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Abstract

In recent years, green computing has become an important topic in the su-

percomputing research domain. However, the computing platforms are still con-

suming more and more energy due to the increasing number of nodes composing

them. To minimize the operating costs of these platforms many techniques have

been used. Dynamic voltage and frequency scaling (DVFS) is one of them. It

can be used to reduce the power consumption of the CPU while computing, by

lowering its frequency. However, lowering the frequency of a CPU may increase

the execution time of an application running on that processor. Therefore, the

frequency that gives the best trade-off between the energy consumption and the

performance of an application must be selected. In this paper, a new online

frequency selecting algorithm for grids, composed of heterogeneous clusters, is

presented. It selects the frequencies and tries to give the best trade-off between

energy saving and performance degradation, for each node computing the mes-

sage passing application with iterations. The algorithm has a small overhead

and works without training or profiling. It uses a new energy model for message

passing applications with iterations running on a grid. The proposed algorithm

is evaluated on a real grid, the Grid’5000 platform, while running the NAS

parallel benchmarks. The experiments on 16 nodes, distributed on three clus-

ters, show that it reduces on average the energy consumption by 30% while the
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performance is on average only degraded by 3.2%. Finally, the algorithm is com-

pared to an existing method. The comparison results show that it outperforms

the latter in terms of energy consumption reduction and performance.
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and frequency scaling online algorithm.

1. Introduction

The need for more computing power is continually increasing. To partially

satisfy this need, most supercomputers constructors just put more computing

nodes in their platform. The resulting platforms may achieve higher floating

point operations per second (FLOPS), but the energy consumption and the

heat dissipation are also increased. As an example, the Chinese supercomputer

Tianhe-2 had the highest FLOPS in June 2015 according to the Top500 list

[1]. However, it was also the most power hungry platform with its over 3 mil-

lion cores consuming around 17.8 megawatts. Moreover, according to the U.S.

annual energy outlook 2015 [2], the price of energy for 1 megawatt-hour was

approximately equal to $70. Therefore, the price of the energy consumed by

the Tianhe-2 platform is approximately more than $10 million each year. The

computing platforms must be more energy efficient and offer the highest num-

ber of FLOPS per watt possible, such as the Shoubu-ExaScaler from RIKEN

which became the top of the Green500 list in June 2015 [3]. This heteroge-

neous platform executes more than 7 GFlops per watt while consuming 50.32

kilowatts.

Besides platform improvements, there are many software and hardware tech-

niques to lower the energy consumption of these platforms, such as DVFS,

scheduling and other techniques. DVFS is a widely used process to reduce the

energy consumption of a processor by lowering its frequency [4]. However, it also

reduces the number of FLOPS executed by the processor which may increase

the execution time of the application running over that processor. Therefore, re-
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searchers use different optimization strategies to select the frequency that gives

the best trade-off between the energy reduction and performance degradation

ratio. In [5] and [6], a frequency selecting algorithm was proposed to reduce

the energy consumption of message passing applications with iterations running

over homogeneous and heterogeneous clusters respectively. The results of the

experiments showed significant energy consumption reductions. All the experi-

mental results were conducted over the SimGrid simulator [7], which offers easy

tools to describe homogeneous and heterogeneous platforms, and to simulate

the execution of message passing parallel applications over them.

This paper presents the following contributions :

1. two new energy and performance models for message passing synchronous

applications with iterations running over a heterogeneous grid platform.

Both models take into account communications and slack times. The

models can predict the required energy and the execution time of the

application.

2. a new online frequency selecting algorithm for heterogeneous grid plat-

forms. The algorithm has a very small overhead and does not need any

training nor profiling. It uses a new optimization function which simulta-

neously maximizes the performance and minimizes the energy consump-

tion of a message passing synchronous application with iterations. The

algorithm was applied to the NAS parallel benchmarks and evaluated over

a real testbed, the Grid’5000 platform [8].

This paper is organized as follows: Section 2 presents some related works

from other authors. Section 3 describes how the execution time of message

passing programs can be predicted. It also presents an energy model that pre-

dicts the energy consumption of an application running over a grid platform.

Section 4 presents the energy-performance objective function that maximizes

the reduction of energy consumption while minimizing the degradation of the

program’s performance. Section 5 details the proposed frequencies selecting al-

gorithm. Section 6 presents the results of applying the algorithm on the NAS
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parallel benchmarks and executing them on the Grid’5000 testbed. It also eval-

uates the algorithm over multi-core per node architectures and over three dif-

ferent power scenarios. Moreover, it shows the comparison results between the

proposed method and an existing method. Finally, in Section 7 the paper ends

with a summary and some future works.

2. Related works

DVFS is a technique used in modern processors to scale down both the

voltage and the frequency of the CPU while computing, in order to reduce the

energy consumption of the processor. DVFS is also allowed in GPUs to achieve

the same goal. Reducing the frequency of a processor lowers its number of

FLOPS and may degrade the performance of the application running on that

processor, especially if it is compute bound. Therefore selecting the appropriate

frequency for a processor to satisfy some objectives, while taking into account

all the constraints, is not a trivial operation. Many researchers used different

strategies to tackle this problem. Some of them developed online methods that

compute the new frequency while executing the application, such as [9, 10].

Others used offline methods that may need to run the application and profile

it before selecting the new frequency, such as [11, 12]. The methods could be

heuristics, exact or brute force methods that satisfy varied objectives such as

energy reduction or performance. They also could be adapted to the execution’s

environment and the type of the application such as sequential, parallel or dis-

tributed architecture, homogeneous or heterogeneous platform, synchronous or

asynchronous application.

In this paper, we are interested in reducing the energy consumption of mes-

sage passing synchronous applications with iterations running over heteroge-

neous grid platforms. Some works have already been done for such platforms

and they can be classified into two types of heterogeneous platforms:

• the platform is composed of homogeneous GPUs and homogeneous CPUs.

• the platform is only composed of heterogeneous CPUs.
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For the first type of platform, the computing intensive parallel tasks are

executed on the GPUs and the rest are executed on the CPUs. Luley et al. [13],

proposed a heterogeneous cluster composed of Intel Xeon CPUs and NVIDIA

GPUs. Their main goal was to maximize the energy efficiency of the platform

during computation by maximizing the number of FLOPS per watt generated.

