
Simulation of Asynchronous Iterative Algorithms
Using SimGrid

Charles Emile Ramamonjisoa∗, Lilia Ziane Khodja†, David Laiymani∗, Arnaud Giersch∗ and Raphaël Couturier∗
∗Femto-ST Institute – DISC Department

Université de Franche-Comté, IUT de Belfort-Montbéliard
19 avenue du Maréchal Juin, BP 527, 90016 Belfort cedex, France

Email: {charles.ramamonjisoa,david.laiymani,arnaud.giersch,raphael.couturier}@univ-fcomte.fr
†Inria Bordeaux Sud-Ouest

200 avenue de la Vieille Tour, 33405 Talence cedex, France
Email: lilia.ziane@inria.fr

Abstract—Synchronous iterative algorithms are often less
scalable than asynchronous iterative ones. Performing large scale
experiments with different kind of network parameters is not
easy because with supercomputers such parameters are fixed.
So, one solution consists in using simulations first in order to
analyze what parameters could influence or not the behavior of
an algorithm. In this paper, we show that it is interesting to
use SimGrid to simulate the behavior of asynchronous iterative
algorithms. For that, we compare the behavior of a synchronous
GMRES algorithm with an asynchronous multisplitting one with
simulations which let us easily choose some parameters. Both
codes are real MPI codes and simulations allow us to see when
the asynchronous multisplitting algorithm can be more efficient
than the GMRES one to solve a 3D Poisson problem.

I. INTRODUCTION

Parallel computing and high performance computing
(HPC) are becoming more and more imperative to solve
various problems raised by researchers on various scientific
disciplines but also by industrialists in the field. Indeed, the in-
creasing complexity of these requested applications combined
with a continuous increase of their sizes lead to write dis-
tributed and parallel algorithms requiring significant hardware
resources (grid computing, clusters, broadband network, etc.)
but also a non-negligible CPU execution time. We consider in
this paper a class of highly efficient parallel algorithms called
iterative algorithms executed in a distributed environment. As
their name suggests, these algorithms solve a given problem
by successive iterations (Xn+1 = f(Xn)) from an initial value
X0 to find an approximate value X∗ of the solution with a very
low residual error. Several well-known methods demonstrate
the convergence of these algorithms [1], [2].

Parallelization of such algorithms generally involves the
division of the problem into several blocks that will be solved
in parallel on multiple processing units. The latter will com-
municate each intermediate results before a new iteration starts
and until the approximate solution is reached. These parallel
computations can be performed either in a synchronous mode,
where a new iteration begins only when all nodes commu-
nications are completed, or in an asynchronous mode where
processors can continue independently with no synchronization
points [3]. In this case, local computations do not need to
wait for required data. Processors can then perform their
iterations with the data present at that time. Even if the number

of required iterations before the convergence is generally
greater than in the synchronous case, asynchronous iterative
algorithms can significantly reduce overall execution times by
suppressing idle times due to synchronizations especially in a
grid computing context (see [2] for more details).

Parallel applications based on a synchronous or asyn-
chronous iteration model may have different configuration and
deployment requirements. Quantifying their resource alloca-
tion policies and application scheduling algorithms in grid
computing environments under varying load, CPU power and
network speeds are very costly, very labor intensive and very
time consuming [4]. The case of asynchronous iterative algo-
rithms is even more problematic since they are very sensitive to
the execution environment context. For instance, variations in
the network bandwidth (intra and inter-clusters), in the number
and the power of nodes, in the number of clusters. . . can lead
to very different number of iterations and so to very different
execution times. Then, it appears that the use of simulation
tools to explore various platform scenarios and to run large
numbers of experiments quickly can be very promising.

