
Source Code Transformations Strategies
to Load-balance Grid Applications?

Romaric David, Stéphane Genaud, Arnaud Giersch,
Benjamin Schwarz, and Éric Violard

LSIIT-ICPS, Université Louis Pasteur, Bd S. Brant, F-67400 Illkirch (France)
Tel: +33 3 90 24 45 42 / Fax: +33 3 90 24 45 47

{david,genaud,giersch,schwarz,violard}@icps.u-strasbg.fr
http://grid.u-strasbg.fr/

Abstract. We present load-balancing strategies to improve the perfor-
mances of parallel MPI applications running in a Grid environment. We
analyze the data distribution constraints found in two scientific codes and
propose adapted code transformations to load-balance computations. Ex-
perimental results confirm that such source code transformations can
improve Grid application performances.

1 Introduction

With the growing popularity of middleware dedicated at making so-called Grids
of processing and storage resources, network based computing will soon offer to
users a dramatic increase in the available aggregate processing power. However,
parallel applications have traditionally been designed for parallel computers and
their executions on a Grid show poor performances. There are two major reasons
for the lack of performance: first, the processors available are heterogeneous and
hence the work assigned to processors is often unbalanced, and secondly the
network links are orders of magnitude slower on the Grid than in a parallel
computer.

Much work has been carried out to take into account such heterogeneous
environments for distributed computing. However, few research works concern
load-balancing strategies specifically guided by the application to be run. The
well-known AppLeS project [1] uses information drawn from a specific appli-
cation to schedule the execution of the application processes, but they do not
modify the application source code to improve its execution. Thus, our project is
original in the sense that we study how source code transformations may impact
on the performances obtained when running applications on Grids, and even-
tually systematically operate these transformations so as to produce programs
permanently adapted to heterogeneous environments. To validate our ideas, we
work on some real scientific MPI applications.

? This work is supported by the French Ministry of Research through the ACI-GRID
program.

M. Parashar (Ed.): GRID 2002, LNCS 2536, pp. 82–87, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Source Code Transformations Strategies to Load-balance Grid Applications 83

This paper presents preliminary results concerning load-balancing techniques
we designed to improve performances of two scientific applications. The two
codes differ by their constraints on data distribution. The first one is uncon-
strained, it is possible to send any chunk of data to any process. The second
one contains data dependencies, which implies a constrained data distribution.
The next two sections describe each of the test applications. We discuss their
constraints and expose the code transformation we applied to load-balance com-
putations. We finish with some experimental results. The last section comments
on the code transformations operated and discusses future work.

2 Load-Balancing for Unconstrained Data Distribution

2.1 Motivating Example: A Geophysical Application

We consider for our first experiment a geophysical code in the seismic tomogra-
phy field. The parallelization of the application, presented in [2], assumes that
all available processors are homogeneous (the implicit target for execution is
a parallel computer). Consequently, an MPI_Scatter instruction was used, in
which the root process distributes equal shares of data to each process.

We examine two methods of load-balancing this kind of application. The first
one, a classical master/slave scheme, is dynamic. Slave processes ask a master
process for a small chunk of the whole data set to compute. After computing it,
the slaves ask for a new chunk and repeat this scheme until the master sends a
termination message. The second one is static: the root process distributes the
whole data set in a single communication round, except that it sends unequal
shares of data whose sizes are statically computed on the basis of the processors
and network performances.

We have implemented and tested both program transformations, but we focus
in this study on the conditions the application must meet to implement the
second load-balancing technique, and which performance results can be obtained
with it.

2.2 Static Load-Balancing of Computations and Communications

The static load-balancing technique applies for SPMD programs made of rounds
of simultaneous communications between all processes, followed by local compu-
tations ended by a global synchronization (which may be another communication
round). Moreover, we must state further assumptions the programmer must ver-
ify before the load-balancing may take place. First, the data items in the input
data set are independent, and secondly the number of data-items is the only
factor in time complexity. Hence, giving any equal-size part of the domain to a
given process will result in the same computation time.

Our objective is to minimize the elapsed time between two synchronization
points. We consider the full overlap, single-port model of [3] in which a processor
node can simultaneously receive data, send data to at most one destination, and

84 R. David, S. Genaud, A. Giersch, B. Schwarz, É. Violard

perform some computation. As in this model the root process sends data to
processes in turn, a receiving process actually begins its communication after
all previous processes have been served. The root process starts its computation
after all the processes have received their data. This leads to what we call a
“stair effect”.

