismic events of year 1999) on 16 processors. All machines run Globus [15]
and we use MPICH-G2 [22] as message passing library. Table 1 shows the
resources used in the experiment. The input data set is located on the PC

19



named dinadan, at the end of the list, which serves as root processor. Except
for the root, the resources are ordered in decreasing order of their bandwidths
to the root processor. The computers are located at two geographically distant
sites. Processors 1, 2, 3, 16 (standard PCs with Intel PIII and AMD Athlon
XP), and 4, 5 (two Mips processors of an SGI Origin 2000) are in the same
premises, whereas processors 6 to 13 are taken from an SGI Origin 3800 (Mips
processors) named leda, at the other end of France. The processors and the
network links performances are values computed from a series of benchmarks
we performed on our application. Notice that merlin, with processors 14 and
15, though geographically close to the root processor, has the smallest band-
width because it was connected to a 10 Mbit/s hub during the experiment
whereas all others were connected to fast-ethernet switches.

The column µ indicates the number of seconds needed to compute one ray (the
lower, the better). The associated rating is simply a more intuitive indication
of the processor speed (the higher, the better): it is the inverse of µ normalized
with respect to a rating of 1 arbitrarily chosen for the Pentium III/933. When
several identical processors are present on a same computer (6–13 and 14, 15)
the average performance is reported.

The network links throughputs between the root processor and the other nodes
are reported in column λ assuming a linear communication cost. It indicates
the time in seconds needed to receive one data element from the root processor.
Considering linear communication costs is sufficiently accurate in our case
since the network latency is negligible compared to the sending time of the
data blocks.

Table 1
Processors used as computational nodes in the experiment.

Machine CPU # Type µ (s/ray) Rating λ (s/ray)

caseb 1 XP1800 0.004,629 2.00 1.00 · 10−5

pellinore 2 PIII/800 0.009,365 0.99 1.12 · 10−5

sekhmet 3 XP1800 0.004,885 1.90 1.70 · 10−5

seven 4, 5 R12K/300 0.016,156 0.57 2.10 · 10−5

leda 6–13 R14K/500 0.009,677 0.95 3.53 · 10−5

merlin 14, 15 XP2000 0.003,976 2.33 8.15 · 10−5

dinadan 16 PIII/933 0.009,288 1.00 0.00

20



5.2 Results

The experimental results of this section evaluate two aspects of the study.
The first experiment compares an imbalanced execution (that is the original
program without any source code modification) to what we predict to be
the best balanced execution. The second experiment evaluates the execution
performances with respect to our processor ordering policy (the processors are
ordered in descending order of their bandwidths) by comparing this policy
to the opposite one (the processors are ordered in ascending order of their
bandwidths). Note that whatever the order chosen, the root processor is always
set at the end of the list (despite its infinite bandwidth to itself) since the
scatter semantics forces this processor to receive its own data share last (see
Section 3.1).

Original application

Figure 2 reports performance results obtained with the original program, in
which each processor receives an equal amount of data. We had to choose an
ordering of the processors, and from the conclusion given in Section 4.4, we
ordered processors by descending bandwidth.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e 

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

ca
se

b

pe
lli

no
re

se
kh

m
et

se
ve

n

se
ve

n

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

m
er

lin

m
er

lin

di
na

da
n

total time
comm. time

amount of data

Fig. 2. Original program execution (uniform data distribution).

Not surprisingly, the processors end times largely differ, exhibiting a huge
imbalance, with the earliest processor finishing after 241 s and the latest after
835 s.

21



Load-balanced application

In the second experiment we evaluate our load-balancing strategy. We made
the assumption that the computation and communication cost functions were
affine and increasing. This assumption allowed us to use our guaranteed heuris-
tic. Then, we simply replaced the MPI_Scatter call by a MPI_Scatterv pa-
rameterized with the distribution computed by the heuristic. With such a large
number of rays, Algorithm 1 takes more than two days of work (we interrupted
it before its completion) and Algorithm 2 takes 6 minutes to run on a Pentium
III/933 whereas the heuristic execution, using pipMP [14,27], is instantaneous
and has an error relative to the optimal solution of less than 6 · 10−6!

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e 

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

ca
se

b

pe
lli

no
re

se
kh

m
et

se
ve

n

se
ve

n

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

m
er

lin

m
er

lin

di
na

da
n

total time
comm. time

amount of data

Fig. 3. Load-balanced execution with nodes sorted by descending bandwidth.

