
IS
S

N
 0

24
9-

63
99

   
   

 IS
R

N
 IN

R
IA

/R
R

--
47

70
--

F
R

+
E

N
G

appor t  
de  r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Load-Balancing Scatter Operations
for Grid Computing
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Équilibrage d'opérations � scatter � exécutées sur la
grille

Résumé : Nous présentons des solutions pour équilibrer statiquement la charge
des opérations � scatter � dans les codes parallèles exécutés sur les grilles. Notre
stratégie d'équilibrage de charge est basée sur la modi�cation des distributions des
données utilisées dans les opérations scatter. Nous étudions la substitution des opéra-
tions scatter par des scatters paramétrés, permettant des distributions de données
adaptées. L'article présente : 1) un algorithme général qui trouve une distribution
optimale des données entre les processeurs; 2) une heuristique garantie plus rapide
s'appuyant sur des hypothèses sur les communications et les calculs; 3) une poli-
tique d'ordonnancement des processeurs. Des résultats expérimentaux avec un code
scienti�que MPI illustre les gains obtenus par notre équilibrage de charge.

Mots-clé : programmation parallèle, grille de calcul, calcul hétérogène, équilibrage
de charge, opération scatter.
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1 Introduction

Traditionally, users have developed scienti�c applications with a parallel computer
in mind, assuming an homogeneous set of processors linked with an homogeneous
and fast network. However, grids [11] of computational resources usually include
heterogeneous processors, and heterogeneous network links that are orders of mag-
nitude slower than in a parallel computer. Therefore, the execution on grids of
applications designed for parallel computers usually leads to poor performance as
the distribution of workload does not take the heterogeneity into account. Hence
the need for tools able to analyze and transform existing parallel applications to
improve their performances on heterogeneous environments by load-balancing their
execution. Furthermore, we are not willing to fully rewrite the original applications
but we are rather seeking transformations which modify the original source code as
little as possible.

Among the usual operations found in parallel codes is the scatter operation,
which is one of the collective operations usually shipped with message passing li-
braries. For instance, the mostly used message passing library MPI [21] provides a
MPI_Scatter primitive that allows the programmer to distribute even parts of data
to the processors in the MPI communicator.

The less intrusive modi�cation enabling a performance gain in an heterogeneous
environment consists in using a communication library adapted to heterogeneity.
Thus, much work has been devoted to that purpose: for MPI, numerous projects
including MagPIe [19], MPI-StarT [17], and MPICH-G2 [9], aim at improving com-
munications performance in presence of heterogeneous networks. Most of the gain
is obtained by reworking the design of collective communication primitives. For in-
stance, MPICH-G2 performs often better than MPICH to disseminate information
held by a processor to several others. While MPICH always use a binomial tree to
propagate data, MPICH-G2 is able to switch to a �at tree broadcast when network
latency is high [18]. Making the communication library aware of the precise network
topology is not easy: MPICH-G2 queries the underlying Globus [10] environment
to retrieve information about the network topology that the user may have speci-
�ed through environment variables. Such network-aware libraries bring interesting
results as compared to standard communication libraries. However, these improve-
ments are often not su�cient to attain performance considered acceptable by users
when the processors are also heterogeneous. Balancing the computation tasks over
processors is also needed to really take bene�t from grids.

The typical usage of the scatter operation is to spawn an SPMD computation
section on the processors after they received their piece of data. Thereby, if the
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4 S. Genaud, A. Giersch, F. Vivien

computation load on processors depends on the data received, the scatter operation
may be used as a means to load-balance computations, provided the items in the
data set to scatter are independent. MPI provides the primitive MPI_Scatterv that
allows to distribute unequal shares of data. We claim that replacing MPI_Scatter

by MPI_Scatterv calls parameterized with clever distributions may lead to great
performance improvements at low cost. In term of source code rewriting, the trans-
formation of such operations does not require a deep source code re-organization, and
it can easily be automated in a software tool. Our problem is thus to load-balance
the execution by computing a data distribution depending on the processors speeds
and network links bandwidths.

In Section 2 we present our target application, a real scienti�c application in
geophysics, written in MPI, that we ran to ray-trace the full set of seismic events of
year 1999. In Section 3 we present our load-balancing techniques, in Section 4 the
processor ordering policy we derive from a case study, in Section 5 our experimental
results, in Section 6 the related works, and we conclude in Section 7.

2 Motivating example

2.1 Seismic tomography

The geophysical code we consider is in the seismic tomography �eld. The general
objective of such applications is to build a global seismic velocity model of the Earth
interior. The various velocities found at the di�erent points discretized by the model
(generally a mesh) re�ect the physical rock properties in those locations. The seismic
waves velocities are computed from the seismograms recorded by captors located all
around the globe: once analyzed, the wave type, the earthquake hypocenter, and the
captor locations, as well as the wave travel time, are determined.

From these data, a tomography application reconstructs the event using an ini-
tial velocity model. The wave propagation from the source hypocenter to a given
captor de�nes a path, that the application evaluates given properties of the initial
velocity model. The time for the wave to propagate along this evaluated path is then
compared to the actual travel time and, in a �nal step, a new velocity model that
minimizes those di�erences is computed. This process is more accurate if the new
model better �ts numerous such paths in many locations inside the Earth, and is
therefore very computationally demanding.

