
Load-Balancing Scatter Operations for Grid Computing∗

Stéphane Genaud1 Arnaud Giersch1 Frédéric Vivien2

1 ICPS-LSIIT - UMR 7005
Université Louis Pasteur, Strasbourg
{genaud,giersch}@icps.u-strasbg.fr

2 LIP, École normale supérieure de Lyon
INRIA

Frederic.Vivien@ens-lyon.fr

Abstract

We present solutions to statically load-balance scatter
operations in parallel codes run on Grids. Our load-
balancing strategy is based on the modification of the data
distributions used in scatter operations. We need to modify
the user source code, but we want to keep the code as close
as possible to the original. Hence, we study the replacement
of scatter operations with a parameterized scatter, allowing
a custom distribution of data. The paper presents: 1) a gen-
eral algorithm which finds an optimal distribution of data
across processors; 2) a quicker guaranteed heuristic rely-
ing on hypotheses on communications and computations;
3) a policy on the ordering of the processors. Experimental
results with an MPI scientific code of seismic tomography
illustrate the benefits obtained from our load-balancing.

1. Introduction

Traditionally, users have developed scientific applica-
tions with a parallel computer in mind, assuming an ho-
mogeneous set of processors linked with an homogeneous
and fast network. However,Grids [10] of computational
resources usually include heterogeneous processors, and
heterogeneous network links that are orders of magnitude
slower than in a parallel computer. Therefore, the execu-
tion on Grids of applications designed for parallel comput-
ers usually leads to poor performance as the distribution
of workload does not take the heterogeneity into account.
Hence the need for tools able to analyze and transform ex-
isting parallel applications to improve their performances
on heterogeneous environments by load-balancing their ex-
ecution. Furthermore, we are not willing to fully rewrite
the original applications but we are rather seeking transfor-
mations which modify the original source code as little as
possible.

∗This research is supported by the French Ministry of Research through
the ACI-GRID program.

Among the usual operations found in parallel codes is
thescatteroperation, which is one of thecollectiveopera-
tions usually shipped with message passing libraries. For
instance, the mostly used message passing library MPI [16]
provides aMPI_Scatter primitive that allows the pro-
grammer to distribute even parts of data to the processors in
the MPI communicator.

The less intrusive modification enabling a performance
gain in an heterogeneous environment consists in using
a communication library adapted to heterogeneity. Thus,
much work has been devoted to that purpose: for MPI,
numerous projects including Magpie [15], MPI-StarT [13],
and MPICH-G2 [8], aim at improving communications per-
formance in presence of heterogeneous networks. Most of
the gain is obtained by reworking the design of collective
communication primitives. For instance, MPICH-G2 per-
forms often better than MPICH to disseminate information
held by a processor to several others. While MPICH always
use a binomial tree to propagate data, MPICH-G2 is able to
switch to a flat tree broadcast when network latency is high
[14]. Making the communication library aware of the pre-
cise network topology is not easy: MPICH-G2 queries the
underlying Globus [9] environment to retrieve information
about the network topology that the user may have spec-
ified through environment variables. Such network-aware
libraries bring interesting results as compared to standard
communication libraries. However, these improvements are
often not sufficient to attain performance considered ac-
ceptable by users when the processors are also heteroge-
neous. Balancing the computation tasks over processors is
also needed to take benefit from Grids.

The typical usage of the scatter operation is to spawn
an SPMD computation section on the processors after they
received their piece of data. Thereby, if the computation
load on processors depends on the data received, we can
use the scatter operation as a means to load-balance com-
putations, provided the items in the data set to scatter are
independent. MPI provides the primitiveMPI_Scatterv
that allows to distributeunequalshares of data. We claim
that replacingMPI_Scatter by MPI_Scatterv calls

parameterized with clever distributions may lead to great
performance improvements at low cost. In term of source
code rewriting, the transformation of such operations does
not require a deep source code re-organization, and it can
easily be automated in a software tool. Our problem is thus
to load-balance the execution by computing a data distribu-
tion depending on the processors speeds and network links
bandwidths.

In Section 2 we present our target application, a real sci-
entific application in geophysics, written in MPI, that we
ran to ray-trace the full set of seismic events of year 1999.
In Section 3 we present our load-balancing techniques, in
Section 4 the processor ordering policy we derive from a
case study, in Section 5 our experimental results, in Sec-
tion 6 the related works, and we conclude in Section 7.

2. Motivating example

2.1. Seismic tomography

The geophysical code we consider is in the seismic to-
mography field. The general objective of such applications
is to build a global seismic velocity model of the Earth inte-
rior. The various velocities found at the different points dis-
cretized by the model (generally a mesh) reflect the physical
rock properties in those locations. The seismic waves veloc-
ities are computed from the seismograms recorded by cap-
tors located all around the globe: once analyzed, the wave
type, the earthquake hypocenter and the captor locations as
well as the wave travel time are determined.

From these data, a tomography application reconstructs
the event using an initial velocity model. The wave prop-
agation from the source hypocenter to a given captor de-
fines a path, that the application evaluates given properties
of the initial velocity model. The time for the wave to prop-
agate along this evaluated path is then compared to the ac-
tual travel time, and in a final step, a new velocity model
that minimizes those differences is computed. This process
is more accurate if the new model better fits numerous such
paths in many locations inside the Earth, and is therefore
very computationally demanding.