In [14], Kai Ma et al. developed a scheduling algorithm that distributes workload

proportional to the computing power of the nodes which could be a GPU or a

CPU. All the tasks must be completed at the same time. In [15], Rong et al.

showed that a heterogeneous (GPUs and CPUs) cluster that enables DVFS gave

better energy and performance efficiency than other clusters only composed of

CPUs.

The work presented in this paper concerns the second type of platform, with

heterogeneous CPUs. Many methods were conceived to reduce the energy con-

sumption of this type of platform. Naveen et al. [16] developed a method that

minimizes the value of energy × delay2 (the delay is the sum of slack times that

happen during synchronous communications) by dynamically assigning new fre-

quencies to the CPUs of the heterogeneous cluster. Lizhe et al. [17] proposed

an algorithm that divides the executed tasks into two types: the critical and

non critical tasks. The algorithm scales down the frequency of non critical

tasks proportionally to their slack and communication times while limiting the

performance degradation percentage to less than 10%. In [18], they developed

a heterogeneous cluster composed of two types of Intel and AMD processors.

They use a gradient method to predict the impact of DVFS operations on per-

formance. In [19] and [20], the best frequencies for a specified heterogeneous

cluster are selected offline using some heuristic. Chen et al. [21] used a greedy

dynamic programming approach to minimize the power consumption of het-

erogeneous servers while respecting given time constraints. This approach had

considerable overhead.
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3. The performance and energy consumption measurements on het-

erogeneous grid architecture

3.1. The execution time of message passing distributed applications with itera-

tions on a heterogeneous platform

In this paper, we are interested in reducing the energy consumption of mes-

sage passing distributed synchronous applications with iterations running over

heterogeneous grid platforms. A heterogeneous grid platform could be defined

as a collection of heterogeneous computing clusters interconnected via a long

distance network which has lower bandwidth and higher latency than the lo-

cal networks of the clusters. Each computing cluster in the grid is composed

of homogeneous nodes that are connected together via high speed network.

Therefore, each cluster has different characteristics such as computing power

(FLOPS), energy consumption, CPU’s frequency range, network bandwidth and

latency.

The overall execution time of a distributed synchronous application with it-

erations running over a heterogeneous grid consists of the sum of the computa-

tion time and the communication time for every iteration on a node. However,

nodes from distinct clusters in a grid have different computing powers, thus

while the application, fast nodes have to wait for the slower ones to finish their

computations before being able to synchronously communicate with them as in

Figure 1. These periods are called idle or slack times. Therefore, the overall ex-

ecution time of the program is the execution time of the slowest task which has

the highest computation time and almost no slack time. For example, in Figure

1, task 1 is the slower task and it does not have to wait for the other nodes to

communicate with them because they all finish their computations before it.

Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented

in modern processors, that reduces the energy consumption of a CPU by scaling

down its voltage and frequency. Since DVFS lowers the frequency of a CPU and

consequently its computing power, the execution time of a program running over

that scaled down processor may increase, especially if the program is compute
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Figure 1: Parallel tasks on a heterogeneous platform

bound. The frequency reduction process can be expressed by the scaling factor

S which is the ratio between the maximum and the new frequency of a CPU as

in (1).

S =
Fmax

Fnew
(1)

where Fmax is the maximum frequency before applying any DVFS and Fnew is

the new frequency after applying DVFS.

The execution time of a compute bound sequential program is linearly pro-

portional to the frequency scaling factor S. On the other hand, message passing

distributed applications consist of two parts: computation and communication.

The execution time of the computation part is linearly proportional to the fre-

quency scaling factor S but the communication time is not affected by the

scaling factor because the processors involved remain idle during the communi-

cations [22]. The communication time for a task is the summation of periods of

time that begin with an MPI call for sending or receiving a message until the

message is synchronously sent or received.

Since in a heterogeneous grid each cluster has different characteristics, espe-

cially different frequency gears, when applying DVFS operations on the nodes

of these clusters, they may get different scaling factors represented by a scaling

vector: (S11, S12, . . . , SNMi
) where Sij is the scaling factor of processor j in clus-
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ter i . To be able to predict the execution time of message passing synchronous

applications with iterations running over a heterogeneous grid, for different vec-

tors of scaling factors, the communication time and the computation time for

all the tasks must be measured during the first iteration before applying any

DVFS operation. Then the execution time for one iteration of the application

with any vector of scaling factors can be predicted using Equation (2).

TNew = max
i=1,...N

j=1,...,Mi

(TcpOld ij · Sij) + min
j=1,...,Mh

(Tcmhj) (2)

where N is the number of clusters in the grid, Mi is the number of nodes in

cluster i, TcpOld ij is the computation time of processor j in the cluster i and

Tcmhj is the communication time of processor j in the cluster h during the

first iteration. The execution time for one iteration is equal to the sum of the

maximum computation time for all nodes with the new scaling factors and the

communication time of the slowest node without slack time during one iteration.

The slowest node in cluster h is the node which takes the maximum execution

time to execute an iteration before scaling down its frequency. It means that

only the communication time without any slack time is taken into account.

Therefore, the execution time of the application is equal to the execution time

of one iteration as in Equation (2) multiplied by the number of iterations of

that application.

This model is an adaptation of the one developed in [5] which predicts

the execution time of message passing applications with iterations running on

homogeneous clusters. In a homogeneous cluster only one scaling factor denoted

as S was used because all the nodes in the cluster have the same computing

power. In a heterogeneous cluster, each node may have a different scaling factor

denoted as (Si) where i is the index of the node. In a grid, each node in each

cluster may have a scaling factor. The whole set of scaling factors of all the

computing nodes in the grid is denoted by a two dimensional array of scales

(S11, S12, . . . , SNMi
) where N is the number of used clusters and Mi is the
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number of nodes in cluster i.

The execution time model, Equation 2, is used in the algorithm presented

in section 5. The latter selects the scaling factors that optimize both the en-

ergy consumption and the performance of message passing applications with

iterations running on grids.

3.2. Energy model for heterogeneous grid platform

Many researchers [23, 24, 25, 4] divide the power consumed by a processor

into two power metrics: the static and the dynamic power. While the first

one is consumed as long as the computing unit is turned on, the latter is only

consumed during computation times. The dynamic power Pd is related to the

switching activity α, load capacitance CL, the supply voltage V and operational

frequency F , as shown in (3).