INRIA



Load-Balancing Scatter Operations for Grid Computing 5

2.2 The example application

We now outline how the application under study exploits the potential parallelism
of the computations, and how the tasks are distributed across processors. Recall
that the input data is a set of seismic waves characteristics each described by a
pair of 3D coordinates (the coordinates of the earthquake source and those of the
receiving captor) plus the wave type. With these characteristics, a seismic wave
can be modeled by a set of ray paths that represents the wavefront propagation.
Seismic wave characteristics are su�cient to perform the ray-tracing of the whole
associated ray path. Therefore, all ray paths can be traced independently. The
existing parallelization of the application (presented in [14]) assumes an homogeneous
set of processors (the implicit target being a parallel computer). There is one MPI
process per processor. The following pseudo-code outlines the main communication
and computation phases:

if (rank = ROOT)

raydata  read n lines from data file;

MPI_Scatter(raydata, n=P,...,rbuff,...,ROOT,MPI_COMM_WORLD);
compute_work(rbuff);

where P is the number of processors involved, and n the number of data items. The
MPI_Scatter instruction is executed by the root and the computation processors.
The processor identi�ed as ROOT performs a send of contiguous blocks of bn=P c el-
ements from the raydata bu�er to all processors of the group while all processors
make a receive operation of their respective data in the rbuff bu�er. For sake of sim-
plicity the remaining (n mod P ) items distribution is not shown here. Figure 1 shows
a potential execution of this communication operation, with P4 as root processor.

time

idle

receiving

sending

computing

t0

t1

P1 P2 P3 P4

Figure 1: A scatter communication followed by a computation phase.
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6 S. Genaud, A. Giersch, F. Vivien

2.3 Hardware model

Figure 1 outlines the behavior of the scatter operation as it was observed during the
applications runs on our test grid (described in Section 5.1). This behavior is an
indication on the networking capabilities of the root node: it can send to at most
one destination node at a time. This is the single-port model of [4] which is realistic
for grids as many nodes are simple PCs with full-duplex network cards. As the root
processor sends data to processors in turn1 a receiving processor actually begins its
communication after all previous processors have been served. This leads to a �stair
e�ect� represented on Figure 1 by the end times of the receive operations (black
boxes).

3 Static load-balancing

In this section, we present di�erent ways to solve the optimal data distribution
problem. After brie�y presenting our framework, we give two dynamic programming
algorithms, the second one being more e�cient than the �rst one, but under some
additional hypotheses on the cost functions. We �nish by presenting a guaranteed
heuristic using linear programming that can be used to quickly �nd a very good
approximation when the cost functions are a�ne.

As the overall execution time after load-balancing is rather small, we make the
assumption that the grid characteristics do not change during the computation and
we only consider static load-balancing. Note also that the computed distribution
is not necessarily based on static parameters estimated for the whole execution: a
monitor daemon process (like [25]) running aside the application could be queried
just before a scatter operation to retrieve the instantaneous grid characteristics.

3.1 Framework

In this paragraph, we introduce some notations, as well as the cost model used to
further derive the optimal data distribution.

We consider a set of p processors: P1, . . . , Pp. Processor Pi is characterized by 1)
the time Tcomp(i; x) it takes to compute x data items; 2) the time Tcomm(i; x) it takes
to receive x data items from the root processor. We want to process n data items.
Thus, we look for a distribution n1, . . . , np of these data over the p processors that
minimizes the overall computation time. All along the paper the root processor will

1In the MPICH implementation, the order of the destination processors in scatter operations

follows the processors ranks.
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Load-Balancing Scatter Operations for Grid Computing 7

be the last processor, Pp (this simpli�es expressions as Pp can only start to process its
share of the data items after it has sent the other data items to the other processors).
The root takes a time Tcomm(i; ni) to send to Pi its data. As the root processor sends
data to processors in turn, processor Pi begins its communication after processors
P1, . . . , Pi�1 have been served, which takes a time

Pi�1
j=1 Tcomm(j; nj). Then Pi takes

Tcomp(i; ni) to process its share of the data. Thus, Pi ends its processing at time:

Ti =

iX
j=1

Tcomm(j; nj) + Tcomp(i; ni): (1)

The time, T , taken by our system to compute the set of n data items is therefore:

T = max
1�i�p

Ti = max
1�i�p

0
@ iX

j=1

Tcomm(j; nj) + Tcomp(i; ni)

1
A ; (2)

and we are looking for the distribution n1, . . . , np minimizing this duration.

3.2 An exact solution by dynamic programming

In this section we present two dynamic programming algorithms to compute the
optimal data distribution. The �rst one only assumes that the cost functions are
non-negative. The second one presents some optimizations that makes it perform
far better, but under the further hypothesis that the cost functions are increasing.