Thus, using a simulation environment to execute parallel
iterative algorithms can prove to be very interesting to reduce
the highly cost of access to computing resources: (1) for the
applications development life cycle and in code debugging (2)
and in production to get results in a reasonable execution time
with a simulated infrastructure not accessible with physical
resources. Indeed, to find optimal configurations giving the
best results with a lowest residual error and in the best
execution time is very challenging for large scale distributed
iterative asynchronous algorithms

To our knowledge, there is no existing work on the large-
scale simulation of a real asynchronous iterative application.
The contribution of the present paper can be summarized
in two main points. First we give a first approach of the
simulation of asynchronous iterative algorithms using a simu-
lation tool (i.e. the SimGrid toolkit [5]). Second, we confirm
the efficiency of the asynchronous multisplitting algorithm by
comparing its performances with the synchronous GMRES
(Generalized Minimal Residual) method [6]. Both these codes
can be used to solve large linear systems. In this paper, we
focus on a 3D Poisson problem. We show that, with minor
modifications of the initial MPI code, the SimGrid toolkit

allows us to perform a test campaign of a real asynchronous
iterative application on different computing architectures. Sim-
Grid has allowed us to launch the application from a modest
computing infrastructure by simulating different distributed
architectures composed by clusters nodes interconnected by
variable speed networks. Parameters of the network platforms
are the bandwidth and the latency of inter cluster network.
Parameters on the cluster’s architecture are the number of
machines and the computation power of a machine. Simula-
tions show that the asynchronous multisplitting algorithm can
solve the 3D Poisson problem approximately twice faster than
GMRES with two distant clusters. In this way, we present an
original solution to optimize the use of a simulation tool to
run efficiently an asynchronous iterative parallel algorithm in
a grid architecture

This article is structured as follows: after this introduction,
the next section will give a brief description of the iterative
asynchronous model. Then, the simulation framework SimGrid
is presented with the settings to create various distributed
architectures. Then, the multisplitting method is presented, it
is based on GMRES to solve each block obtained from the
splitting. This code is written with MPI primitives and its
adaptation to SimGrid with SMPI (Simulated MPI) is detailed
in the next section. At last, the simulation results carried out
will be presented before some concluding remarks and future
works.

II. MOTIVATIONS AND SCIENTIFIC CONTEXT

As described in the introduction, parallel iterative methods
are now widely used in many scientific domains. They can be
classified in three main classes depending on how iterations
and communications are managed (for more details readers
can refer to [3]). In the synchronous iterations model, data
are exchanged at the end of each iteration. All the processors
must begin the same iteration at the same time and important
idle times on processors are generated. It is possible to use
asynchronous communications, in this case, the model can be
compared to the previous one except that data required on
another processor are sent asynchronously i.e. without stopping
current computations. This technique allows communications
to be partially overlapped by computations but unfortunately,
the overlapping is only partial and important idle times remain.
It is clear that, in a grid computing context, where the number
of computational nodes is large, heterogeneous and widely
distributed, the idle times generated by synchronizations are
very penalizing. One way to overcome this problem is to use
the asynchronous iterations model. Here, local computations
do not need to wait for required data. Processors can then
perform their iterations with the data present at that time.
Figure 1 illustrates this model where the gray blocks represent
the computation phases. With this algorithmic model, the num-
ber of iterations required before the convergence is generally
greater than for the two former classes. But, and as detailed
in [3], asynchronous iterative algorithms can significantly
reduce overall execution times by suppressing idle times due
to synchronizations especially in a grid computing context.

In the context of asynchronous algorithms, the number
of iterations to reach the convergence depends on the delay
of the messages. With synchronous iterations, the number of
iterations is exactly the same than in the sequential mode (if