Pd = α · CL · V 2 · F (3)

The static power Ps captures the leakage power as follows:

Ps = V ·Ntrans ·Kdesign · Ileak (4)

where V is the supply voltage, Ntrans is the number of transistors, Kdesign is

a design dependent parameter and Ileak is a technology dependent parameter.

The energy consumed by an individual processor to execute a given program

can be computed as:

Eind = Pd · Tcp + Ps · T (5)

where T is the execution time of the program, Tcp is the computation time and

Tcp ≤ T . Tcp may be equal to T if there is no communication and no slack

time.

The main objective of DVFS operation is to reduce the overall energy con-

sumption [26]. The operational frequency F depends linearly on the supply

voltage V , i.e., V = β ·F with some constant β. This equation is used to study
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the change of the dynamic voltage with respect to various frequency values

in [24]. The reduction process of the frequency can be expressed by the scaling

factor S which is the ratio between the maximum and the new frequency as in

(1). The CPU governors are power schemes supplied by the operating system’s

kernel to lower a core’s frequency. The new frequency Fnew from (1) can be

calculated as follows:

Fnew = S−1 · Fmax (6)

Replacing Fnew in (3) as in (6) gives the following equation for dynamic power

consumption:

PdNew = α · CL · V 2 · Fnew = α · CL · β2 · Fnew
3

= α · CL · V 2 · Fmax · S−3 = PdOld · S−3 (7)

where PdNew and PdOld are the dynamic power consumed with the new fre-

quency and the maximum frequency respectively.

According to (7) the dynamic power is reduced by a factor of S−3 when

reducing the frequency by a factor of S [24]. Since the FLOPS of a CPU is

proportional to the frequency of a CPU, the computation time is increased

proportionally to S. The new dynamic energy is the dynamic power multiplied

by the new time of computation and is given by the following equation:

EdNew = PdOld · S−3 · (Tcp · S) = S−2 · PdOld · Tcp (8)

The static power is related to the power leakage of the CPU and is consumed

during computation and even when idle. As in [24, 25], the static power of a

processor is considered as constant during idle and computation periods, and

for all its available frequencies. The static energy is the static power multi-

plied by the execution time of the program. According to the execution time

model in (2), the execution time of the program is the sum of the computation

and the communication times. The computation time is linearly related to the
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frequency scaling factor, while this scaling factor does not affect the commu-

nication time. The static energy of a processor after scaling its frequency is

computed as follows:

ES = Ps · (Tcp · S + Tcm ) (9)

In the considered heterogeneous grid platform, each node j in cluster i may

have different dynamic and static powers from the nodes of the other clusters,

noted as Pd ij and Ps ij respectively. Moreover, even if the distributed message

passing application with iterations is load balanced, the computation time of

each CPU j in cluster i noted Tcp ij may be slightly different due to the delay

caused by the scheduler of the operating system. Therefore, different frequency

scaling factors may be computed in order to decrease the overall energy con-

sumption of the application and reduce the slack times. The communication

time of a processor j in cluster i is noted as Tcm ij and could contain slack times

when communicating with slower nodes, see Figure 1. Therefore, all nodes do

not have equal communication times. While the dynamic energy is computed

according to the frequency scaling factor and the dynamic power of each node

as in (8), the static energy is computed as the sum of the execution time of

one iteration multiplied by the static power of each processor. The CPU during

the communication times consumes only the static power. While in the com-

putation times, it consumes both the dynamic and the static powers, for more

information refer to [22]. The overall energy consumption of a message passing

distributed application executed over a heterogeneous grid platform during one

iteration is the summation of all dynamic and static energies for Mi processors

in N clusters. It is computed as follows:

E =

N∑
i=1

Mi∑
i=1

(S−2
ij · Pd ij · Tcp ij) +

N∑
i=1

Mi∑
j=1

(Ps ij ·

( max
i=1,...N

j=1,...,Mi

(Tcp ij · Sij) + min
j=1,...Mh

(Tcmhj))) (10)

Reducing the frequencies of the processors according to the vector of scaling
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factors (S11, S12, . . . , SNMi) may degrade the performance of the application

and thus, increase the static energy because the execution time is increased [27].

The overall energy consumption for a synchronous application with iterations

can be measured by measuring the energy consumption for one iteration as in

(10) multiplied by the number of iterations of that application.

4. Optimization of both energy consumption and performance

Using the lowest frequency for each processor does not necessarily give the

most energy efficient execution of an application. Indeed, even though the dy-

namic power is reduced while scaling down the frequency of a processor, its com-

putation power is proportionally decreased. Hence, the execution time might

be drastically increased and during that time, dynamic and static powers are

being consumed. Therefore, it might cancel any gains achieved by scaling down

the frequency of all nodes to the minimum and the overall energy consumption

of the application might not be the optimal one. It is not trivial to select the

appropriate frequency scaling factor for each processor while considering the

characteristics of each processor (computation power, range of frequencies, dy-

namic and static powers) and the task executed (computation/communication

ratio). The aim being to reduce the overall energy consumption and to avoid in-

creasing significantly the execution time. In our previous works, [5] and [6], two

methods that select the optimal frequency scaling factors for a homogeneous and

a heterogeneous cluster respectively, were proposed. Both methods selects the

frequencies that gives the best trade-off between energy consumption reduction

and performance for message passing synchronous applications with iterations.

In this work we are interested in grids that are composed of heterogeneous clus-

ters. The nodes from distinct clusters may have different characteristics such as

dynamic power, static power, computation power, frequencies range, network

latency and bandwidth. Due to the heterogeneity of the processors, a vector of

scaling factors should be selected and it must give the best trade-off between

energy consumption and performance.
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The relation between the energy consumption and the execution time for

an application is complex and nonlinear, Thus, unlike the relation between the

execution time and the scaling factor, the relation between the energy and the

frequency scaling factors is nonlinear, for more details refer to [22]. Moreover,

these relations are not measured using the same metric. To solve this problem,

the execution time is normalized by computing the ratio between the new ex-

ecution time (after scaling down the frequencies of some processors) and the

initial one (with maximum frequency for all nodes) as follows:

PNorm =
TNew

TOld
(11)

where Tnew is computed as in (2) and Told is computed as in (12).

TOld = max
i=1,...N

j=1,...,Mi

(TcpOld ij) + min
j=1,...,Mh

(Tcmhj) (12)

In the same way, the energy is normalized by computing the ratio between

the consumed energy while scaling down the frequency and the consumed energy

with maximum frequency for all nodes:

ENorm =
EReduced

EOriginal
(13)

where EReduced is computed using (10) and EOriginal is computed as in (14).