Basic algorithm

We now study Equation (2). The overall execution time is the maximum of the
execution time of P1, and of the other processors:

T = max

 
Tcomm(1; n1) + Tcomp(1; n1);

max
2�i�p

0
@ iX

j=1

Tcomm(j; nj) + Tcomp(i; ni)

1
A
1
A :

RR n�4770



8 S. Genaud, A. Giersch, F. Vivien

Then, one can remark that all the terms in this equation contain the time needed
for the root processor to send P1 its data. Therefore, Equation (2) can be written:

T = Tcomm(1; n1)

+ max

0
@Tcomp(1; n1); max

2�i�p

0
@ iX

j=2

Tcomm(j; nj) + Tcomp(i; ni)

1
A
1
A :

So, we notice that the time to process n data on processors 1 to p is equal to the
time taken by the root to send n1 data to P1 plus the maximum of 1) the time taken
by P1 to process its n1 data; 2) the time for processors 2 to p to process n � n1
data. This leads to the dynamic programming Algorithm 1 presented on page 9 (the
distribution is expressed as a list, hence the use of the list constructor cons). In
Algorithm 1, cost[d; i] denotes the cost of the processing of d data items over the
processors Pi through Pp. solution[d; i] is a list describing a distribution of d data
items over the processors Pi through Pp which achieves the minimal execution time
cost[d; i].

Algorithm 1 has a complexity of O(p � n2), which may be prohibitive. But Algo-
rithm 1 only assumes that the functions Tcomm(i; x) and Tcomp(i; x) are non-negative
and null whenever x = 0.

Optimized algorithm

If we now make the assumption that Tcomm(i; x) and Tcomp(i; x) are increasing with
x, we can make some optimizations on the algorithm. These optimizations con-
sist in reducing the bounds of the inner loop (e-loop, lines 12�19 of Algorithm 1).
Algorithm 2, on page 10, presents these optimizations.

Let us explain what changed between the two algorithms. For the following,
remember the hypothesis that Tcomm(i; x) and Tcomp(i; x) are increasing with x. As
Tcomm(i; x) and Tcomp(i; x) are non-negative, cost[x; i] is obviously increasing too,
and thus cost[d� x; i] is decreasing with x. The purpose of the e-loop is to �nd sol

in [0; d] such that Tcomm(i; sol ) + max(Tcomp(i; sol ); cost[d � sol ]; i + 1) is minimal.
We try 1) to reduce the upper bound of this loop, and 2) to increase the lower bound.

Let emax be the smallest integer such that Tcomp(i; emax ) � cost[d � emax ; i +
1]. For all e � emax , we have Tcomp(i; e) � Tcomp(i; emax ) � cost[d � emax ; i +
1] � cost[d� e; i+ 1], so mine�emax (Tcomm(i; e) +max(Tcomp(i; e); cost[d� e; i+ 1]))
equals to mine�emax (Tcomm(i; e)+Tcomp(i; e)). As Tcomm(i; e) and Tcomp(i; e) are both
increasing with e, mine�emax (Tcomm(i; e) + Tcomp(i; e)) equals to Tcomm(i; emax ) +

INRIA



Load-Balancing Scatter Operations for Grid Computing 9

Algorithm 1 Compute an optimal distribution of n data over p processors

function compute-distribution(n; p)

1: solution[0; p] cons(0;NIL)
2: cost[0; p] 0
3: for d 1 to n do

4: solution[d; p] cons(d;NIL)
5: cost[d; p] Tcomm(p; d) + Tcomp(p; d)
6: end for

7: for i p� 1 downto 1 do
8: solution[0; i] cons(0; solution[0; i + 1])
9: cost[0; i] 0
10: for d 1 to n do

11: (sol ;min) (0; cost[d; i + 1])
12: for e 1 to d do
13: m Tcomm(i; e) + max(Tcomp(i; e); cost[d� e; i + 1])
14: if m < min then

15: (sol ;min) (e;m)
16: end if
17: solution[d; i] cons(sol ; solution[d� sol ; i+ 1])
18: cost[d; i] min

19: end for

20: end for

21: end for

22: return (solution[n; 1]; cost[n; 1])

Tcomp(i; emax ). By using a binary search to �nd emax (lines 16�26 of Algorithm 2),
and by taking care for the cases when emax falls before 0 (line 12) or after d (line 14),
we can reduce the upper bound of the e-loop. To take advantage of this information,
the direction of the loop must also be inverted. Besides that, we know that inside the
loop, cost[d�e; i+1] is always greater than Tcomp(i; e), so the max in the computation
of m can be avoided (line 29).

We cannot proceed the same way to increase the lower bound of the e-loop.
We can however remark that, as the loop has been inverted, e is decreasing, so
cost[d � e; i + 1] is increasing. If cost[d � e; i + 1] becomes greater than or equal to
min, then for all e0 < e, we have cost[d � e0; i + 1] � cost[d � e; i + 1] � min, and

RR n�4770



10 S. Genaud, A. Giersch, F. Vivien

Algorithm 2 Compute an optimal distribution of n data over p processors (opti-
mized version)

function compute-distribution(n; p)

1: solution[0; p] cons(0;NIL)
2: cost[0; p] 0
3: for d 1 to n do

4: solution[d; p] cons(d;NIL)
5: cost[d; p] Tcomm(p; d) + Tcomp(p; d)
6: end for

7: for i p� 1 downto 1 do

8: solution[0; i] cons(0; solution[0; i+ 1])
9: cost[0; i] 0
10: for d 1 to n do

11: if Tcomp(i; 0) � cost[d; i+ 1] then
12: (sol ;min) (0; Tcomm(i; 0) + Tcomp(i; 0))
13: else if Tcomp(i; d) < cost[0; i+ 1] then
14: (sol ;min) (d; Tcomm(i; d) + cost[0; i+ 1]))
15: else