2.2. The example application

We now outline how the application under study exploits
the potential parallelism of the computations, and how the
tasks are distributed across processors. Recall that the input
data is a set of seismic waves characteristics each described
by a pair of 3D coordinates (the coordinates of the earth-
quake source and those of the receiving captor) plus the
wave type. With these characteristics, a seismic wave can be
modeled by a set ofray pathsthat represents the wavefront
propagation. Seismic wave characteristics are sufficient to

perform the ray-tracing of the whole associated ray path.
Therefore, all ray paths can be traced independently. The
existing parallelization of the application (presented in [12])
assumes an homogeneous set of processors (the implicit tar-
get being a parallel computer). The following pseudo-code
outlines the main communication and computation phases:

if (rank = ROOT)
raydata ← read n lines from data file;

MPI_Scatter(raydata,
n/P ,
...,
rbuff,
...,
ROOT,
MPI_COMM_WORLD);

compute_work(rbuff);

whereP is the number of processors involved, andn the
number of data items. TheMPI_Scatter instruction is
executed by the root and the computation processors. The
processor identified asROOTperforms a send of contiguous
blocks ofbn/P c elements from theraydata buffer to all
processors of the group while all processors make a receive
operation of their respective data in therbuff buffer. For
sake of simplicity the remaining(n mod P) items distribu-
tion is not shown here. Figure 1 shows a potential execution
of this communication operation, withP4 as root process.

time

idle

receiving

sending

computing

t0

t1

P1 P2 P3 P4

Figure 1. A scatter communication followed
by a computation phase.

2.3. Hardware model

Figure 1 outlines the behavior of the scatter operation as
it was observed during the applications runs on our test Grid
(described in Section 5.1). This behavior is an indication on
the networking capabilities of the root node: it can send to
at most one destination node at a time. This is the single-
port model of [4] which is realistic for Grids as many nodes
are simple PCs with full-duplex network cards. As the root
processor sends data to processors in turn1 a receiving pro-
cessor actually begins its communication after all previous

1In the MPICH implementation, the order of the destination processors
in scatter operations follows the processors ranks.

processors have been served. This leads to a “stair effect”
represented on Figure 1 by the end times of the receive op-
erations (black boxes).

3. Static load-balancing

As the overall execution time after load-balancing is
rather small, we make the assumption that the grid charac-
teristics do not change during the computation and we only
consider static load-balancing. Note also that the computed
distribution is not necessarily based on static parameters es-
timated for the whole execution: a monitor daemon process
(like [19]) running aside the application could be queried
just before a scatter operation to retrieve the instantaneous
Grid characteristics.

3.1. Framework

We consider a set ofp processors:P1, . . . , Pp, each of
them being characterized by 1) the timeTcomp(i, x) it takes
to computex data items; 2) the timeTcomm(i, x) it takes to
receivex data items from the root process. We want to pro-
cessn data items. We look for a distributionn1, . . . ,np of
these data over thep processors that minimizes the overall
computation time. In all this paper the root processor will be
the last process,Pp, as it can only start to process its share
of the data itemsafter it has sent the other data items to the
other processors. As the root processor sends data to pro-
cessors in turn, processorPi begins its communication after
processorsP1, . . . , Pi−1 have been served, which takes a
time

∑i−1
j=1 Tcomm(j, nj). The root takesTcomm(i, ni) to

send toPi its data, andPi takesTcomp(i, ni) to process
them. Thus,Pi ends its processing at time:

Ti =
i∑

j=1

Tcomm(j, nj) + Tcomp(i, ni). (1)

The time,T , taken by our system to compute the set ofn
data items is therefore:

T = max
1≤i≤p

Ti

= max
1≤i≤p

 i∑
j=1

Tcomm(j, nj) + Tcomp(i, ni)

 ,
(2)

and we are looking for the distributionn1, . . . ,np minimiz-
ing this duration.

3.2. An exact solution by dynamic programming

Studying Equation (2) we remark that the time to pro-
cessn data on processors 1 top is equal to the maximum

of 1) the time taken by the root to sendn1 data toP1 plus
the time taken byP1 to process them; 2) the time for pro-
cessors 2 top to processn − n1 dataplus the time for the
root to send then1 data toP1. This leads to the dynamic
programming Algorithm 1 (the distribution is expressed as
a list, hence the use of the list constructorcons). In Algo-
rithm 1, cost[d, i] denotes the cost of the processing ofd
data items over the processorsPi throughPp. solution[d, i]
is a list describing the distribution ofd data items over the
processorsPi throughPp to achieve the minimal execution
time cost[d, i].