Time

Processor 1

Processor 2

Iter. 3 Iter. 4Iter. 1 Iter. 2 Iter. 5

Iter. 1 Iter. 3 Iter. 5 Iter. 6Iter. 2 Iter. 4

Figure 1. The asynchronous iterations model

the parallelization process does not change the algorithm). So
the difficulty with asynchronous iterative algorithms comes
from the fact that it is necessary to run the algorithm with
real data. Indeed, from one execution to the other the order
of messages will change and the number of iterations to
reach the convergence will also change. According to all the
parameters of the platform (number of nodes, power of nodes,
inter and intra clusters bandwidth and latency, etc.) and of
the algorithm (number of splittings with the multisplitting
algorithm), the multisplitting code will obtain the solution
more or less quickly. Of course, the GMRES method also
depends on the same parameters. As it is difficult to have
access to many clusters, grids or supercomputers with many
different network parameters, it is interesting to be able to
simulate the behavior of asynchronous iterative algorithms
before being able to run real experiments.

III. SIMGRID

SimGrid [5], [7], [8] is a simulation framework to study
the behavior of large-scale distributed systems. As its name
suggests, it emanates from the grid computing community, but
is nowadays used to study grids, clouds, HPC or peer-to-peer
systems. The early versions of SimGrid date back from 1999,
but it is still actively developed and distributed as an open
source software. Today, it is one of the major generic tools in
the field of simulation for large-scale distributed systems.

SimGrid provides several programming interfaces: MSG
to simulate Concurrent Sequential Processes, SimDAG to
simulate DAGs of (parallel) tasks, and SMPI to run real
applications written in MPI [9]. Apart from the native C
interface, SimGrid provides bindings for the C++, Java, Lua
and Ruby programming languages. SMPI is the interface that
has been used for the work described in this paper. The SMPI
interface implements about 80 % of the MPI 2.0 standard [10],
and supports applications written in C or Fortran, with little
or no modifications.

Within SimGrid, the execution of a distributed application
is simulated by a single process. The application code is
really executed, but some operations, like communications,
are intercepted, and their running time is computed according
to the characteristics of the simulated execution platform.
The description of this target platform is given as an input
for the execution, by means of an XML file. It describes
the properties of the platform, such as the computing nodes
with their computing power, the interconnection links with
their bandwidth and latency, and the routing strategy. The
scheduling of the simulated processes, as well as the simulated
running time of the application are computed according to
these properties.

To compute the durations of the operations in the simulated
world, and to take into account resource sharing (e.g. band-

width sharing between competing communications), SimGrid
uses a fluid model. This allows users to run relatively fast sim-
ulations, while still keeping accurate results [10], [11]. More-
over, depending on the simulated application, SimGrid/SMPI
allows to skip long lasting computations and to only take their
duration into account. When the real computations cannot be
skipped, but the results are unimportant for the simulation
results, it is also possible to share dynamically allocated data
structures between several simulated processes, and thus to
reduce the whole memory consumption. These two techniques
can help to run simulations on a very large scale.

The validity of simulations with SimGrid has been asserted
by several studies. See, for example, [11] and articles refer-
enced therein for the validity of the network models. Compar-
isons between real execution of MPI applications on the one
hand, and their simulation with SMPI on the other hand, are
presented in [12], [13], [10]. All these works conclude that
SimGrid is able to simulate pretty accurately the real behavior
of the applications.

IV. SIMULATION OF THE MULTISPLITTING METHOD

A. The multisplitting method

Let Ax = b be a large sparse system of n linear equations
in R, where A is a sparse square and nonsingular matrix, x is
the solution vector and b is the right-hand side vector. We use
a multisplitting method based on the block Jacobi splitting to
solve this linear system on a large scale platform composed
of L clusters of processors [14]. In this case, we apply a row-
by-row splitting without overlapping A11 · · · A1L

...
. . .

...
AL1 · · · ALL

×
 X1

...
XL

 =

 B1

...
BL

in such a way that successive rows of matrix A and both
vectors x and b are assigned to one cluster, where for all
`,m ∈ {1, . . . , L}, A`m is a rectangular block of A of size
n` × nm, X` and B` are sub-vectors of x and b, respectively,
of size n` each, and

∑
` n` =

∑
m nm = n.