16: (emin ; emax ) (0; d)
17: e bd=2c
18: while e 6= emin do

19: if Tcomp(i; e) < cost[d� e; i+ 1] then
20: emin  e
21: else

22: emax  e
23: end if

24: e b(emin + emax )=2c
25: end while

26: (sol ;min) (emax ; Tcomm(i; emax) + Tcomp(i; emax ))
27: end if

28: for e sol � 1 downto 0 do

29: m Tcomm(i; e) + cost[d� e; i+ 1]
30: if m < min then

31: (sol ;min) (e;m)
32: else if cost[d� e; i+ 1] � min then

33: break

34: end if

35: end for

36: solution[d; i] cons(sol ; solution[d� sol ; i+ 1])
37: cost[d; i] min

38: end for

39: end for

40: return (solution[n; 1]; cost[n; 1])

INRIA



Load-Balancing Scatter Operations for Grid Computing 11

as Tcomm(i; x) is non-negative, Tcomm(i; e
0) + cost[d� e0; i+ 1] � min. The iteration

can thus be stopped, hence the break (line 33).

In the worst case, the complexity of Algorithm 2 is the same than for Algorithm 1,
i.e. O(p � n2). In the best case, it is O(p � n). We implemented both algorithms, and
in practice Algorithm 2 is far more e�cient.

In spite of these optimizations, running the implementation of Algorithm 2 is
still time-consuming. That is why we now present a more e�cient heuristic valid for
simple cases.

3.3 A guaranteed heuristic using linear programming

In this section, we consider the realistic but less general case when all communication
and communication times are a�ne functions. This new assumption enables us to
code our problem as a linear program. Furthermore, from the linear programming
formulation we derive an e�cient and guaranteed heuristic.

Thus, we make the hypothesis that all the functions Tcomm(i; n) and Tcomp(i; n)
are a�ne in n, increasing, and non-negative (for n � 0). Equation (2) can then be
coded into the following linear program:

8>>>><
>>>>:

Minimize T such that

8i 2 [1; p]; ni � 0;Pp
i=1 ni = n;

8i 2 [1; p]; T �
Pi

j=1 Tcomm(j; nj) + Tcomp(i; ni):

(3)

We must solve this linear program in integer because we need an integer solution.
The integer resolution is however very time-consuming.

Fortunately, a nice workaround exists which provides a close approximation: we
can solve the system in rational to obtain an optimal rational solution n1, . . . , np
that we round up to obtain an integer solution n01, . . . , n

0
p with

P
i n

0
i = n. Let T 0 be

the execution time of this solution, T be the time of the rational solution, and Topt
the time of the optimal integer solution. If jni � n0ij � 1 for any i, which is easily
enforced by the rounding scheme described below, then:

Topt � T 0 � Topt +

pX
j=1

Tcomm(j; 1) + max
1�i�p

Tcomp(i; 1): (4)

RR n�4770



12 S. Genaud, A. Giersch, F. Vivien

Indeed,

T 0 = max
1�i�p

0
@ iX

j=1

Tcomm(j; n
0
j) + Tcomp(i; n

0
i)

1
A : (5)

By hypothesis, Tcomm(j; x) and Tcomp(j; x) are non-negative, increasing, and a�ne
functions. Therefore,

Tcomm(j; n
0
j) = Tcomm(j; nj + (n0j � nj))

� Tcomm(j; nj + jn
0
j � njj)

� Tcomm(j; nj) + Tcomm(j; jn
0
j � njj)

� Tcomm(j; nj) + Tcomm(j; 1)

and we have an equivalent upper bound for Tcomp(j; n
0
j). Using these upper bounds

to over-approximate the expression of T 0 given by Equation (5) we obtain:

T 0 � max
1�i�p

0
@ iX

j=1

(Tcomm(j; nj) + Tcomm(j; 1)) + Tcomp(i; ni) + Tcomp(i; 1)

1
A (6)

which implies Equation (4) knowing that Topt � T 0, T � Topt , and �nally that
T = max1�i�p(

Pi
j=1 Tcomm(j; nj) + Tcomp(i; ni)).

Rounding scheme

Our rounding scheme is trivial: �rst we round, to the nearest integer, the non integer
ni which is nearest to an integer. Doing so we obtain n0i and we make an approx-
imation error of e = n0i � ni (with jej < 1). If e is negative (resp. positive), ni
was underestimated (resp. overestimated) by the approximation. Then we round to
its ceiling (resp. �oor), one of the remaining njs which is the nearest to its ceiling
dnje (resp. �oor bnjc), we obtain a new approximation error of e = e + n0j � nj
(with jej < 1), and so on until there only remains to approximate only one of the
nis, say nk. Then we let n0k = nk + e. The distribution n01, . . . , n

0
p is thus integer,P

1�i�p n
0
i = d, and each n0i di�ers from ni by less than one.