Algorithm 1 Compute an optimal distribution ofn data
overp processors

cost[0, p]← 0
solution[0, p]← cons(0,NIL)
for d← 1 to n do

cost[d, p]← Tcomm(p, d) + Tcomp(p, d)
solution[d, p]← cons(d,NIL)

for i← p− 1 to 1 do
cost[0, i]← 0
solution[0, i]← cons(0, solution[0, i + 1])
for d← 1 to n do

min ← cost[d, i + 1]
sol ← 0
for e← 1 to d do

m← max(Tcomm(i, e) + Tcomp(i, e),
Tcomm(i, e) + cost[d− e, i + 1])

if m < min then
min ← m
sol ← e

cost[d, i]← min
solution[d, i]← cons(sol , solution[d− sol , i + 1])

return (cost[n, 1], solution[n, 1])

Algorithm 1 has a complexity ofO(p · n2), which may
be prohibitive. But Algorithm 1 only assumes that the func-
tions Tcomm(i, x) and Tcomp(i, x) are non-negative. We
now present a more efficient heuristic valid for simple cases.

3.3. A guaranteed heuristic using linear program-
ming

In this section, we make the hypothesis that all the func-
tionsTcomm(i, n) andTcomp(i, n) are affine inn, increas-
ing, and non-negative (forn ≥ 0). Equation (2) can then be
coded into the following linear program:

Minimize T such that

∀i ∈ [1, p], ni ≥ 0,∑p
i=1 ni = n,

∀i ∈ [1, p], T ≥
∑i

j=1 Tcomm(j, nj) + Tcomp(i, ni).
(3)

This linear program must be solved in integer to find an
integer solution. However, we can solve it in rational to
obtain an optimalrational solutionn1, . . . ,np that we round
up to obtain an integer solutionn′1, . . . ,n′p with

∑
i n′i = n.

Let T ′ be the execution time of this solution,T be the time
of the rational solution, andTopt the time of the optimal
integer solution. If|ni − n′i| ≤ 1 for any i, which is easily
enforced by the rounding scheme described below, then:

Topt ≤ T ′ ≤ Topt +
p∑

j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1).

(4)
Indeed,

T ′ = max
1≤i≤p

 i∑
j=1

Tcomm(j, n′j) + Tcomp(i, n′i)

 . (5)

By hypothesis, Tcomm(j, x) and Tcomp(j, x) are non-
negative, increasing, and affine functions. Therefore,

Tcomm(j, n′j) = Tcomm(j, nj + (n′j − nj))

≤ Tcomm(j, nj + |n′j − nj |)
≤ Tcomm(j, nj) + Tcomm(j, |n′j − nj |)
≤ Tcomm(j, nj) + Tcomm(j, 1)

and we have an equivalent upper bound forTcomp(j, n′j).
Using these upper bounds to over-approximate the expres-
sion ofT ′ given by Equation (5) we obtain:

T ′ ≤ max
1≤i≤p

 i∑
j=1

(Tcomm(j, nj) + Tcomm(j, 1))

+ Tcomp(i, ni) + Tcomp(i, 1)

)
(6)

which implies Equation (4) knowing thatTopt ≤ T ′,
T = max1≤i≤p(

∑i
j=1 Tcomm(j, nj) + Tcomp(i, ni)), and

T ≤ Topt.

Rounding scheme. Our rounding scheme is trivial: first
we round, to the nearest integer, theni which is nearest to
an integer. Doing so we obtainn′i and we make an approx-
imation error ofe = n′i − ni (with |e| < 1). If e is nega-
tive (resp. positive),ni was underestimated (resp. overesti-
mated) by the approximation. Then we round to its ceiling
(resp. floor), one of the remainingnjs which is the nearest
to its ceilingdnje (resp. floorbnjc), we obtain a new ap-
proximation error ofe = e+n′j −nj (with |e| < 1), and so
on until there only remains to approximate only one of the
nis, saynk. Then we letn′k = nk + e. The distributionn′1,
. . . , n′p is thus integer,

∑
1≤i≤p n′i = d, and eachn′i differs

from ni by less than one.

3.4. Choice of the root process

We make the assumption that, originally, then data items
that must be processed are stored on a single computer, de-
notedC. A processor ofC may or may not be used as the
root processor. If the root processor is not onC, then the
whole execution time is equal to the time needed to trans-
fer the data fromC to the root processor, plus the execution
time as computed by Algorithm 1. The best root processor
is then the processor minimizing this whole execution time,
when picked as root. This is just the result of a minimization
over thep candidates.

4. A case study: solving in rational with linear
communication and computation times

In this section we study a simple and theoretical case.
We make the hypothesis that all the functionsTcomm(i, n)
andTcomp(i, n) are linear inn. In other words, there are
constantsλi and µi such thatTcomm(i, n) = λi · n and
Tcomp(i, n) = µi · n.

Also, we only look for a rational solution and not an in-
teger one as we should. This case study will enable us to
define a policy on the order in which the processors must
receive their data. Indeed, in our simple case the processor
ordering leading to the shortest execution time is quite sim-
ple as we show in Section 4.3. Before that we prove in Sec-
tion 4.2 that there always is an optimal (rational) solution
in which all the working processors have the same ending
time. We also show the condition for a processor to receive
a share of the whole work. As this condition comes from
the expression of the execution duration when all proces-
sors have to process a share of the whole work and finishes
at the same date, we begin by studying this case in Sec-
tion 4.1. Finally, in Section 4.4, we derive from our case
study some consequences for the general case.