The multisplitting method proceeds by iteration to solve in
parallel the linear system on L clusters of processors, in such
a way each sub-system

A``X` = Y`, such that

Y` = B` −
L∑

m=1
m6=`

A`mXm
(1)

is solved independently by a cluster and communications are
required to update the right-hand side sub-vector Y`, such that
the sub-vectors Xm represent the data dependencies between
the clusters. As each sub-system (1) is solved in parallel by
a cluster of processors, our multisplitting method uses an
iterative method as an inner solver which is easier to parallelize
and more scalable than a direct method. In this work, we use
the parallel algorithm of GMRES method [6] which is one of
the most used iterative method by many researchers.

The algorithm in Figure 2 shows the main key points
of the multisplitting method to solve a large sparse linear
system. This algorithm is based on an outer-inner iteration

Input: A` (sparse sub-matrix), B` (right-hand side sub-vector)
Output: X` (solution sub-vector)

1: Load A`, B`

2: Set the initial guess x0
3: for k = 0, 1, 2, . . . until the global convergence do
4: Restart outer iteration with x0 = xk

5: Inner iteration: INNERSOLVER(x0, k + 1)
6: Send shared elements of Xk+1

` to neighboring clusters
7: Receive shared elements in {Xk+1

m }m6=`

8: end for

9: function INNERSOLVER(x0, k)
10: Compute local right-hand side Y`:

Y` = B` −
∑L

m=1
m 6=`

A`mX
0
m

11: Solving sub-system A``X
k
` = Y` with the parallel

GMRES method
12: return Xk

`
13: end function

Figure 2. A multisplitting solver with GMRES method

P1

P2

P3

P4 P5

P1P2

P3

P2 P3

P1

Cluster 3 Cluster 2

Cluster 1

Asynchronous
communication

communication
Synchronous

Figure 3. Example of three distant clusters of processors.

method where the parallel synchronous GMRES method is
used to solve the inner iteration. It is executed in parallel
by each cluster of processors. For all `,m ∈ {1, . . . , L},
the matrices and vectors with the subscript ` represent the
local data for cluster `, while {A`m}m 6=` are off-diagonal
matrices of sparse matrix A and {Xm}m 6=` contain vector
elements of solution x shared with neighboring clusters. At
every outer iteration k, asynchronous communications are
performed between processors of the local cluster and those of
distant clusters (lines 6 and 7 in Figure 2). The shared vector
elements of the solution x are exchanged by message passing
using MPI non-blocking communication routines.

The global convergence of the asynchronous multisplitting
solver is detected when the clusters of processors have all con-
verged locally. We implemented the global convergence detec-
tion process as follows. On each cluster a master processor is
designated (for example the processor with rank 1) and masters
of all clusters are interconnected by a virtual unidirectional ring
network (see Figure 3). During the resolution, a Boolean token
circulates around the virtual ring from a master processor to
another until the global convergence is achieved. So, starting
from the cluster with rank 1, each master processor ` sets the

token to True if the local convergence is achieved or to False
otherwise, and sends it to master processor `+ 1. Finally, the
global convergence is detected when the master of cluster 1
receives from the master of cluster L a token set to True. In this
case, the master of cluster 1 broadcasts a stop message to the
masters of other clusters. In this work, the local convergence
on each cluster ` is detected when the following condition is
satisfied

(k = MaxIter) or (‖Xk
` −Xk+1

` ‖∞ ≤ ε)

where MaxIter is the maximum number of outer iterations
and ε is the tolerance threshold of the error computed between
two successive local solution Xk

` and Xk+1
` . It should be

noted that with asynchronous iterative algorithms, we cannot
use a classical norm (which would require to synchronize all
processors), such as ‖Xk

` −X
k+1
` ‖2 for example. Nevertheless,

in our experiments, we check that the final result is correct,
for this we compute the precision with maxi|A ∗ x− b|i.