3.4 Choice of the root processor

We make the assumption that, originally, the n data items that must be processed
are stored on a single computer, denoted C. A processor of C may or may not be used

INRIA
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as the root processor. If the root processor is not on C, then the whole execution
time is equal to the time needed to transfer the data from C to the root processor,
plus the execution time as computed by one of the previous algorithms and heuristic.
The best root processor is then the processor minimizing this whole execution time,
when picked as root. This is just the result of a minimization over the p candidates.

4 A case study: solving in rational with linear commu-
nication and computation times

In this section we study a simple and theoretical case. This case study will enable
us to de�ne a policy on the order in which the processors must receive their data.

We make the hypothesis that all the functions Tcomm(i; n) and Tcomp(i; n) are
linear in n. In other words, we assume that there are constants �i and �i such that
Tcomm(i; n) = �i �n and Tcomp(i; n) = �i �n. Also, we only look for a rational solution
and not an integer one as we should.

We show in Section 4.3 that, in this simple case, the processor ordering leading to
the shortest execution time is quite simple. Before that we prove in Section 4.2 that
there always is an optimal (rational) solution in which all the working processors
have the same ending time. We also show the condition for a processor to receive a
share of the whole work. As this condition comes from the expression of the execution
duration when all processors have to process a share of the whole work and �nishes at
the same date, we begin by studying this case in Section 4.1. Finally, in Section 4.4,
we derive from our case study a guaranteed heuristic for the general case.

4.1 Execution duration

Theorem 1 (Execution duration) If we are looking for a rational solution, if
each processor Pi receives a (non empty) share ni of the whole set of n data items
and if all processors end their computation at a same date t, then the execution
duration is

t =
nPp

i=1
1

�i+�i
�
Qi�1

j=1
�j

�j+�j

(7)

and processor Pi receives

ni =
1

�i + �i
�

0
@i�1Y

j=1

�j
�j + �j

1
A � t (8)

RR n�4770



14 S. Genaud, A. Giersch, F. Vivien

data to process.

Proof We want to express the execution duration, t, and the number of data
processor Pi must process, ni, as functions of n. Equation (2) states that processor
Pi ends its processing at time: Ti =

Pi
j=1 Tcomm(j; nj) + Tcomp(i; ni): So, with our

current hypotheses: Ti =
Pi

j=1 �j � nj + �i � ni. Thus, n1 =
t

�1+�1
and, for i 2 [2; p],

Ti = Ti�1 � �i�1 � ni�1 + (�i + �i) � ni:

As, by hypothesis, all processors end their processing at the same time, then Ti =
Ti�1 = t, ni =

�i�1

�i+�i
� ni�1, and we �nd Equation (8).

To express the execution duration t as a function of n we just sum Equation (8)
for all values of i in [1; p]:

n =

pX
i=1

ni =

pX
i=1

1

�i + �i
�

0
@i�1Y

j=1

�j
�j + �j

1
A � t

which is equivalent to Equation (7). �

In the rest of this paper we note:

D(P1; : : : ; Pp) =
1Pp

i=1
1

�i+�i
�
Qi�1

j=1
�j

�j+�j

:

and so we have t = n �D(P1; : : : ; Pp) under the hypotheses of Theorem 1.

4.2 Simultaneous endings

In this paragraph we exhibit a condition on the costs functions Tcomm(i; n) and
Tcomp(i; n) which is necessary and su�cient to have an optimal rational solution
where each processor receives a non-empty share of data, and all processors end at
the same date. This tells us when Theorem 1 can be used to �nd a rational solution
to our system.

Theorem 2 (Simultaneous endings) Given P processors, P1, . . . , Pi, . . . , Pp,
whose communication and computation duration functions Tcomm(i; n) and Tcomp(i; n)
are linear in n, there exists an optimal rational solution where each processor receives
a non-empty share of the whole set of data, and all processors end their computation
at the same date, if and only if

8i 2 [1; p� 1]; �i � D(Pi+1; : : : ; Pp):
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Proof The proof is made by induction on the number of processors. If there is
only one processor, then the theorem is trivially true. We shall next prove that if
the theorem is true for p processors, then it is also true for p+ 1 processors.

Suppose we have p+1 processors P1, . . . , Pp+1. An optimal solution for P1, . . . ,
Pp+1 to compute n data items is obtained by giving � � n items to P1 and (1��) � n
items to P2, . . . , Pp+1 with � in [0; 1]. The end date for the processor P1 is then
t1(�) = (�1 + �1) � n � �.

As the theorem is supposed to be true for p processors, we know that there exists
an optimal rational solution where processors P2 to Pp+1 all work and �nish their
work simultaneously, if and only if, 8i 2 [2; p], �i � D(Pi+1; : : : ; Pp+1). In this
case, by Theorem 1, the time taken by P2; : : : ; Pp+1 to compute (1 � �) � n data is
(1��) �n �D(P2 ; : : : ; Pp+1). So, the processors P2, . . . , Pp+1 all end at the same date
t2(�) = �1 � n � �+ k � n � (1� �) = k � n+ (�1 � k) � n � � with k = D(P2; : : : ; Pp+1).

If �1 � k, then t1(�) is strictly increasing, and t2(�) is decreasing. Moreover, we
have t1(0) < t2(0) and t1(1) > t2(1), thus the whole end date max(t1(�); t2(�)) is
minimized for an unique � in ]0; 1[, when t1(�) = t2(�). In this case, each processor
has some data to compute and they all end at the same date.