4.1. Execution duration

Theorem 1 (Execution duration) If we are looking for a
rational solution, if each processorPi receives a (non
empty) shareni of the whole set ofn data items and if all
processors end their computation at a same datet, then the
execution time is

t =
n∑p

i=1
1

λi+µi
·
∏i−1

j=1
µj

λj+µj

(7)

and the processorPi receives

ni =
1

λi + µi
·

i−1∏
j=1

µj

λj + µj

 · t (8)

data to process.

Proof We want to expresst and ni as functions ofn.
Equation (2) states that processorPi ends its processing at
time: Ti =

∑i
j=1 Tcomm(j, nj) + Tcomp(i, ni). So, with

our current hypotheses:Ti =
∑i

j=1 λj · nj + µi · ni. Thus,
n1 = t

λ1+µ1
and, fori ∈ [2, p],

Ti = Ti−1 − µi−1 · ni−1 + (λi + µi) · ni.

As by hypothesis all processors end their processing at the
same time,Ti = Ti−1 = t, ni = µi−1

λi+µi
· ni−1, and we find

Equation (8).
To express the execution durationt as a function ofn we

just sum Equation (8) for all values ofi in [1, p]:

n =
p∑

i=1

ni =
p∑

i=1

1
λi + µi

·

i−1∏
j=1

µj

λj + µj

 · t
which is equivalent to Equation (7). �

In the rest of this paper we note:

D(P1, . . . , Pp) =
1∑p

i=1
1

λi+µi
·
∏i−1

j=1
µj

λj+µj

.

and so we havet = n ·D(P1, . . . , Pp) under the hypotheses
of Theorem 1.

4.2. Simultaneous endings

In this paragraph we exhibit a condition on the costs
functionsTcomm(i, n) andTcomp(i, n) of a set of processors
that is necessary and sufficient to have an optimal rational
solution where each processor receives a non-empty share
of data, and all processors end at the same date. This tells
us when Theorem 1 can be used to find a rational solution
to our system.

Theorem 2 (Simultaneous endings)GivenP processors,
P1, . . . ,Pi, . . . ,Pp, whose communication and computation
duration functionsTcomm(i, n) andTcomp(i, n) are linear
in n, there exists an optimal rational solution where each
processor receives a non-empty share of the whole set of
data, and all processors end their computation at the same
date, if and only if

∀i ∈ [1, p− 1], λi ≤ D(Pi+1, . . . , Pp)

Proof The proof is made by induction on the number of
processors. If there is only one processor, then the theorem
is trivially true. We shall next prove that if the theorem is
true forp processors, then it is also true forp+1 processors.

Suppose we havep + 1 processorsP1, . . . , Pp+1. An
optimal solution forP1, . . . ,Pp+1 to computen data items
is obtained by givingα · n items toP1 and (1 − α) · n

items toP2, . . . ,Pp+1 with α in [0, 1]. The end date for the
processorP1 is thent1(α) = (λ1 + µ1) · n · α.

As the theorem is supposed to be true forp proces-
sors, we know that there exists an optimal rational solu-
tion where the processorsP2 to Pp+1 all work and fin-
ish their work simultaneously, if and only if∀i ∈ [2, p],
λi ≤ D(Pi+1, . . . , Pp+1). In this case, by Theorem 1, the
time taken byP2, . . . , Pp+1 to compute(1 − α) · n data is
(1 − α) · n ·D(P2, . . . , Pp+1). So, the processorsP2, . . . ,
Pp+1 all end at the same datet2(α) = λ1 ·n ·α+k ·n · (1−
α) = k · n + (λ1 − k) · n · α with k = D(P2, . . . , Pp+1).

If λ1 ≤ k, thent1(α) is strictly increasing, andt2(α)
is decreasing. Moreover, we havet1(0) < t2(0) and
t1(1) > t2(1), thus the whole end datemax(t1(α), t2(α))
is minimized for an uniqueα in]0, 1[, whent1(α) = t2(α).
In this case, each processor has some data to compute and
they all end at the same date.

On the contrary, ifλ1 > k, then t1(α) and t2(α)
are both strictly increasing, thus the whole end date
max(t1(α), t2(α)) is minimized forα = 0. In this case,
processorP1 has nothing to compute and its end date is0,
while processorsP2 to Pp+1 all end at a same datek · n.

Thus, there exists an optimal rational solution where
each of thep + 1 processorsP1, . . . ,Pp+1 receives a non-
empty share of the whole set of data, and all processors end
their computation at the same date, if and only if∀i ∈ [1, p],
λi ≤ D(Pi+1, . . . , Pp+1). �

The proof of Theorem 2 shows that any processorPi

such thatλi > D(Pi+1, . . . , Pp) is not interesting for our
problem: using it will only increase the whole processing
time. Therefore, we just forget those processors and Theo-
rem 2 states that there is an optimal rational solution where
the remaining processors are all working and have the same
end date.