In this paper, we solve the 3D Poisson problem whose
mathematical model is{

∇2u = f in Ω
u = 0 on Γ = ∂Ω

(2)

where ∇2 is the Laplace operator, f and u are real-valued
functions, and Ω = [0, 1]3. The spatial discretization with a
finite differences scheme reduces problem (2) to a system of
sparse linear equations. Our multisplitting method solves the
3D Poisson problem using a seven point stencil whose general
expression could be written as

u(x− 1, y, z) + u(x, y − 1, z) + u(x, y, z − 1)
+u(x+ 1, y, z) + u(x, y + 1, z) + u(x, y, z + 1)
−6u(x, y, z) = h2f(x, y, z),

(3)

where h is the distance between two adjacent elements in the
spatial discretization scheme and the iteration matrix A of
size Nx ×Ny ×Nz of the discretized linear system is sparse,
symmetric and positive definite.

The parallel solving of the 3D Poisson problem with
our multisplitting method requires a data partitioning of the
problem between clusters and between processors within a
cluster. We have chosen the 3D partitioning instead of the row-
by-row partitioning one in order to reduce the data exchanges
at sub-domain boundaries. Figure 4 shows an example of the
data partitioning of the 3D Poisson problem between two
clusters of processors, where each sub-problem is assigned
to a processor. In this context, a processor has at most six
neighbors within a cluster or in distant clusters with which it
shares data at sub-domain boundaries.

B. Simulation of the multisplitting method using SimGrid and
SMPI

We did not encounter major blocking problems when
adapting the multisplitting algorithm previously described to
a simulation environment like SimGrid unless some code
debugging. Indeed, apart from the review of the program se-
quence for asynchronous exchanges between processors within
a cluster or between clusters, the algorithm was executed
successfully with SMPI and provided identical outputs as those
obtained with direct execution under MPI. For the synchronous
GMRES method, the execution of the program raised no

P21

P27

24
P18

P1 P2 P3

P4 P5 P6

P7 P8

Sub−domain

boundaries

Cluster 2

Cluster 1

P9

y
z

x

Figure 4. Example of the 3D data partitioning between two clusters of
processors.

particular issue but in the asynchronous multisplitting method,
the review of the sequence of MPI_Isend, MPI_Irecv
and MPI_Waitall instructions and with the addition of the
primitive MPI_Test was needed to avoid a memory fault due
to an infinite loop resulting from the non-convergence of the
algorithm. Note here that the use of SMPI functions optimizer
for memory footprint and CPU usage is not recommended
knowing that one wants to get real results by simulation. As
mentioned, upon this adaptation, the algorithm is executed as
in real life in the simulated environment after the following
minor changes. The scope of all declared global variables have
been moved to local subroutines. Indeed, global variables gen-
erate side effects arising from the concurrent access of shared
memory used by threads simulating each computing unit in
the SimGrid architecture. In total, the initial MPI program
running on the simulation environment SMPI gave after a
very simple adaptation the same results as those obtained in
a real environment. We have successfully executed the code
for the synchronous GMRES algorithm compared with our
asynchronous multisplitting algorithm after few modifications.

V. SIMULATION RESULTS

When the real application runs in the simulation envi-
ronment and produces the expected results, varying the input
parameters and the program arguments allows us to compare
outputs from the code execution. We have noticed from this
study that the results depend on the following parameters:

• At the network level, we found that the most critical
values are the bandwidth and the network latency.

• Host processor power (GFlops) can also influence the
results.

• Finally, when submitting job batches for execution, the
arguments values passed to the program like the maxi-
mum number of iterations or the precision are critical.
They allow us to ensure not only the convergence
of the algorithm but also to get the main objective
in getting an execution time with the asynchronous
multisplitting less than with synchronous GMRES.