Results of this experiment are presented on Figure 3. The execution appears
well balanced: the earliest and latest finish times are 388 s and 412 s respec-
tively, which represents a maximum difference in finish times of 6% of the
total duration. By comparison to the performances of the original application,
the gain is significant: the total execution duration is approximately half the
duration of the first experiment.

Ordering policy

We now compare the effects of the ordering policy. Results presented on Fig-
ure 3 were obtained with the descending bandwidth order. The same execution
with processors sorted in ascending bandwidth order is presented on Figure 4.

The load balance in this execution is acceptable with a maximum difference
in ending times of about 10% of the total duration (the earliest and latest
processors finish after 420 s and 469 s). As predicted, the total duration is

22



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e 

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

m
er

lin

m
er

lin

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

se
ve

n

se
ve

n

se
kh

m
et

pe
lli

no
re

ca
se

b

di
na

da
n

total time
comm. time

amount of data

Fig. 4. Load-balanced execution with nodes sorted by ascending bandwidth.

longer (by 57 s) than with the processors in the reverse order. Though the load
was slightly less balanced than in the previous experiment (because of a peak
load on sekhmet during the experiment), most of the difference comes from the
idle time spent by processors waiting before the actual communication begins.
This clearly appears on Figure 4: the surface of the bottom area delimited by
the dashed line (the “stair effect”) is bigger than in Figure 3.

Predicted times

If we now look at the differences between the times predicted by using our
model (see Section 3.1) and the completion times achieved in reality, we can see
that the accuracy of the predictions depends on the processors characteristics,
and more precisely on the possible interferences that can occur during the
execution.

For the communication times, the predictions were more accurate for the pro-
cessors that were geographically close to the root with an error that was less
than 0.7 s, while it was up to 5.5 s for the processors located at the other end of
the country. This certainly comes from the fact that network performances are
more stable (and thus more easily predictable) for a local network than for a
wide area network. Compared to the small communication times we had, these
errors look rather big. We can however see, from Figures 3 and 4, that, despite
the possible mispredictions, it is important to take the communications into
account to choose a good processor ordering and to compute a load-balanced
data distribution. For the computation times, the relative error was less than
2.3% on the Origins (leda and seven) while it was sometimes as great as
9.2% on the PCs. The difference here is due to the fact that the processors
on the PCs were possibly shared with other users while a reservation system

23



(LSF in this case) gave us a dedicated use of the processors on the parallel
machines. Concerning the whole execution time of the experiments, the pre-
diction was pretty good for the first two experiments: it was underestimated
by less than 1.9%. As already seen for the load-balancing, some interferences
took place during the third experiment, leading here to an underestimation of
about 11.6%. With a static approach like the one presented in this paper, the
quality of the prediction clearly depends on the predictability of the network
links bandwidths and the processors performances. These experiments show
however that a good load-balance along with a close prediction of the end time
are achievable in practice.

6 Related work

Many research works address the problem of load-balancing in heterogeneous
environments, but most of them consider dynamic load-balancing. As a repre-
sentative of the dynamic approach, the framework developed by [18] applies to
iterative SPMD computations, i.e. similar computations are performed itera-
tively on independent data items. In this work, a library helps the programmer
to distribute data among processors and collects processors performances at
each iteration. Based on these performances, the programmer may, between
two iterations, decide to redistribute some of the data among the processors
so as to load-balance the following iterations. Note that the initial distribution
computation of data as well as the redistribution decision is left to the pro-
grammer who can plug-in its own distribution algorithm. Anyhow, the load
evaluation and the data redistribution make the execution suffer from over-
heads that can be avoided with a static approach. In a previous work [13],
we experimented dynamic load-balancing with a master-slave implementation
of the geophysical application, and compared it with a static version. The
dynamic version has the well-known advantage of adapting itself to sudden
changes of the load. The drawback lies in the difficulty to choose the data
packet size to send to slaves: small packets incur latency penalties for each
packet (may be prohibitive on slow networks) and large packets increase the
load-imbalance. After having manually tuned the packet size, the dynamic
version showed a load-balance which was acceptable but which was still signif-
icantly worse than the load-balance of the static version (the imbalance of the
dynamic version was roughly twice the imbalance of the static one, in terms
of difference of processor completion times).