EOriginal =

N∑
i=1

Mi∑
j=1

(Pd ij · Tcp ij) +

N∑
i=1

Mi∑
j=1

(Ps ij · TOld) (14)

While the main goal is to optimize the energy and execution time at the

same time, the normalized energy and execution time curves do not evolve

(increase/decrease) in the same way. According to (11) and (13), the vector

of frequency scaling factors S11, S12, . . . , SNMi
reduces both the energy and the

execution time, but the main objective is to produce maximum energy reduction

with minimum execution time reduction.
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Figure 2: The energy and performance relation

This problem can be solved by making the optimization process for energy

and execution time follow the same evolution according to the vector of scaling

factors (S11, S12, . . . , SNMi
). Therefore, the equation of the normalized exe-

cution time is inverted which gives the normalized performance equation, as

follows:

PNorm =
TOld

TNew
(15)

Then, the objective function can be modeled in order to find the maximum

distance between the energy curve (13) and the performance curve (15) over all

available sets of scaling factors. This represents the minimum energy consump-

tion with minimum execution time (maximum performance) at the same time,

see Figure 2a and Figure 2b. Then the objective function has the following

form:

MaxDist = max
i=1,...N

j=1,...,Mi

k=1,...,Fj

(

Maximize︷ ︸︸ ︷
PNorm(Sijk)−

Minimize︷ ︸︸ ︷
ENorm(Sijk)) (16)

where N is the number of clusters, Mi is the number of nodes in the cluster i

and Fj is the number of available frequencies in the node j. Then, the optimal

set of scaling factors that satisfies (16) can be selected. The objective function

can work with any energy model or any power values for each node (static and

dynamic powers). However, the most important energy reduction gain can be
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Figure 3: Selecting the initial frequencies in a grid platform

achieved when the energy curve has a convex form as shown in [25, 24, 9].

5. The scaling factors selection algorithm for grids

In this section, the scaling factors selection algorithm for grids, Algorithm 1,

is presented. It selects the vector of frequency scaling factors that gives the best

trade-off between minimizing the energy consumption and maximizing the per-

formance of a message passing synchronous application with iterations executed

on a grid. It works online during the execution time of the application. It uses

information gathered during the first iteration such as the computation time

and the communication time in one iteration for each node. The algorithm is

executed after the first iteration and returns a vector of optimal frequency scal-

ing factors that satisfies the objective function (16). The program applies DVFS

operations to change the frequencies of the CPUs according to the computed

scaling factors. This algorithm is called just once during the execution of the

program. Algorithm 2 shows where and when the proposed scaling algorithm is

called in the application.

The algorithm takes into account this problem and tries to reduce these

slack times when selecting the vector of the frequency scaling factors. At first,
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Algorithm 1 Scaling factors selection algorithm
Require:

N number of clusters in the grid.

Mi number of nodes in each cluster.

Tcp ij array of all computation times for all nodes during one iteration and
with the highest frequency.

Tcm ij array of all communication times for all nodes during one iteration
and with the highest frequency.

Fmax ij array of the maximum frequencies for all nodes.

Pd ij array of the dynamic powers for all nodes.

Ps ij array of the static powers for all nodes.

Fdiffij array of the differences between two successive frequencies for all
nodes.

Ensure: Sopt 11, Sopt 12 . . . , SoptNMi
, a vector of scaling factors that gives the

optimal trade-off between energy consumption and execution time
1: Scp ij ←

maxi=1,2,...,N (maxj=1,2,...,Mi
(Tcpij))

Tcpij

2: Fij ←
Fmax

ij

Scpi
, i = 1, 2, · · · , N, j = 1, 2, . . . ,Mi.

3: Round the computed initial frequencies Fi to the closest available frequency
for each node.

4: if (not the first frequency) then
5: Fij ← Fij + Fdiffij , i = 1, . . . , N, j = 1, . . . ,Mi.
6: end if
7: TOld ← computed as in Equation 12.
8: EOriginal ← computed as in Equation 14.
9: Sopt ij ← 1, i = 1, . . . , N, j = 1, . . . ,Mi.
10: Dist ← 0
11: while (all nodes have not reached their minimum

frequency or PNorm − ENorm < 0) do
12: if (not the last freq. and not the slowest node) then
13: Fij ← Fij − Fdiffij , i = 1, . . . , N, j = 1, . . . ,Mi.

14: Sij ←
Fmax

ij

Fij
, i = 1, . . . , N, j = 1, . . . ,Mi.

15: end if
16: TNew ← computed as in Equation 2.
17: EReduced ← computed as in Equation 10.
18: PNorm ← TOld

TNew
, ENorm ← EReduced

EOriginal

19: if (PNorm − ENorm > Dist) then
20: Sopt ij ← Sij , i = 1, . . . , N, j = 1, . . . ,Mi.
21: Dist ← PNorm − ENorm

22: end if
23: end while
24: Return Sopt 11, Sopt 12, . . . , SoptNMi
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Algorithm 2 DVFS algorithm
1: for k = 1 to some iterations do
2: Computations section.
3: Communications section.
4: if (k = 1) then
5: Gather all times of computation and communication from each node.
6: Call Algorithm 1.
7: Compute the new frequencies from the

returned optimal scaling factors.
8: Set the new frequencies to nodes.
9: end if
10: end for

it selects initial frequency scaling factors that increase the execution times of

fast nodes and minimize the differences between the computation times of fast

and slow nodes. The value of the initial frequency scaling factor for each node

is inversely proportional to its computation time that was gathered from the

first iteration. These initial frequency scaling factors are computed as a ratio

between the computation time of the slowest node and the computation time of

the node i as follows:

Scp ij =

max
i=1,...N

j=1,...,Mi

(Tcp ij)

Tcp ij

(17)

Using the initial frequency scaling factors computed in (17), the algorithm com-

putes the initial frequencies for all nodes as a ratio between the maximum fre-

quency of node and its computed scaling factor as follows:

Fij =
Fmax ij

Scp ij

, i = 1, 2, . . . , N, j = 1, . . . ,Mi (18)

If the computed initial frequency for a node is not available in the gears of that

node, it is replaced by the nearest available frequency. In Figure 3, the nodes

are sorted by their computing powers in ascending order and the frequencies of

the faster nodes are scaled down according to the computed initial frequency

scaling factors. The resulting new frequencies are highlighted in Figure 3. This

set of frequencies can be considered as a higher bound for the search space of
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the optimal vector of frequencies because selecting higher frequencies than the

higher bound will not improve the performance of the application and it will

increase its overall energy consumption. Therefore the algorithm that selects

the frequency scaling factors starts the search method from these initial fre-

quencies and takes a downward search direction toward lower frequencies until

reaching the nodes’ minimum frequencies or lower bounds. A node’s frequency

is considered its lower bound if the computed distance between the energy and

performance at this frequency is less than zero. A negative distance means that

the performance degradation ratio is higher than the energy saving ratio. In this

situation, the algorithm must stop the downward search because it has reached

the lower bound and it is useless to test the lower frequencies. Indeed, they will

all give worse distances.