4.3. Processor ordering policy

As we have stated in Section 2.3, the root processor
sends data to processors in turn and a receiving processor
actually begins its communication after all previous proces-
sors have received their shares of data. Moreover, in the
MPICH implementation of MPI, the order of the destina-
tion processors in scatter operations follows the processors
ranks defined by the program(mer). Therefore, setting the
processor ranks influence the order in which the processors
start to receive and process their share of the whole work.
Equation (7) shows that in our case the overall computation
time is not symmetric in the processors but depends on their
ordering. Therefore we must carefully defines this ordering
in order to speed-up the whole computation. It appears that
in our current case, the best ordering is quite simple:

Theorem 3 (Processor ordering policy)When all the
functions Tcomm(i, n) and Tcomp(i, n) are linear in n,

when for anyi in [1, p − 1], λi ≤ D(Pi+1, . . . , Pp), and
when we are only looking for a rational solution, then the
smallest execution time is achieved when the processors
(the root processor excepted) are ordered in decreasing
order of their bandwidth (fromP1, the processor connected
to the root process with the highest bandwidth, toPp−1, the
processor connected to the root processor with the smallest
bandwidth), the last processor being the root processor.

Proof We consider any orderingP1, . . . , Pp, of the pro-
cessors, except thatPp is the root processor (as we have
explained in Section 3.1). We consider any permutationπ
of such an ordering. In other words, we consider any or-
der Pπ(1), . . . , Pπ(p) of the processors such that there ex-
ists k ∈ [1, p − 2], π(k) = k + 1, π(k + 1) = k, and
∀j ∈ [1, p] \ {k, k + 1}, π(j) = j (note thatπ(p) = p).

We denote bytπ (resp. t) the best (rational) execu-
tion time when the processors are orderedPπ(1), . . . ,Pπ(p)

(resp.P1, . . . ,Pp). We must show that ifPk+1 is connected
to the root processor with an higher bandwidth thanPk, then
tπ is strictly smaller thant. In other words we must show
the implication:

λk+1 < λk ⇒ tπ < t. (9)

Therefore, we study the sign oftπ − t.
In this difference, we can replacet by its expression

as stated by Equation (7) as, by hypothesis, for anyi
in [1, p − 1], λi ≤ D(Pi+1, . . . , Pp). For tπ, things are
a bit more complicated. If, for anyi in [1, p − 1],
λπ(i) ≤ D(Pπ(i+1), . . . , Pπ(p)), Theorems 2 and 1 apply:

tπ =
n∑p

i=1
1

λπ(i)+µπ(i)
·
∏i−1

j=1
µπ(j)

λπ(j)+µπ(j)

. (10)

On the opposite, if there exists a valuei in [1, p − 1] such
thatλπ(i) > D(Pπ(i+1), . . . , Pπ(p)), then Theorem 2 states
that the optimal execution time cannot be achieved on a so-
lution where each processor receives a non-empty share of
the whole set of data and all processors end their computa-
tion at the same date. Therefore, any solution where each
processor receives a non-empty share of the whole set of
data and all processors end their computation at the same
date leads to an execution time strictly greater thantπ and:

tπ <
n∑p

i=1
1

λπ(i)+µπ(i)
·
∏i−1

j=1
µπ(j)

λπ(j)+µπ(j)

. (11)

Equations (10) and (11) are summarized by:

tπ ≤
n∑p

i=1
1

λπ(i)+µπ(i)
·
∏i−1

j=1
µπ(j)

λπ(j)+µπ(j)

(12)

and proving the following implication:

λk+1 < λk ⇒
n∑p

i=1
1

λπ(i)+µπ(i)
·
∏i−1

j=1
µπ(j)

λπ(j)+µπ(j)

< t

(13)

will prove Equation (9). Hence, we study the sign of

σ =
n∑p

i=1
1

λπ(i)+µπ(i)
·
∏i−1

j=1
µπ(j)

λπ(j)+µπ(j)

− n∑p
i=1

1
λi+µi

·
∏i−1

j=1
µj

λj+µj

.

As, in the above expression, both denominators are obvi-
ously (strictly) positive, the sign ofσ is the sign of:

p∑
i=1

1
λi + µi

·
i−1∏
j=1

µj

λj + µj

−
p∑

i=1

1
λπ(i) + µπ(i)

·
i−1∏
j=1

µπ(j)

λπ(j) + µπ(j)
. (14)

We want to simplify the second sum in Equation (14). Thus
we remark that for any value ofi ∈ [1, k] ∪ [k + 2, p] we
have:

i−1∏
j=1

µπ(j)

λπ(j) + µπ(j)
=

i−1∏
j=1

µj

λj + µj
. (15)

In order to take advantage of the simplification proposed
by Equation (15), we decompose the second sum in Equa-
tion (14) in four terms: the sum from 1 tok − 1, the terms
for k andk + 1, and then the sum fromk + 2 to p:

p∑
i=1

1
λπ(i) + µπ(i)

·
i−1∏
j=1

µπ(j)

λπ(j) + µπ(j)
=

k−1∑
i=1

1
λi + µi

·
i−1∏
j=1

µj

λj + µj

+
1

λk+1 + µk+1
·

k−1∏
j=1

µj

λj + µj

+
1

λk + µk
· µk+1

λk+1 + µk+1
·

k−1∏
j=1

µj

λj + µj

+
p∑

i=k+2

1
λi + µi

·
i−1∏
j=1

µj

λj + µj
. (16)

Then we report the result of Equation (16) in Equation (14),
we suppress the terms common to both sides of the “− ”
sign, and we divide the resulting equation by the (strictly)
positive term

∏k−1
j=1

µj

λj+µj
. This way, we obtain thatσ has

the same sign than:

1
λk + µk

+
1

λk+1 + µk+1
· µk

λk + µk

− 1
λk+1 + µk+1

− 1
λk + µk

· µk+1

λk+1 + µk+1

which is equivalent to:

λk+1 − λk

(λk + µk) · (λk+1 + µk+1)
.