The static approach is used in various contexts. It ranges from data partition-
ing for parallel video processing [2] to finding the optimal number of processors
in linear algebra algorithms [4]. More generally, many results have been pro-
duced by the divisible load theory for various network topologies (see [10] for an
overview). The contents of Section 4 fits in the divisible load framework. Our

24



hardware model corresponds to the single-level tree network without front-end
processors of [9]: the root processor must wait for all the slave processors to
have received their respective shares of the data before it can start to process
its own share of the computations. For these networks, when the order on the
processors is fixed, Robertazzi [28,9] established a condition for a processor to
participate in an optimal solution, and he showed that there was an optimal
solution where all participating processors ends their computation at the same
date. These results are stated by our Theorems 1 and 2. Similar results [9] exist
for single-level tree networks with front-end processors: the root processor can
compute while sending data to slave processors. In this framework, Kim, Jee,
and Lee pretended they showed that, in an optimal solution, the processors
are also ordered by decreasing bandwidth [24]. Their proof relies on the un-
proved assumption that in an optimal solution all processors participate. The
same mistake was also made in the same context by B lażewicz and Drozdowski
in [11]. Beaumont, Legrand, and Robert [7,8] proved, for the single-level tree
networks with front-end processors, that in any optimal solution the proces-
sors are ordered by decreasing bandwidth, they all participate in the compu-
tation, and all finish their execution at the same time. Beaumont, Legrand,
and Robert also proposed asymptotically optimal multi-round algorithms.

In [1], Almeida, González, and Moreno present a dynamic programming al-
gorithm similar to ours to solve the master-slave problem on heterogeneous
systems. The main difference with our work is that they consider results to
be sent back to the master. In their model, the master does not compute any-
thing, and he cannot send and receive data simultaneously. A major drawback
with their work is that they simply assume that the processors should be or-
dered by non-increasing order of their computational power (fastest processors
first), while several authors have shown that in many cases, the sort criterion
should be the network links bandwidths [24,5,7,17].

With a problem formulation very close to ours, Beaumont, Legrand, and
Robert give in [6], a polynomial-time solution using a non-trivial greedy al-
gorithm. They however restrict to linear cost functions, while our solution
presented in Section 3.2 is valid for any non-negative cost functions. Another
difference is in the produced schedule: we constrain that for each slave all
the data are sent before starting the computation, whereas they allow com-
munications between different slaves to be interleaved. The same authors, in
association with Banino, have studied in [3] more general tree-structured net-
works where, rather than searching an optimal solution to the problem, they
characterize the best steady-state for various operation models.

A related problem is the distribution of loops for heterogeneous processors
so as to balance the work-load. This problem is studied in [12], in particular
the case of independent iterations, which is equivalent to a scatter operation.
However, computation and communication cost functions are affine. A load-

25



balancing solution is first presented for heterogeneous processors, only when
no network contentions occur. Then, the contention is taken into account but
for homogeneous processors only.

7 Conclusion

In this paper we partially addressed the problem of adapting to the grid ex-
isting parallel applications designed for parallel computers. We studied the
static load-balancing of scatter operations when no assumptions are made on
the processor speeds or on the network links bandwidth. We presented two
solutions to compute load-balanced distributions: a general and exact algo-
rithm, and a heuristic far more efficient for simple cases with a large number
of tasks (affine computation and communication times). We also proposed a
policy on the processor ordering: we order them in decreasing order of the net-
work bandwidth they have with the root processor. On our target application,
our experiments showed that replacing MPI_Scatter by MPI_Scatterv calls
used with clever distributions leads to great performance improvement at low
cost.

Acknowledgments

A part of the computational resources used are taken from the Origin 3800 of
the CINES (http://www.cines.fr/). We want to thank them for letting us
have access to their machines.

References

[1] F. Almeida, D. González, and L. M. Moreno. The master-slave paradigm
on heterogeneous systems: A dynamic programming approach for the optimal
mapping. In 12th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2004), pages 266–272. IEEE CS Press, Feb. 2004.

[2] D. T. Altilar and Y. Paker. Optimal scheduling algorithms for communication
constrained parallel processing. In Euro-Par 2002, Parallel Processing, 8th
International Euro-Par Conference, volume 2400 of Lecture Notes in Comput.
Sci., pages 197–206. Springer-Verlag, Aug. 2002.

[3] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies
for master-slave tasking on heterogeneous processor grids. In Applied Parallel
Computing: Advanced Scientific Computing: 6th International Conference

26



(PARA’02), volume 2367 of Lecture Notes in Comput. Sci., pages 423–432.
Springer-Verlag, June 2002.

[4] J. G. Barbosa, J. Tavares, and A. J. Padilha. Linear algebra algorithms in
heterogeneous cluster of personal computers. In 9th Heterogeneous Computing
Workshop (HCW’2000), pages 147–159. IEEE CS Press, May 2000.

[5] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-
centric allocation of independent tasks on heterogeneous platforms. In
International Parallel and Distributed Processing Symposium (IPDPS’02).
IEEE CS Press, Apr. 2002.