On the contrary, if �1 > k, then t1(�) and t2(�) are both strictly increasing, thus
the whole end date max(t1(�); t2(�)) is minimized for � = 0. In this case, processor
P1 has nothing to compute and its end date is 0, while processors P2 to Pp+1 all end
at a same date k � n.

Thus, there exists an optimal rational solution where each of the p + 1 pro-
cessors P1, . . . ,Pp+1 receives a non-empty share of the whole set of data, and all
processors end their computation at the same date, if and only if, 8i 2 [1; p],
�i � D(Pi+1; : : : ; Pp+1). �

The proof of Theorem 2 shows that any processor Pi satisfying the condition
�i > D(Pi+1; : : : ; Pp) is not interesting for our problem: using it will only increase
the whole processing time. Therefore, we just forget those processors and Theorem 2
states that there is an optimal rational solution where the remaining processors are
all working and have the same end date.

4.3 Processor ordering policy

As we have stated in Section 2.3, the root processor sends data to processors in
turn and a receiving processor actually begins its communication after all previous
processors have received their shares of data. Moreover, in the MPICH implementa-
tion of MPI, the order of the destination processors in scatter operations follows the
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processor ranks de�ned by the program(mer). Therefore, setting the processor ranks
in�uence the order in which the processors start to receive and process their share
of the whole work. Equation (7) shows that in our case the overall computation
time is not symmetric in the processors but depends on their ordering. Therefore we
must carefully de�nes this ordering in order to speed-up the whole computation. It
appears that in our current case, the best ordering is quite simple:

Theorem 3 (Processor ordering policy)

When all functions Tcomm(i; n) and Tcomp(i; n) are linear in n, when for any i in
[1; p� 1] �i � D(Pi+1; : : : ; Pp), and when we are only looking for a rational solution,
then the smallest execution time is achieved when the processors (the root processor
excepted) are ordered in decreasing order of their bandwidth (from P1, the processor
connected to the root processor with the highest bandwidth, to Pp�1, the processor
connected to the root processor with the smallest bandwidth), the last processor being
the root processor.

Proof We consider any ordering P1, . . . , Pp, of the processors, except that Pp is the
root processor (as we have explained in Section 3.1). We consider any permutation
� of such an ordering. In other words, we consider any order P�(1), . . . , P�(p) of the
processors such that there exists k 2 [1; p � 2], �(k) = k + 1, �(k + 1) = k, and
8j 2 [1; p] n fk; k + 1g, �(j) = j (note that �(p) = p).

We denote by t� (resp. t) the best (rational) execution time when the processors
are ordered P�(1), . . . , P�(p) (resp. P1, . . . , Pp). We must show that if Pk+1 is
connected to the root processor with an higher bandwidth than Pk, then t� is strictly
smaller than t. In other words we must show the implication:

�k+1 < �k ) t� < t: (9)

Therefore, we study the sign of t� � t.
In this di�erence, we can replace t by its expression as stated by Equation (7) as,

by hypothesis, for any i in [1; p � 1], �i � D(Pi+1; : : : ; Pp). For t�, things are a bit
more complicated. If, for any i in [1; p�1], ��(i) � D(P�(i+1); : : : ; P�(p)), Theorems 2
and 1 apply, and thus:

t� =
nPp

i=1
1

��(i)+��(i)
�
Qi�1

j=1
��(j)

��(j)+��(j)

: (10)

On the opposite, if there exists at least one value i in [1; p � 1] such that ��(i) >
D(P�(i+1); : : : ; P�(p)), then Theorem 2 states that the optimal execution time cannot
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be achieved on a solution where each processor receives a non-empty share of the
whole set of data and all processors end their computation at the same date. There-
fore, any solution where each processor receives a non-empty share of the whole set of
data and all processors end their computation at the same date leads to an execution
time strictly greater than t� and:

t� <
nPp

i=1
1

��(i)+��(i)
�
Qi�1

j=1
��(j)

��(j)+��(j)

: (11)

Equations (10) and (11) are summarized by:

t� �
nPp

i=1
1

��(i)+��(i)
�
Qi�1

j=1
��(j)

��(j)+��(j)

(12)

and proving the following implication:

�k+1 < �k )
nPp

i=1
1

��(i)+��(i)
�
Qi�1

j=1
��(j)

��(j)+��(j)

< t (13)

will prove Equation (9). Hence, we study the sign of

� =
nPp

i=1
1

��(i)+��(i)
�
Qi�1

j=1
��(j)

��(j)+��(j)

�
nPp

i=1
1

�i+�i
�
Qi�1

j=1
�j

�j+�j

:

As, in the above expression, both denominators are obviously (strictly) positive, the
sign of � is the sign of:

pX
i=1

1

�i + �i
�
i�1Y
j=1

�j
�j + �j

�

pX
i=1

1

��(i) + ��(i)
�
i�1Y
j=1

��(j)

��(j) + ��(j)
: (14)

We want to simplify the second sum in Equation (14). Thus we remark that for any
value of i 2 [1; k] [ [k + 2; p] we have:

i�1Y
j=1

��(j)

��(j) + ��(j)
=

i�1Y
j=1

�j
�j + �j

: (15)