We explain in [4] how to compute, given the processors and network links
speeds, the number of data items that should be allocated to each processor,
so as to reach a load-balanced execution. Once this static load-balance com-
puted, the MPI_Scatter instruction of the original program is replaced with an
MPI_Scatterv.

2.3 Experimental Results

Our experiment consists in the computation of 827,000 data units on 16 pro-
cessors. Processors are heterogeneous and located at two geographically distant
sites. All machines run Globus with MPICH-G2 [5]. We made a series of bench-
marks to measure processor and network performances.

The first experiment (fig. 1(a)) evaluates performances of the original pro-
gram in which each process receives an equal amount of data. Non-surprisingly
the processes end times largely differ, thus exhibiting an important imbalance.
The second experiment (fig. 1(b)) shows the master/slave version behavior which
appears well-balanced after we have finely tuned the size of data chunk sent to
slaves1.

Next, we experiment the load-balance of the scatter operation. To assess
important parameters, we have first tried to load-balance using the relative pro-
cessors speed ratings only (fig. 1(c)). Omitting the network parameters leaves
important imbalances and gives unsatisfactory results as compared to the mas-
ter/slave implementation. The last experiment (fig. 1(d)) computes the load-
balance using all parameters. We obtain here the best balance, which confirms
the importance of all parameters, especially to take into account the “stair effect”
that clearly appears on figures 1(a,c,d). In the master/slave implementation the
total communication time is short as compared to the computation time. We
conclude that in the scatter implementations only a small part of the measured
total time is spent in true communications of data.

3 Load-Balancing with Constrained Data Distribution

3.1 Motivating Example: An Application in Plasma Physics

Our example is an application devoted to the numerical simulation of problems
in Plasma Physics and particle beams propagation. The application implements
the PFC resolution method discretizing the Vlasov equation. The parallel code
[6] works with any number of processors and uses a classical data decomposition
1 Note that there are only 15 computation processes in this implementation since the

master process only handles data distribution.

Source Code Transformations Strategies to Load-balance Grid Applications 85

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

process

total time
comm. time

amount of data

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

process

total time
comm. time

amount of data

(a) Uniform distribution (b) Master slave

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

process

total time
comm. time

amount of data

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

process

total time
comm. time

amount of data

(c) Load-balancing (without network) (d) Load-balancing (with network)

Fig. 1. Experimental results (the root process is on processor 0)

technique. Matrices are split into blocks of equal size distributed by row on
the processors. The code consists in a succession of computation-communication
phases where the communication steps are global block matrix transpositions.

3.2 Load-Balancing through Process Emulation

In such applications where data structure must be preserved, but computations
can still be spread over any number of processes, a naive solution to achieve
load balancing is to make the operating system run more than one process per
processor on fastest processors. Such a procedure implies a lot of system over-
head, due to inter-process communications and time-sharing mechanisms. An
idea to avoid this, is to rewrite the code in such a way that only one real process
will compute all data given to the processes we intended to run on the given
processor. In other words we emulate several processes by a single one.

The original program must meet the following conditions : (i) the code works
with any number of processors, (ii) the workload is evenly spread over the proces-
sors and (iii) the workload only depends on the amount of data to be processed.

The emulation of several processes by one process consists in serializing
the computations of the computation phases and changing the communication
scheme. The MPI calls have to be modified in order to map emulated processes
onto real processes and perform memory copy instead of communications when
sender and receiver are on the same processor.

Moreover, blocking point-to-point communications such as MPI_Send have
to be replaced by their non-blocking versions (e.g. MPI_Isend) in order to avoid

86 R. David, S. Genaud, A. Giersch, B. Schwarz, É. Violard

deadlock situations. Calls to a collective communication have to be performed
only once on a processor, no matter the number of emulated processes it holds.
Some collective communications such as MPI_Barrier do not require any other
changes whereas some others do. For example MPI_Scatter instances should be
replaced by MPI_Scatterv to distribute chunks of data proportionally to the
number of emulated processes on each processor. A more detailed description of
the transformation process can be found in [4].