Therefore, the algorithm iterates on all remaining frequencies, from the

higher bound until all nodes reach their minimum frequencies or their lower

bounds, to compute the overall energy consumption and performance and se-

lects the optimal vector of the frequency scaling factors. At each iteration the

algorithm determines the slowest node according to Equation 2 and keeps its

frequency unchanged, while it lowers the frequency of all other nodes by one

gear. The new overall energy consumption and execution time are computed ac-

cording to the new scaling factors. The optimal set of frequency scaling factors

is the set that gives the highest distance according to the objective function 16.

Figures 2a and 2b illustrate the normalized performance and consumed en-

ergy for an application running on a homogeneous cluster and a grid platform

respectively while increasing the scaling factors. It can be noticed that in a

homogeneous cluster the search for the optimal scaling factor should start from

the maximum frequency because the performance and the consumed energy de-

crease from the beginning of the plot. On the other hand, in the grid platform

the performance is maintained at the beginning of the plot even if the frequen-

cies of the faster nodes decrease until the computing power of scaled down nodes

are lower than the slowest node. It can also be noticed that the higher the differ-

ence between the faster nodes and the slower nodes is, the bigger the maximum
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distance between the energy curve and the performance curve is, which results

in bigger energy savings.

6. Experimental results

While in [6] the energy model and the scaling factors selection algorithm were

applied to a heterogeneous cluster and evaluated over the SimGrid simulator [7],

in this paper real experiments were conducted over the Grid’5000 platform.

6.1. Grid’5000 architecture and power consumption

Grid’5000 [8] is a large-scale testbed that consists of ten sites distributed

all over metropolitan France and Luxembourg. All the sites are connected to-

gether via a special long distance network called RENATER, which is the French

National Telecommunication Network for Technology. Each site of the grid is

composed of a few heterogeneous computing clusters and each cluster contains

many homogeneous nodes. In total, Grid’5000 has about one thousand heteroge-

neous nodes and eight thousand cores. In each site, the clusters and their nodes

are connected via high speed local area networks. Two types of local networks

are used, Ethernet or Infiniband networks which have different characteristics

in terms of bandwidth and latency.

Since Grid’5000 is dedicated to testing, contrary to production grids it allows

a user to deploy its own customized operating system on all the booked nodes.

The user could have root rights and thus apply DVFS operations while executing

a distributed application. Moreover, the Grid’5000 testbed provides at some

sites a power measurement tool to capture the power consumption for each

node in those sites. The measured power is the overall consumed power by all

the components of a node at a given instant. For more details refer to [28]. In

order to correctly measure the CPU power of one core in a node j, firstly, the

power consumed by the node while being idle at instant y, noted as Pidle jy,

was measured. Then, the power was measured while running a single thread

benchmark with no communication (no idle time) over the same node with its
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CPU scaled to the maximum available frequency. The latter power measured

at time x with maximum frequency for one core of node j is noted Pmax jx.

The difference between the two measured power consumptions represents the

dynamic power consumption of that core with the maximum frequency, see

Figure 5.

The dynamic power Pd j is computed as in Equation 19

Pd j = max
x=β1,...β2

(Pmax jx)− min
y=Θ1,...Θ2

(Pidle jy) (19)

where Pd j is the dynamic power consumption for one core of node j, {β1, β2}

is the time interval for the measured maximum power values, {Θ1,Θ2} is the

time interval for the measured idle power values. Therefore, the dynamic power

of one core is computed as the difference between the maximum measured value

in maximum powers vector and the minimum measured value in the idle powers

vector.

On the other hand, the static power consumption by one core is a part of

the measured idle power consumption of the node. Since in Grid’5000 there

is no way to measure precisely the consumed static power and in [5, 6, 24] it

was assumed that the static power represents a ratio of the dynamic power, the

value of the static power is assumed as 20% of dynamic power consumption of

the core.

In the experiments presented in the following sections, two sites of Grid’5000

were used, Lyon and Nancy sites. These two sites have in total seven different

clusters as shown on Figure 4.

Four clusters from the two sites were selected in the experiments: one cluster

from Lyon’s site, Taurus, and three clusters from Nancy’s site, Graphene, Griffon

and Graphite. Each one of these clusters has homogeneous nodes inside, while

nodes from different clusters are heterogeneous in many aspects such as: com-

puting power, power consumption, available frequency ranges and local network

features: the bandwidth and the latency. Table 1 shows the detailed charac-

teristics of these four clusters. Moreover, the dynamic powers were computed
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Figure 4: The selected two sites of Grid'5000
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Figure 5: The power consumption by one core from the Taurus cluster

using Equation 19 for all the nodes in the selected clusters and are presented in

Table 1.

The energy model and the scaling factors selection algorithm were applied

to the NAS parallel benchmarks v3.3 [29] and evaluated over Grid’5000. The

benchmark suite contains seven applications: CG, MG, EP, LU, BT, SP and

FT. These benchmarks are considered as message passing applications with it-

erations because the same block of operations is executed many times. These

applications have different computations and communications ratios and strate-

gies which make them good testbed applications to evaluate the proposed al-

gorithm and energy model. The benchmarks have seven different classes, S,

W, A, B, C, D and E, that represent the size of the problem that the method

solves. In the next sections, the class D was used for all the benchmarks in all

the experiments.
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Table 1: The characteristics of the CPUs in the selected clusters

Max Min Diff.
Cluster CPU Freq. Freq. Freq. Cores Dynamic power
Name model GHz GHz GHz per CPU of one core

Intel
Taurus Xeon 2.3 1.2 0.1 6 35W

E5-2630
Intel

Graphene Xeon 2.53 1.2 0.133 4 23W
X3440
Intel

Griffon Xeon 2.5 2 0.5 4 46W
L5420
Intel

Graphite Xeon 2 1.2 0.1 8 35W
E5-2650

6.2. The experimental results of the scaling algorithm

In this section, the results of the application of the scaling factors selection

algorithm 1 to the NAS parallel benchmarks are presented. Each experiment

has been executed many times and the results presented in the figures are the

average values of many executions. As mentioned previously, the experiments

were conducted over two sites of Grid’5000, Lyon and Nancy sites. Two scenarios

were considered while selecting the clusters from these two sites :

• In the first scenario, nodes from two sites and three heterogeneous clusters

were selected. The two sites are connected via a long distance network.