Therefore, ifλk+1 < λk, thenσ < 0, Equation (13) holds ,
and thus Equation (9) also holds.

Therefore, the inversion of processorsPk andPk+1 is
profitable if the bandwidth from the root processor to pro-
cessorPk+1 was higher than the bandwidth from the root
processor to processorPk. �

4.4. Consequences for the general case

So, in the general case, how are we going to order our
processors? An exact study is feasible even in the general
case, if we know the computation and communication char-
acteristics of each of the processors. We can indeed con-
sider all the possible orderings of ourp processors, use Al-
gorithm 1 to compute the theoretical execution times, and
chose the best result. This is theoretically possible. In prac-
tice, for large values ofp such an approach is unrealistic.
Furthermore, in the general case an analytical study is of
course impossible (we cannot analytically handleanyfunc-
tion Tcomm(i, n) or Tcomp(i, n)).

So, we build from the previous result and we order the
processors in decreasing order of the bandwidth they are
connected to the root processor with, except for the root
processor which is ordered last. Even without the previous
study, such a policy should not be surprising. Indeed, the
time spent to send its share of the data items to processor
Pi is payed by all the processors fromPi to Pp. So the first
processor should be the one it is the less expensive to send
the data to, and so on. Of course, in practice, things are a bit
more complicated as we are working in integers. However,
the main idea is roughly the same as we now show.

We only suppose that all the computation and communi-
cation functions are linear. Then we denote by:

• T rat
opt: the best execution time that can be achieved for a

rational distribution of then data items, whatever the
ordering for the processors.

• T int
opt: the best execution time that can be achieved for

an integer distribution of then data items, whatever
the ordering for the processors.

Note thatT rat
opt andT int

opt may be achieved on two different
ordering of the processors. We take a rational distribution
achieving the execution timeT rat

opt. We round it up to ob-
tain an integer solution, following the rounding scheme de-
scribed in Section 3.3. This way we obtain an integer distri-
bution of execution timeT ′ with T ′ satisfying the equation:

T ′ ≤ T rat
opt +

p∑
j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1)

(the proof being the same than for Equation (4)). However,
T ′ being an integer solution its execution time is obviously
at least equal toT int

opt. Also, an integer solution being a ratio-
nal solution,T int

opt is at least equal toT rat
opt. Hence the bounds:

T int
opt ≤ T ′ ≤ T int

opt +
p∑

j=1

Tcomm(j, 1) + max
1≤i≤p

Tcomp(i, 1)

whereT ′ is the execution time of the distribution obtained
by rounding up, according to the scheme of Section 3.3, the
best rational solution when the processors are ordered in
decreasing order of the bandwidth they are connected to the
root processor with, except for the root processor which is
ordered last.

When all the computation and communication functions
are linear our ordering policy is even guaranteed!

5. Experimental results

5.1. Hardware environment

Our experiment consists in the computation of 817,101
ray paths (the full set of seismic events of year 1999) on
16 processors. All machines run Globus [9] and we use
MPICH-G2 [8] as message passing library. Table 1 shows
the resources used in the experiment. They are located at
two geographically distant sites. Processors 1 to 6 (standard
PCs with Intel PIII and AMD Athlon XP), and 7, 8 (two
Mips processors of an SGI Origin 2000) are in the same
premises, whereas processors 9 to 16 are taken from an SGI
Origin 3800 (Mips processors) namedleda, at the other end
of France. The input data set is located on the PC named
dinadanat the first site.

Machine CPUs Type µ Rating
dinadan 1 PIII/933 0.009288 1
pellinore 2 PIII/800 0.009365 0.99

caseb 3 XP1800 0.004629 2
sekhmet 4 XP1800 0.004885 1.90
merlin 5, 6 XP2000 0.003976 2.33
seven 7, 8 R12K/300 0.016156 0.57
leda 9–16 R14K/500 0.009677 0.95

Table 1. Processors used as computational
nodes in the experiment.

Table 1 indicates the processors speeds observed from a
series of benchmarks we performed on our application. The
columnµ indicates the number of seconds needed to com-
pute one ray (the lower, the better). The associated rating
is simply a more intuitive indication of the processor speed

(the higher, the better): it is the inverse ofµ normalized with
respect to a rating of 1 arbitrarily chosen for the Pentium
III/933. When several identical processors are present on a
same computer (5, 6 and 9–16) the average performance is
reported.

The network links throughputs between the root proces-
sor (dinadan) and the other nodes are reported in Table 2
assuming a linear communication cost. The columnλ indi-
cates the time in seconds needed to receive one data element
from the root processor.

Machine λ

dinadan 0
caseb 1.00 · 10−5

pellinore 1.12 · 10−5

sekhmet 1.70 · 10−5

seven 2.10 · 10−5

leda 3.53 · 10−5

merlin 8.15 · 10−5

Table 2. Measured network bandwidths (λ is
in s/ray) sorted in descending order.