3.3 Experimental Results

For our experiments, we use our code in Plasma Physics and a subset of our
test Grid made of four heterogeneous processors. We approximate the number
of emulated process from speed ratings obtained from benchmarks2. The results
show significant gains in performance.

In order to validate our code transformation, we measured the wall clock
time of: (a) the initial application with one process per processor, (b) the initial
application with a basic load balancing using the system to run several processes
on a single processor and (c) the transformed application with a load-balancing
using emulated processes. For (b) and (c), we distributed 11 processes on the
four processors. Experiments were conducted for 324, 484, and 644 data points.
Results are reported in table 1. The modified algorithm is always better than
the original one, may there be or not system load-balancing.

Table 1. Elapsed time (seconds)

Size (a) No load balancing (b) System load balancing (c) Emulated processes
324 342 525 301
484 2005 2223 1874
644 5380 4752 4404

4 Related Work

The study carried out in [8] compares dynamic versus static load-balancing
strategies in an image rendering ray-tracing application. They conclude that
no one scheduling strategy is best for all load conditions, and recommend to
investigate further the possibilities of switching from static to dynamic load-
balancing. Our experiments confirm that static load-balancing requires precise
information about parameters to be efficient whereas the master/slave model
naturally adapts to heterogeneous conditions. Therefore, the variance of condi-
tions could be taken into account to request static or dynamic load-balance dur-
ing execution. Providing a dedicated library to implement load-balancing is also
2 Work is under progress to use theoretical results from [7] so as to find the optimal

number of emulated processes.

Source Code Transformations Strategies to Load-balance Grid Applications 87

proposed by George [9] with the DParLib, who addresses the problem of dynamic
load-balancing via array distribution for the class of iterative algorithms with a
SPMD implementation. The statistics about load-balance produced dynamically
during the execution can be used to redistribute arrays from one iteration to the
other. However, the library does not take into account possible communication-
computation overlaps that we need in our second test application.

5 Conclusion

It appears from this study, that the source code must be finely analyzed to choose
which load-balancing solution matches best the problem. In the first example,
we have put forward influent parameters for static load-balancing. In the second
example we have shown that a possible transformation strategy to overcome the
constraints on data-distribution and keep a good communication-computation
overlap can be the process emulation technique.

Future work should be done in several directions. We first need to further
investigate the communication schemes used in real applications and how they
perform in a Grid environment. A classification of the communication types may
be used by a software tool to select appropriate transformation strategies. We
also believe the programmer should interact with the tool to guide program
transformations as he can bring useful information about the application.

References

[1] Berman, F., Wolski, R., Figueira, S., Schopf, J., Shao, G.: Application-level schedul-
ing on distributed heterogeneous networks. In: Proceedings of SuperComputing ’96.
(1996)

[2] Grunberg, M., Genaud, S., Mongenet, C.: Parallel seismic ray-tracing in a global
earth mesh. In: Proceedings of PDPTA’02. (2002) 1151–1157

[3] Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Bandwidth-centric
allocation of independent tasks on heterogeneous platforms. Technical Report 4210,
INRIA, Rhône-Alpes (2001)

[4] David, R., Genaud, S., Giersch, A., Schwarz, B., Violard, E.: Source code trans-
formations strategies to load-balance grid applications. Technical Report 02-09,
ICPS-LSIIT, University Louis Pasteur, Pôle API, Bd. S. Brant,F-67400 Illkirch
(2002)

[5] Foster, I., Karonis, N.: A grid-enabled MPI: Message passing in heterogeneous
distributed computing systems. Supercomputing (1998)

[6] Violard, E., Filbet, F.: Parallelization of a Vlasov solver by communication over-
lapping. In: Proceedings of PDPTA’02. (2002)

[7] Boulet, P., Dongarra, J., Robert, Y., Vivien, F.: Static tiling for heterogeneous
computing platforms. Parallel Computing 25 (1999) 547–568

[8] Shao, G., Wolski, R., Berman, F.: Performance effects of scheduling strategies
for master/slave distributed applications. Technical Report CS98-598, UCSD CSE
Dept., University of California, San Diego (1998)

[9] George, W.: Dynamic load-balancing for data-parallel MPI programs. In: Message
Passing Interface developers and users conference. (1999) 95–100