• In the second scenario nodes from three clusters located in one site, Nancy

site, were selected.

The main reason for using these two scenarios is to evaluate the influence of

long distance communications (higher latency) on the performance of the scaling

factors selection algorithm. Indeed, in the first scenario the computations to

communications ratio is very low due to the higher communication times which

reduces the effect of the DVFS operations.
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Figure 6: The energy consumption and execution time of NAS Benchmarks over di�erent
scenarios

The NAS parallel benchmarks are executed over 16 and 32 nodes for each

scenario. The number of participating computing nodes from each cluster is

different because all the selected clusters do not have the same available number

of nodes and all benchmarks do not require the same number of computing

nodes. Table 2 shows the number of nodes used from each cluster for each

scenario.

Table 2: The di�erent grid scenarios

Scenario name The participating clusters
Cluster Site Nodes per cluster

Two sites / 16 nodes
Taurus Lyon 5

Graphene Nancy 5
Griffon Nancy 6

Two sites / 32 nodes
Taurus Lyon 10

Graphene Nancy 10
Griffon Nancy 12

One site / 16 nodes
Graphite Nancy 4
Graphene Nancy 6
Griffon Nancy 6

One site / 32 nodes
Graphite Nancy 4
Graphene Nancy 14
Griffon Nancy 14
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The NAS parallel benchmarks are executed over these two platforms with

different number of nodes, as in Table 2. The overall energy consumption of all

the benchmarks solving the class D instance and using the proposed frequency

selection algorithm is measured using the equation of the reduced energy con-

sumption, Equation 10. This model uses the measured dynamic power showed

in Table 1 and the static power is assumed to be equal to 20% of the dynamic

power as in [24]. The execution time is measured for all the benchmarks over

these different scenarios.

The energy consumptions and the execution times for all the benchmarks

are presented in Figures 6a and 6b respectively.

For the majority of the benchmarks, the energy consumed while executing

the NAS benchmarks over one site scenario for 16 and 32 nodes is lower than

the energy consumed while using two sites. The long distance communications

between the two distributed sites increase the idle time, which leads to more

static energy consumption.

The execution times of these benchmarks over one site with 16 and 32 nodes

are also lower than those of the two sites scenario. Moreover, most of the

benchmarks running over the one site scenario have their execution times ap-

proximately halved when the number of computing nodes is doubled from 16 to

32 nodes (linear speed up according to the number of the nodes).

However, the execution times and the energy consumptions of the EP and

MG benchmarks, which have no or small communications, are not significantly

affected in both scenarios, even when the number of nodes is doubled. On the

other hand, the communication times of the rest of the benchmarks increase

when using long distance communications between two sites or when increasing

the number of computing nodes.

The energy saving percentage is computed as the ratio between the reduced

energy consumption, Equation 10, and the original energy consumption, Equa-

tion 14, for all benchmarks as in Figure 7a. This figure shows that the energy

saving percentages of one site scenario for 16 and 32 nodes are bigger than

those of the two sites scenario which is due to the higher computations to com-
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munications ratio in the first scenario than in the second one. Moreover, the

frequency selecting algorithm selects smaller frequencies when the computation

times are bigger than the communication times which results in a lower energy

consumption. Indeed, the dynamic consumed power is exponentially related to

the CPU’s frequency value. On the other hand, the increase in the number

of computing nodes can increase the communication times and thus produces

less energy saving depending on the benchmarks being executed. The results

of benchmarks CG, MG, BT and FT show more energy saving percentage in

the one site scenario when executed over 16 nodes than over 32 nodes. LU

and SP consume more energy with 16 nodes than 32 nodes on one site because

their computations to communications ratio is not affected by the increase of

the number of local communications.

The energy saving percentage is reduced for all the benchmarks because

of the long distance communications in the two sites scenario, except for the

EP benchmark which has no communication. Therefore, the energy saving

percentage of this benchmark is dependent on the maximum difference between

the computing powers of the heterogeneous computing nodes, for example in the

one site scenario, the graphite cluster is selected but in the two sites scenario this

cluster is replaced with the Taurus cluster which is more powerful. Therefore,

the energy savings of the EP benchmark are bigger in the two sites scenario due

to the higher maximum difference between the computing powers of the nodes.

In fact, high differences between the nodes’ computing powers make the pro-

posed frequencies selecting algorithm select smaller frequencies for the powerful

nodes which produces less energy consumption and thus more energy saving.

The best energy saving percentage was obtained in the one site scenario with

16 nodes, the energy consumption was on average reduced up to 30%.

Figure 7b presents the performance degradation percentages for all bench-

marks over the two scenarios. The performance degradation percentage for the

benchmarks running on two sites with 16 or 32 nodes is on average equal to

8.3% or 4.7% respectively. For this scenario, the proposed scaling algorithm se-

lects smaller frequencies for the executions with 32 nodes without significantly
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Figure 7: The experimental results of di�erent scenarios

degrading their performance because the communication times are high with

32 nodes which results in smaller computations to communications ratio. On

the other hand, the performance degradation percentage for the benchmarks

running on one site with 16 or 32 nodes is on average equal to 3.2% and 10.6%

respectively. In contrary to the two sites scenario, when the number of com-

puting nodes is increased in the one site scenario, the performance degradation

percentage is increased. Therefore, doubling the number of computing nodes

when the communications occur in high speed network does not decrease the

computations to communication ratio.

The performance degradation percentage of the EP benchmark after apply-

ing the scaling factors selection algorithm is the highest in comparison to the
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other benchmarks. Indeed, in the EP benchmark, there are no communication

and no slack times and its performance degradation percentage only depends on

the frequencies values selected by the algorithm for the computing nodes. The

rest of the benchmarks showed different performance degradation percentages

which decrease when the communication times increase and vice versa.