The ratio between the simulated execution time of syn-
chronous GMRES algorithm compared to the asynchronous
multisplitting algorithm (tGMRES/tMultisplitting) is defined as the

Table I. RELATIVE GAIN OF THE MULTISPLITTING ALGORITHM
COMPARED TO GMRES FOR DIFFERENT CONFIGURATIONS WITH 2
CLUSTERS, EACH ONE COMPOSED OF 50 NODES. LATENCY = 20MS

bandwidth (Mbit/s) 5 5 5 5 5

power (GFlops) 1 1 1 1.5 1.5

size (N) 623 623 623 1003 1003

Precision 10−5 10−8 10−9 10−11 10−11

Relative gain 2.52 2.55 2.52 2.57 2.54

bandwidth (Mbit/s) 50 50 50 50 50

Power (GFlops) 1.5 1.5 1.5 1.5 1.5

size (N) 1103 1203 1303 1403 1503

Precision 10−11 10−11 10−11 10−11 10−11

Relative gain 2.53 2.51 2.58 2.55 2.54

relative gain. So, our objective running the algorithm in
SimGrid is to obtain a relative gain greater than 1. A priori,
obtaining a relative gain greater than 1 would be difficult
in a local area network configuration where the synchronous
GMRES method will take advantage on the rapid exchange of
information on such high-speed links. Thus, the methodology
adopted was to launch the application on a clustered network.
In this configuration, degrading the inter-cluster network per-
formance will penalize the synchronous mode allowing to get
a relative gain greater than 1. This action simulates the case of
distant clusters linked with long distance networks as in grid
computing context.

Both codes were simulated on a two clusters based network
with 50 hosts each, totalling 100 hosts. Various combinations
of the above factors have provided the results shown in Table I.
The problem size of the 3D Poisson problem ranges from
N = Nx = Ny = Nz = 62 to 150 elements (that is
from 623 = 238,328 to 1503 = 3,375,000 entries). With the
asynchronous multisplitting algorithm the simulated execution
time is on average 2.5 times faster than with the synchronous
GMRES one.

Note that the program was run with the following param-
eters:

SMPI parameters:

• HOSTFILE: Text file containing the list of the pro-
cessors units name. Here 100 hosts;

• PLATFORM: XML file description of the platform
architecture with the following characteristics:
◦ 2 clusters of 50 hosts each;
◦ Processor unit power: 1 GFlops or 1.5 GFlops;
◦ Intra-cluster network bandwidth: 1.25 Gbit/s

and latency: 50µs;
◦ Inter-cluster network bandwidth: 5 Mbit/s or

50 Mbit/s and latency: 20 ms;

Arguments of the program:

• Description of the cluster architecture matching the
format <Number of clusters> <Number of hosts in
cluster1> <Number of hosts in cluster2>;

• Maximum numbers of outer and inner iterations;

• Outer and inner precisions on the residual error;

• Matrix size Nx, Ny and Nz;

• Matrix diagonal value: 6 (see Equation (3));

• Matrix off-diagonal values: −1;

• Communication mode: asynchronous.

Interpretations and comments: After analyzing the
outputs, generally, for the two clusters including one hun-
dred hosts configuration (Tables I), some combinations of
parameters affecting the results, have given a relative gain of
more than 2.5, showing the effectiveness of the asynchronous
multisplitting compared to GMRES with two distant clusters.

With these settings, Table I shows that after setting the
bandwidth of the inter cluster network to 5 Mbit/s, the latency
to 20 millisecond and the processor power to one GFlops, an
efficiency of about 40 % is obtained in asynchronous mode
for a matrix size of 623 elements. It is noticed that the result
remains stable even if the residual error precision varies from
10−5 to 10−9. By increasing the matrix size up to 1003

elements, it was necessary to increase the CPU power by 50 %
to 1.5 GFlops to get the algorithm convergence and the same
order of asynchronous mode efficiency. Maintaining a relative
gain of 2.5 and such processor power but increasing network
throughput inter cluster up to 50 Mbit/s, is obtained with high
external precision of 10−11 for a matrix size from 1103 to 1503

side elements.