Notice thatmerlin, with processors 5 and 6, though ge-
ographically close to the root processor, has the smallest
bandwidth because it was connected to a 10 Mbit/s hub
during the experiment whereas all others are connected to
fast-ethernet switches.

5.2. Results

The experimental results of this section evaluate two as-
pects of the study. The first experiment compares an unbal-
anced execution (that is the original program without any
source code modification) to what we predict to be the best
balanced execution. The second experiment evaluates the
execution performances with respect to the two processors
ordering policies, that is bandwidths in descending or as-
cending order.

Original application

Figure 2 reports performance results obtained with the orig-
inal program, in which each processor receives an equal
amount of data. We had to choose an ordering of the pro-
cessors, and from the conclusion given in Section 4.4, we
ordered processors by descending bandwidth.

Not surprisingly, the processors end times largely differ,
exhibiting a huge imbalance, with the earliest processor fin-
ishing after 259 s and the latest after 853 s.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

ca
se

b

pe
lli

no
re

se
kh

m
et

se
ve

n

se
ve

n

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

m
er

lin

m
er

lin

di
na

da
n

total time
comm. time

amount of data

Figure 2. Original program execution (uniform
data distribution).

Load-balanced application

In the second experiment we evaluate our load-balancing
strategy. We made the assumption that the computation and
communication cost functions were affine and increasing.
This assumption allowed us to use our guaranteed heuris-
tic. Then, we simply replaced theMPI_Scatter call by a
MPI_Scatterv parameterized with the distribution com-
puted by the heuristic. With such a large number of rays,
Algorithm 1 takes 15 minutes to run on a Celeron 1.2 GHz
whereas the heuristic execution, usingpipMP [7, 17], is in-
stantaneous and has an error relative to the optimal solution
of less than6 · 10−6!

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

ca
se

b

pe
lli

no
re

se
kh

m
et

se
ve

n

se
ve

n

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

m
er

lin

m
er

lin

di
na

da
n

total time
comm. time

amount of data

Figure 3. Load-balanced execution with
nodes sorted by descending bandwidth.

Results of this experiment are presented on Figure 3. The
execution appears well balanced: the earliest and latest fin-

ish times are 405 s and 430 s respectively, which represents
a maximum difference in finish times of 6% of the total du-
ration. By comparison to the performances of the original
application, the gain is significant: the total execution du-
ration is approximately half the duration of the first experi-
ment.

Ordering policies

We now compare the effects of the ordering policy. Re-
sults presented on Figure 3 were obtained with the descend-
ing bandwidth order. The same execution with processors
sorted in ascending bandwidth order is presented on Fig-
ure 4.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

m
er

lin

m
er

lin

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

se
ve

n

se
ve

n

se
kh

m
et

pe
lli

no
re

ca
se

b

di
na

da
n

total time
comm. time

amount of data

Figure 4. Load-balanced execution with
nodes sorted by ascending bandwidth.

The load balance in this execution is acceptable with a
maximum difference in ending times of about 10% of the
total duration (the earliest and latest processors finish after
437 s and 486 s). As predicted, the total duration is longer
(56 s) than with the processors in the reverse order. Though
the load was slightly less balanced than in the first exper-
iment (because of a peak load onsekhmetduring the ex-
periment), most of the difference comes from the idle time
spent by processors waiting before the actual communica-
tion begins. This clearly appears on Figure 4: the surface
of the bottom area delimited by the dashed line (the “stair
effect”) is bigger than in Figure 3.

6. Related work

Many research works address the problem of load-
balancing in heterogeneous environments, but most of them
consider dynamic load-balancing. As a representative of
the dynamic approach, the work of [11] is strongly related

to our problem. In this work, a library allows the program-
mer to produce per process load statistics during execution,
and the information may be then used to decide to redis-
tribute arrays from one iteration to the other. However, the
dynamic load evaluation and data redistribution make the
execution suffer from overheads that can be avoided with a
static approach.

The static approach is used in various contexts. It ranges
from data partitioning for parallel video processing [1] to
finding the optimal number of processors in linear algebra
algorithms [3].

Some works are closer to ours. The distribution of loops
for heterogeneous processors so as to balance the work-load
is studied in [6] and, in particular, the case of independent
iterations, which is equivalent to a scatter operation. How-
ever, computation and communication cost functions are
affine. A load-balancing solution is first presented for het-
erogeneous processors, only when no network contentions
occur. Then, the contention is taken into account but for ho-
mogeneous processors only. In the framework of the Apples
project, [5] discusses the load-balance of an iterative solver
making stencil computations. They suggest linear program-
ming techniques to compute a distribution, but they actually
use a less precise though simplest solution by solving linear
equations.

Another way to load-balance a scatter operation is to im-
plement it following the master/slave paradigm. The gen-
eral framework studied in [2] for static load-balancing could
serve this purpose, but the code rewriting in this case be-
comes far more complex.