Figure 7c presents the distance percentage between the energy saving and

the performance degradation for each benchmark over both scenarios. The

trade-off distance percentage can be computed as in Equation 16. The one

site scenario with 16 nodes gives the best energy and performance trade-off,

on average it is equal to 26.8%. The one site scenario using both 16 and 32

nodes had better energy and performance trade-off comparing to the two sites

scenario because the former has high speed local communications which increase

the computations to communications ratio and the latter uses long distance

communications which decrease this ratio.

Finally, the best energy and performance trade-off depends on all of the

following: 1) the computations to communications ratio when there are com-

munications and slack times, 2) the heterogeneity of the computing powers of

the nodes and 3) the heterogeneity of the consumed static and dynamic powers

of the nodes.

6.3. The experimental results over multi-core clusters

The clusters of Grid’5000 have different number of cores embedded in their

nodes as shown in Table 1. In this section, the proposed scaling algorithm

is evaluated over the Grid’5000 platform while using multi-cores nodes selected

according to the one site scenario described in Section 6.2. The one site scenario

uses 32 cores from multi-core nodes instead of 32 distinct nodes. For example

if the participating number of cores from a certain cluster is equal to 14, in the

multi-core scenario 4 nodes are selected and 3 or 4 cores from each node are

used. The platforms with one core per node and multi-core nodes are shown in

Table 3. The energy consumptions and execution times of running the class D

of the NAS parallel benchmarks over these two different platforms are presented
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in Figures 8b and 8a respectively.

Table 3: The multi-core scenarios

Scenario name Cluster name Nodes per cluster Cores per node

One core per node
Graphite 4 1
Graphene 14 1
Griffon 14 1

Multi-core per node
Graphite 1 4
Graphene 4 3 or 4
Griffon 4 3 or 4
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Figure 8: The energy consumptions and execution times of the NAS benchmarks running over
one core and multi-core per node architectures

The execution times for most of the NAS benchmarks are higher over the

multi-core per node scenario than over the single core per node scenario. Indeed,

the communication times are higher in the multi-core scenario than in the latter

scenario because all the cores of a node share the same node network link which

can be saturated when running communication bound applications. Moreover,

the cores of a node share the memory bus which can be also saturated and

become a bottleneck. Moreover, the energy consumptions of the NAS bench-

marks are lower over the one core scenario than over the multi-core scenario

because the first scenario had less execution time than the latter which results

in less static energy being consumed. The computations to communications ra-

tios of the NAS benchmarks are higher over the one site one core scenario when
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Figure 9: The experimental results of one core and multi-core scenarios

compared to the ratio of the multi-core scenario. More energy reduction can be

gained when this ratio is big because it pushes the proposed scaling algorithm to

select smaller frequencies that decrease the dynamic power consumption. These

experiments also showed that the energy consumption and the execution times

of the EP and MG benchmarks do not change significantly over these two sce-

narios because there are no or small communications. Contrary to EP and MG,

the energy consumptions and the execution times of the rest of the benchmarks

vary according to the communication times that are different from one scenario

to the other.

The energy saving percentages of all the NAS benchmarks running over these
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two scenarios are presented in Figure 9a. The figure shows that the energy sav-

ing percentages in the one core and the multi-core scenarios are approximately

equivalent, on average they are equal to 25.9% and 25.1% respectively. The

energy consumption is reduced at the same rate in the two scenarios when com-

pared to the energy consumption of the executions without DVFS.

The performance degradation percentages of the NAS benchmarks are pre-

sented in Figure 9b. It shows that the performance degradation percentages are

higher for the NAS benchmarks executed over the one core per node scenario (on

average equal to 10.6%) than over the multi-core scenario (on average equal to

7.5%). The performance degradation percentages over the multi-core scenario

are lower because the computations to communications ratios are smaller than

the ratios of the other scenario.

The trade-off distances percentages of the NAS benchmarks over both sce-

narios are presented in Figure 9c. These trade-off distances between energy

consumption reduction and performance are used to verify which scenario is

the best in both terms at the same time. The figure shows that the trade-off

distance percentages are on average bigger over the multi-core scenario (17.6%)

than over the one core per node scenario (15.3%).

6.4. Experiments with different static power scenarios

In Section 6.1, since it was not possible to measure the static power con-

sumed by a CPU, the static power was assumed to be equal to 20% of the

measured dynamic power. This power is consumed during the whole execu-

tion time, during computation and communication times. Therefore, when the

DVFS operations are applied by the scaling algorithm and the CPUs’ frequen-

cies lowered, the execution time might increase and consequently the consumed

static energy will be increased too.

The aim of this section is to evaluate the scaling algorithm while assuming

different values of static powers. In addition to the previously used percentage

of static power, two new static power ratios, 10% and 30% of the measured

dynamic power of the core, are used in this section. The experiments have
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Figure 10: The experimental results of di�erent static power scenarios

been executed with these two new static power scenarios over the one site one

core per node scenario. In these experiments, the class D of the NAS parallel

benchmarks were executed over the Nancy site. 16 computing nodes from the

three clusters, Graphite, Graphene and Griffon, were used in this experiment.

The energy saving percentages of the NAS benchmarks with the three static

power scenarios are presented in Figure 10a. This figure shows that the 10% of

static power scenario gives the biggest energy saving percentages in comparison

to the 20% and 30% static power scenarios. The small value of the static power

consumption makes the proposed scaling algorithm select smaller frequencies for

the CPUs. These smaller frequencies reduce the dynamic energy consumption
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Selected frequency scaling factors 

30%Pstatic
scenario

10%Pstatic
scenario

20%Pstatic
scenario

1 1 1 11 1 1.99 1.99 1.99 1.99 1.66 1.661.99 1.99 1.66 1.66

1.25 1.25 1.25 1.251.25 1.25 1.99 1.99 1.99 1.99 1.66 1.661.99 1.99 1.66 1.66

1.25 1.25 1.25 1.251.25 1.25 2.49 2.49 2.49 2.49 1.66 1.662.49 2.49 1.66 1.66

Figure 11: Comparing the selected frequency scaling factors for the MG benchmark over the
three static power scenarios

more than increasing the consumed static energy which gives less overall energy

consumption. The energy saving percentages of the 30% static power scenario is

the smallest between the other scenarios, because the scaling algorithm selects

bigger frequencies for the CPUs which increases the energy consumption. Figure

11 demonstrates that the proposed scaling algorithm selects the best frequency

scaling factors according to the static power consumption ratio being used.