In order to take advantage of the simpli�cation proposed by Equation (15), we de-
compose the second sum in Equation (14) in four terms: the sum from 1 to k � 1,
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the terms for k and k + 1, and then the sum from k + 2 to p:

pX
i=1

1

��(i) + ��(i)
�

i�1Y
j=1

��(j)

��(j) + ��(j)
=

k�1X
i=1

1

�i + �i
�

i�1Y
j=1

�j
�j + �j

+
1

�k+1 + �k+1
�

k�1Y
j=1

�j
�j + �j

+
1

�k + �k
�

�k+1
�k+1 + �k+1

�
k�1Y
j=1

�j
�j + �j

+

pX
i=k+2

1

�i + �i
�
i�1Y
j=1

�j
�j + �j

: (16)

Then we report the result of Equation (16) in Equation (14), we suppress the terms
common to both sides of the � � � sign, and we divide the resulting equation by the
(strictly) positive term

Qk�1
j=1

�j
�j+�j

. This way, we obtain that � has the same sign

than:

1

�k + �k
+

1

�k+1 + �k+1
�

�k
�k + �k

�
1

�k+1 + �k+1
�

1

�k + �k
�

�k+1
�k+1 + �k+1

which is equivalent to:
�k+1 � �k

(�k + �k) � (�k+1 + �k+1)
:

Therefore, if �k+1 < �k, then � < 0, Equation (13) holds, and thus Equation (9)
also holds.

Therefore, the inversion of processors Pk and Pk+1 is pro�table if the bandwidth
from the root processor to processor Pk+1 is higher than the bandwidth from the
root processor to processor Pk. �

4.4 Consequences for the general case

So, in the general case, how are we going to order our processors? An exact study
is feasible even in the general case, if we know the computation and communication
characteristics of each of the processors. We can indeed consider all the possible
orderings of our p processors, use Algorithm 1 to compute the theoretical execution
times, and chose the best result. This is theoretically possible. In practice, for large
values of p such an approach is unrealistic. Furthermore, in the general case an
analytical study is of course impossible (we cannot analytically handle any function
Tcomm(i; n) or Tcomp(i; n)).
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So, we build from the previous result and we order the processors in decreasing
order of the bandwidth they are connected to the root processor with, except for the
root processor which is ordered last. Even without the previous study, such a policy
should not be surprising. Indeed, the time spent to send its share of the data items
to processor Pi is payed by all the processors from Pi to Pp. So the �rst processor
should be the one it is the less expensive to send the data to, and so on. Of course, in
practice, things are a bit more complicated as we are working in integers. However,
the main idea is roughly the same as we now show.

We only suppose that all the computation and communication functions are lin-
ear. Then we denote by:

� T rat
opt : the best execution time that can be achieved for a rational distribution

of the n data items, whatever the ordering for the processors.

� T int
opt : the best execution time that can be achieved for an integer distribution

of the n data items, whatever the ordering for the processors.

Note that T rat
opt and T

int
opt may be achieved on two di�erent orderings of the processors.

We take a rational distribution achieving the execution time T rat
opt . We round it up to

obtain an integer solution, following the rounding scheme described in Section 3.3.
This way we obtain an integer distribution of execution time T 0 with T 0 satisfying
the equation:

T 0 � T rat
opt +

pX
j=1

Tcomm(j; 1) + max
1�i�p

Tcomp(i; 1)

(the proof being the same than for Equation (4)). However, T 0 being an integer
solution its execution time is obviously at least equal to T int

opt . Also, an integer
solution being a rational solution, T int

opt is at least equal to T
rat
opt . Hence the bounds:

T int
opt � T 0 � T int

opt +

pX
j=1

Tcomm(j; 1) + max
1�i�p

Tcomp(i; 1)

where T 0 is the execution time of the distribution obtained by rounding up, according
to the scheme of Section 3.3, the best rational solution when the processors are
ordered in decreasing order of the bandwidth they are connected to the root processor
with, except for the root processor which is ordered last. Therefore, when all the
computation and communication functions are linear our ordering policy is even
guaranteed!
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5 Experimental results

5.1 Hardware environment

Our experiment consists in the computation of 817,101 ray paths (the full set of
seismic events of year 1999) on 16 processors. All machines run Globus [10] and we
use MPICH-G2 [9] as message passing library. Table 1 shows the resources used in
the experiment. They are located at two geographically distant sites. Processors
1 to 6 (standard PCs with Intel PIII and AMD Athlon XP), and 7, 8 (two Mips
processors of an SGI Origin 2000) are in the same premises, whereas processors 9 to
16 are taken from an SGI Origin 3800 (Mips processors) named leda, at the other
end of France. The input data set is located on the PC named dinadan at the �rst
site.

Table 1: Processors used as computational nodes in the experiment.
Machine CPU # Type � (s/ray) Rating � (s/ray)

dinadan 1 PIII/933 0.009288 1 0
pellinore 2 PIII/800 0.009365 0.99 1:12 � 10�5

caseb 3 XP1800 0.004629 2 1:00 � 10�5

sekhmet 4 XP1800 0.004885 1.90 1:70 � 10�5

merlin 5, 6 XP2000 0.003976 2.33 8:15 � 10�5

seven 7, 8 R12K/300 0.016156 0.57 2:10 � 10�5

leda 9�16 R14K/500 0.009677 0.95 3:53 � 10�5

Table 1 indicates the processors speeds as well as the network links throughputs
between the root processor (dinadan) and the other nodes. The values come from a
series of benchmarks we performed on our application.