VI. CONCLUSION

The simulation of the execution of parallel asynchronous
iterative algorithms on large scale clusters has been presented.
In this work, we show that SimGrid is an efficient simulation
tool that has enabled us to reach the following two objectives:

1) To have a flexible configurable execution platform
that allows us to simulate algorithms for which ex-
ecution of all parts of the code is necessary. Using
simulations before real executions is a nice solution
to detect potential scalability problems.

2) To test the combination of the cluster and network
specifications permitting to execute an asynchronous
algorithm faster than a synchronous one.

Our results have shown that with two distant clusters, the asyn-
chronous multisplitting method is faster by 40 % compared to
the synchronous GMRES method which is not negligible for
solving complex practical problems with ever increasing size.

Several studies have already addressed the performance
execution time of this class of algorithm. The work presented
in this paper has demonstrated an original solution to optimize
the use of a simulation tool to run efficiently an iterative
parallel algorithm in asynchronous mode in a grid architecture.

In future works, we plan to extend our experimentations to
larger scale platforms by increasing the number of computing
cores and the number of clusters. We will also have to increase
the size of the input problem which will require the use of
a more powerful simulation platform. At last, we expect to
compare our simulation results to real execution results on
real architectures in order to better experimentally validate
our study. Finally, we also plan to study other problems with
the multisplitting method and other asynchronous iterative
methods.

ACKNOWLEDGMENT

This work is partially funded by the Labex ACTION
program (contract ANR-11-LABX-01-01).

REFERENCES

[1] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation,
Numerical Methods. Prentice Hall Englewood Cliffs N. J., 1989.

[2] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Parallel Iterative Al-
gorithms: from Sequential to Grid Computing. Chapman & Hall/CRC,
Numerical Analysis & Scientific Computating, 2007.

[3] J. Bahi, S. Contassot-Vivier, and R. Couturier, “Performance compar-
ison of parallel programming environments for implementing AIAC
algorithms,” Journal of Supercomputing, vol. 35, no. 3, pp. 227–244,
2006.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[5] (2014) SimGrid website. [Online]. Available: http://simgrid.org/
[6] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual

Algorithm for Solving Nonsymmetric Linear Systems,” SIAM Journal
on Scientific and Statistical Computing, vol. 7, no. 3, pp. 856–869,
1986.

[7] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a generic frame-
work for large-scale distributed experiments,” in Proceedings of the
Tenth International Conference on Computer Modeling and Simulation,
ser. UKSIM ’08. IEEE Computer Society, 2008, pp. 126–131.

[8] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, 2014,
to appear.

[9] (2014) Message Passing Interface MPI forum. [Online]. Available:
http://www.mpi-forum.org/

[10] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. S. Markomanolis,
M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better Sim-
ulation of MPI Applications on Ethernet/TCP Networks,” in PMBS13 -
4th International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems, Nov. 2013.

[11] P. Velho, L. Schnorr, H. Casanova, and A. Legrand, “On the Validity
of Flow-level TCP Network Models for Grid and Cloud Simulations,”
ACM Transactions on Modeling and Computer Simulation, vol. 23,
no. 4, Oct. 2013.

[12] A. Guermouche and H. Renard, “A First Step to the Evaluation of Sim-
Grid in the Context of a Complex Application,” in 19th International
Heterogeneity in Computing Workshop (HCW). IEEE, Apr. 2010.

[13] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and
M. Quinson, “Single Node On-Line Simulation of MPI Applications
with SMPI,” in Proc. of the 25th IEEE Intl. Parallel and Distributed
Processing Symp (IPDPS). IEEE, May 2011, pp. 661–672.

[14] D. P. O’Leary and R. E. White, “Multi-splittings of matrices and
parallel solution of linear systems,” SIAM Journal on Algebraic Discrete
Methods, vol. 6, no. 4, pp. 630–640, 1985.