[6] O. Beaumont, A. Legrand, and Y. Robert. A polynomial-time algorithm
for allocating independent tasks on heterogeneous fork-graphs. In 17th
International Symposium on Computer and Information Sciences (ISCIS
XVII), pages 115–119. CRC Press, Oct. 2002.

[7] O. Beaumont, A. Legrand, and Y. Robert. Optimal algorithms for scheduling
divisible workloads on heterogeneous systems. In 12th Heterogeneous Computing
Workshop (HCW’2003). IEEE CS Press, Apr. 2003.

[8] O. Beaumont, A. Legrand, and Y. Robert. Scheduling divisible workloads on
heterogeneous platforms. Parallel Comput., 29(9):1121–1152, Sept. 2003.

[9] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling divisible
loads in parallel and distributed systems. Wiley–IEEE CS Press, 1996.

[10] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new
paradigm for load scheduling in distributed systems. Cluster Comput., 6(1):7–
17, Jan. 2003.

[11] J. B lażewicz and M. Drozdowski. Distributed processing of divisible jobs with
communication startup costs. Discrete Appl. Math., 76(1-3):21–41, June 1997.

[12] M. Cierniak, M. J. Zaki, and W. Li. Compile-time scheduling algorithms for
heterogeneous network of workstations. Comput. J, special issue on Automatic
Loop Parallelization, 40(6):356–372, Dec. 1997.

[13] R. David, S. Genaud, A. Giersch, B. Schwarz, and É. Violard. Source
code transformations strategies to load-balance grid applications. In Grid
Computing – GRID 2002: Third International Workshop, volume 2536 of
Lecture Notes in Comput. Sci., pages 82–87. Springer-Verlag, Nov. 2002.

[14] P. Feautrier. Parametric integer programming. RAIRO Rech. Opér., 22(3):243–
268, Sept. 1988.

[15] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
Int. J. Supercomput. Appl. High Perform. Comput., 11(2):115–128, 1997.

[16] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Pub., 1999.

27



[17] S. Genaud, A. Giersch, and F. Vivien. Load-balancing scatter operations for
grid computing. In 12th Heterogeneous Computing Workshop (HCW’2003).
IEEE CS Press, Apr. 2003.

[18] W. L. George. Dynamic load-balancing for data-parallel MPI programs. In
Message Passing Interface Developer’s and User’s Conference (MPIDC’99),
Mar. 1999.

[19] M. Grunberg, S. Genaud, and C. Mongenet. Seismic ray-tracing and Earth
mesh modeling on various parallel architectures. J. Supercomput., 29(1):27–44,
July 2004.

[20] P. Husbands and J. C. Hoe. MPI-StarT: Delivering network performance to
numerical applications. In Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (SC’98). IEEE CS Press, Nov. 1998.

[21] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and
J. Bresnahan. Exploiting hierarchy in parallel computer networks to optimize
collective operation performance. In International Parallel and Distributed
Processing Symposium (IPDPS’00), pages 377–384. IEEE CS Press, May 2000.

[22] N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-enabled
implementation of the Message Passing Interface. J. Parallel Distrib. Comput.,
63(5):551–563, May 2003.

[23] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang.
MagPIe: MPI’s collective communication operations for clustered wide area
systems. ACM SIGPLAN Notices, 34(8):131–140, Aug. 1999.

[24] H. J. Kim, G.-I. Jee, and J. G. Lee. Optimal load distribution for tree network
processors. IEEE Trans. Aerosp. Electron. Syst., 32(2):607–612, Apr. 1996.

[25] A. Legrand, F. Mazoit, and M. Quinson. An Application-Level Network
Mapper. Research Report 2003-09, LIP, ENS Lyon, France, Feb. 2003.

[26] MPI Forum. MPI: A message passing interface standard, version 1.1. Technical
report, University of Tennessee, Knoxville, TN, USA, June 1995.

[27] PIP/PipLib.
URL http://www.prism.uvsq.fr/~cedb/bastools/piplib.html.

[28] T. G. Robertazzi. Processor equivalence for a linear daisy chain of load sharing
processors. IEEE Trans. Aerosp. Electron. Syst., 29(4):1216–1221, Oct. 1993.

[29] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a
distributed resource performance forecasting service for metacomputing. Future
Gener. Comput. Syst., 15(5-6):757–768, Oct. 1999.

[30] Y. Yang and H. Casanova. A multi-round algorithm for scheduling divisible
workload applications: Analysis and experimental evaluation. Technical Report
CS2002-0721, Dept. of Computer Science and Engineering, University of
California, San Diego, Sept. 2002.

28