7. Conclusion

In this paper we partially addressed the problem of
adapting to the Grid existing parallel applications designed
for parallel computers. We studied the static load-balancing
of scatter operations when no assumptions are made on
the processor speeds or on the network links bandwidth.
We presented two solutions to compute load-balanced dis-
tributions: a general and exact algorithm, and a heuris-
tic far more efficient for simple cases (affine computation
and communication times). We also proposed a policy on
the processor ordering: we order them in decreasing order
of the network bandwidth they have with the root proces-
sor. On our target application, our experiments showed
that replacingMPI_Scatter by MPI_Scatterv calls
used with clever distributions leads to great performance
improvement at low cost.

Acknowledgments

A part of the computational resources used are taken
from the Origin 3800 of the CINES (http://www.cines.fr/).

We want to thank them for letting us have access to their
machines.

References

[1] D. T. Altilar and Y. Parker. Optimal scheduling algorithms
for communication constrained parallel processing. InEuro-
Par 2002 Parallel Processing, volume 2400 ofLNCS, pages
197–206. Springer-Verlag, Aug. 2002.

[2] C. Banino, O. Beaumont, A. Legrand, and Y. Robert.
Scheduling strategies for master-slave tasking on hetero-
geneous processor Grids. InApplied Parallel Computing:
Advanced Scientific Computing: 6th International Confer-
ence (PARA’02), volume 2367 ofLNCS, pages 423–432.
Springer-Verlag, June 2002.

[3] J. G. Barbosa, J. Tavares, and A. J. Padilha. Linear algebra
algorithms in heterogeneous cluster of personnal comput-
ers. In9th Heterogeneous Computing Workshop (HCW’00),
pages 147–159. IEEE Computer Society, May 2000.

[4] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and
Y. Robert. Bandwidth-centric allocation of independent
tasks on heterogeneous platforms. InInternational Parallel
and Distributed Processing Symposium (IPDPS’02). IEEE
Computer Society, Apr. 2002.

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. InProceedings of the 1996 ACM/IEEE confer-
ence on Supercomputing (SC’96). ACM Press, Nov. 1996.

[6] M. Cierniak, M. J. Zaki, and W. Li. Compile-time schedul-
ing algorithms for heterogeneous network of workstations.
The Computer Journal, special issue on Automatic Loop
Parallelization, 40(6):356–372, Dec. 1997.

[7] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opérationnelle, 22:243–268, 1988.

[8] I. Foster and N. T. Karonis. A grid-enabled MPI: Message
passing in heterogeneous distributed computing systems. In
SC 1998 [18].

[9] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, 1997.

[10] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, Aug. 1998.

[11] W. George. Dynamic load-balancing for data-parallel MPI
programs. InMessage Passing Interface Developer’s and
User’s Conference (MPIDC’99), Mar. 1999.

[12] M. Grunberg, S. Genaud, and C. Mongenet. Parallel seismic
ray-tracing in a global earth mesh. InProceedings of the In-
ternational Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’02), volume 3,
pages 1151–1157. CSREA Press, June 2002.

[13] P. Husbands and J. C. Hoe. MPI-StarT: Delivering network
performance to numerical applications. In SC 1998 [18].

[14] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp,
E. Lusk, and J. Bresnahan. Exploiting hierarchy in parallel
computer networks to optimize collective operation perfor-
mance. InInternational Parallel and Distributed Processing

Symposium (IPDPS’00), pages 377–384. IEEE Computer
Society, May 2000.

[15] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang. MagPIe: MPI’s collective commu-
nication operations for clustered wide area systems.ACM
SIGPLAN Notices, 34(8):131–140, 1999.

[16] MPI Forum. MPI: A message passing interface standard.
Technical report, University of Tennessee, Knoxville, TN,
USA, June 1995.

[17] PIP/PipLib. http://www.prism.uvsq.fr/~cedb/
bastools/piplib.html .

[18] Proceedings of the 1998 ACM/IEEE conference on Super-
computing (SC’98). IEEE Computer Society, Nov. 1998.

[19] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing.Future Generation Computing Sys-
tems, 15(5-6):757–768, Oct. 1999.

Biographies

Stéphane Genaudreceived a PhD in computer science
from Louis Pasteur University of Strasbourg (France) in
1997. He has been an associate professor at Robert Schu-
mann University since 1998, and a researcher in the ICPS-
LSIIT laboratory in Strasbourg. His research interests in-
volve languages and methods for parallel programming,
cluster and Grid computing. Since fall 2001, he has been
heading the TAG project (http://grid.u-strasbg.fr/) which
study the performance of parallel scientific applications
running on Grids.

Arnaud Giersch is currently a PhD student in the ICPS-
LSIIT laboratory at Louis Pasteur University of Strasbourg
(France). He is mainly interested in methods for parallel
programming computational grids.

Frédéric Vivien obtained a PhD in computer science from
École normale supérieure de Lyon (France) in 1997. From
1998 until 2002, he had been an associate professor at Louis
Pasteur University of Strasbourg (France), and a researcher
in the ICPS-LSIIT laboratory. He spent the year 2000 work-
ing in the Computer Architecture Group of the MIT Labo-
ratory for Computer Science (Cambridge, USA). He is cur-
rently a full researcher from INRIA, working in the Com-
puter Science Laboratory LIP at École normale supérieure
de Lyon (France). His main research interests are schedul-
ing techniques, parallel algorithms for clusters and grids,
and automatic compilation/parallelization techniques.