The performance degradation percentages are presented in Figure 10b. The

30% static power scenario had less performance degradation percentage because

the scaling algorithm had selected big frequencies for the CPUs. While, the

inverse happens in the 10% and 20% scenarios because the scaling algorithm

had selected CPUs’ frequencies smaller than those of the 30% scenario. The

trade-off distance percentage for the NAS benchmarks with these three static

power scenarios are presented in Figure 10c. It shows that the best trade-

off distance percentage is obtained with the 10% static power scenario and this

percentage is decreased for the other two scenarios because the scaling algorithm

had selected different frequencies according to the static power values.

In the EP benchmark, the energy saving, performance degradation and

trade-off distance percentages for these static power scenarios are not signifi-

cantly different because there is no communication in this benchmark. There-

fore, the static power is only consumed during computation and the proposed

scaling algorithm selects similar frequencies for the three scenarios. On the

other hand, for the rest of the benchmarks, the scaling algorithm selects the
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values of the frequencies according to the communication times of each bench-

mark because the static energy consumption increases proportionally to the

communication times.

6.5. Comparison of the proposed frequencies selecting algorithm

Finding the frequencies that give the best trade-off between the energy con-

sumption and the performance for a parallel application is not a trivial task.

Many algorithms have been proposed to tackle this problem. In this section,

the proposed frequencies selecting algorithm is compared to a method that

uses the well known energy and delay product objective function, EDP =

energy × delay, that has been used by many researchers [30, 31, 32]. This

objective function was also used by Spiliopoulos et al. algorithm [10] where

they select the frequencies that minimize the EDP product and apply them

with DVFS operations to the multi-core architecture. Their online algorithm

predicts the energy consumption and execution time of a processor before using

the EDP method. To fairly compare the proposed frequencies scaling algorithm

to Spiliopoulos et al. algorithm, called Maxdist and EDP respectively, both

algorithms use the same energy model, Equation 10 and execution time model,

Equation 2, to predict the energy consumption and the execution time for each

computing node. Moreover, both algorithms start the search space from the up-

per bound computed as in Equation 18. Finally, the resulting EDP algorithm is

an exhaustive search algorithm that tests all the possible frequencies, starting

from the initial frequencies (upper bound), and selects the vector of frequencies

that minimize the EDP product.

Both algorithms were applied to the class D of the NAS benchmarks running

over 16 nodes. The participating computing nodes are distributed according

to the two scenarios described in Section 6.2. The experimental results, the

energy saving, performance degradation and trade-off distance percentages, are

presented in Figures 12a, 12b and 12c respectively.

As shown in these figures, the proposed frequencies selection algorithm,

Maxdist, outperforms the EDP algorithm in terms of energy consumption reduc-
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Figure 12: The comparison results

tion and performance for all of the benchmarks executed over the two scenarios.

The proposed algorithm gives better results than the EDP method because the

former selects the set of frequencies that gives the best tradeoff between energy

saving and performance. Moreover, the proposed scaling algorithm gives the

same weight for these two metrics. Whereas, the EDP algorithm gives some-

times negative trade-off values for some benchmarks in the two sites scenarios.

These negative trade-off values mean that the performance degradation percent-

age is higher than the energy saving percentage. The high positive values of the

trade-off distance percentage mean that the energy saving percentage is much

higher than the performance degradation percentage. The complexity of both

algorithms, Maxdist and EDP, are of order O(N ·Mi · Fj) and O(N ·Mi · F 2
j )
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respectively, where N is the number of the clusters, Mi is the number of nodes

and Fj is the maximum number of available frequencies. When Maxdist is ap-

plied to a benchmark that is being executed over 32 nodes distributed between

Nancy and Lyon sites, it takes on average 0.01 ms to compute the best fre-

quencies while the EDP method is on average ten times slower over the same

architecture.

7. Conclusion

This paper presents a new online frequencies selection algorithm. The algo-

rithm selects the best vector of frequencies that maximizes the trade-off distance

between the predicted energy consumption and the predicted execution time of

the distributed applications with iterations running over a heterogeneous grid.

A new energy model is used by the proposed algorithm to predict the energy

consumption of the application. To evaluate the proposed method on a real het-

erogeneous grid platform, it was applied on the NAS parallel benchmarks and

the class D instance was executed over the Grid’5000 testbed platform. The

experiments executed on 16 nodes, distributed over three clusters, showed that

the algorithm on average reduces by 30% the energy consumption for all the

NAS benchmarks while on average only degrading by 3.2% the performance.

The Maxdist algorithm was also evaluated in different scenarios that vary in

the distribution of the computing nodes between different clusters’ sites or use

multi-core per node architecture or consume different static power values. The

algorithm selects different vectors of frequencies according to the computations

and communication times ratios, and the values of the static and measured

dynamic powers of the CPUs. Finally, the proposed algorithm was compared

to another method that uses the well known energy and delay product as an

objective function. The comparison results showed that the proposed algorithm

outperforms the latter by selecting a vector of frequencies that gives a better

trade-off between energy consumption reduction and performance.

In the near future, we will adapt the proposed algorithm to take into con-
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sideration the variability between some iterations. For example, the proposed

algorithm can be executed twice: after the first iteration the frequencies are

scaled down according to the execution times measured in the first iteration,

then after a fixed number of iterations, the frequencies are adjusted according

to the execution times measured during the fixed number of iterations. If the

computing power of the system is constantly changing, it would be interesting

to implement a mechanism that detects this change and adjusts the frequen-

cies according to the variability of the system. We would like also to develop

a similar method that is adapted to asynchronous applications with iterations

where iterations are not synchronized and communications are overlapped with

computations. The development of such a method might require a new energy

model because the number of iterations is not known in advance and depends on

the global convergence of the iterative system. Finally, it would be interesting

to evaluate the scalability of the proposed algorithm by running it on large plat-

forms composed of many thousands of cores. The scalability of the algorithm

can be improved by distributing it in a hierarchical manner where a leader is

chosen for each cluster or a group of nodes to compute their scaled frequencies

and by using asynchronous messages to exchange the the data measured at the

first iteration.
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