The column � indicates the number of seconds needed to compute one ray (the
lower, the better). The associated rating is simply a more intuitive indication of the
processor speed (the higher, the better): it is the inverse of � normalized with respect
to a rating of 1 arbitrarily chosen for the Pentium III/933. When several identical
processors are present on a same computer (5, 6 and 9�16) the average performance
is reported.

The network links throughputs between the root processor and the other nodes
are reported in column � assuming a linear communication cost. It indicates the time
in seconds needed to receive one data element from the root processor. Considering
linear communication costs is su�ciently accurate in our case since the network
latency is negligible compared to the sending time of the data blocks.
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Notice that merlin, with processors 5 and 6, though geographically close to
the root processor, has the smallest bandwidth because it was connected to a 10
Mbit/s hub during the experiment whereas all others were connected to fast-ethernet
switches.

5.2 Results

The experimental results of this section evaluate two aspects of the study. The
�rst experiment compares an unbalanced execution (that is the original program
without any source code modi�cation) to what we predict to be the best balanced
execution. The second experiment evaluates the execution performances with respect
to our processor ordering policy (the processors are ordered in descending order of
their bandwidths) by comparing this policy to the opposite one (the processors are
ordered in ascending order of their bandwidths).

Original application

Figure 2 reports performance results obtained with the original program, in which
each processor receives an equal amount of data. We had to choose an ordering of
the processors, and from the conclusion given in Section 4.4, we ordered processors
by descending bandwidth.

Not surprisingly, the processors end times largely di�er, exhibiting a huge imbal-
ance, with the earliest processor �nishing after 259 s and the latest after 853 s.

Load-balanced application

In the second experiment we evaluate our load-balancing strategy. We made the
assumption that the computation and communication cost functions were a�ne and
increasing. This assumption allowed us to use our guaranteed heuristic. Then, we
simply replaced the MPI_Scatter call by a MPI_Scatterv parameterized with the
distribution computed by the heuristic. With such a large number of rays, Algo-
rithm 1 takes more than two days of work (we interrupted it before its completion)
and Algorithm 2 takes 6 minutes to run on a Pentium III/933 whereas the heuris-
tic execution, using pipMP [8, 22], is instantaneous and has an error relative to the
optimal solution of less than 6 � 10�6!

Results of this experiment are presented on Figure 3. The execution appears
well balanced: the earliest and latest �nish times are 405 s and 430 s respectively,
which represents a maximum di�erence in �nish times of 6% of the total duration. By
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Figure 2: Original program execution (uniform data distribution).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

tim
e 

(s
ec

on
ds

)

da
ta

 (
ra

ys
)

ca
se

b

pe
lli

no
re

se
kh

m
et

se
ve

n

se
ve

n

le
da

le
da

le
da

le
da

le
da

le
da

le
da

le
da

m
er

lin

m
er

lin

di
na

da
n

total time
comm. time

amount of data

Figure 3: Load-balanced execution with nodes sorted by descending bandwidth.

comparison to the performances of the original application, the gain is signi�cant: the
total execution duration is approximately half the duration of the �rst experiment.
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Ordering policy

We now compare the e�ects of the ordering policy. Results presented on Figure 3 were
obtained with the descending bandwidth order. The same execution with processors
sorted in ascending bandwidth order is presented on Figure 4.
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Figure 4: Load-balanced execution with nodes sorted by ascending bandwidth.

The load balance in this execution is acceptable with a maximum di�erence in
ending times of about 10% of the total duration (the earliest and latest processors
�nish after 437 s and 486 s). As predicted, the total duration is longer (56 s) than with
the processors in the reverse order. Though the load was slightly less balanced than
in the �rst experiment (because of a peak load on sekhmet during the experiment),
most of the di�erence comes from the idle time spent by processors waiting before
the actual communication begins. This clearly appears on Figure 4: the surface of
the bottom area delimited by the dashed line (the �stair e�ect�) is bigger than in
Figure 3.

6 Related work

Many research works address the problem of load-balancing in heterogeneous envi-
ronments, but most of them consider dynamic load-balancing. As a representative
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of the dynamic approach, the work of [12] is strongly related to our problem. In this
work, a library allows the programmer to produce per process load statistics during
execution, and the information may be then used to decide to redistribute arrays
from one iteration to the other. However, the dynamic load evaluation and data
redistribution make the execution su�er from overheads that can be avoided with a
static approach.

The static approach is used in various contexts. It ranges from data partition-
ing for parallel video processing [1] to �nding the optimal number of processors in
linear algebra algorithms [3]. More generally, many results have been produced by
the divisible load theory for various network topologies (see [6] for an overview). A
part of our framework �ts in the divisible load theory since we consider a data set
(the load) whose data items are independent. Our hardware model corresponds to
the single-level tree network studied in [20]. Despite similarities for some results (for
example the best processor ordering policy is also to order processors by decreasing
bandwidth in [20]) this framework has major di�erences with ours. First, the divisi-
ble load theory considers rational load shares, with the important consequence that
the optimal completion time is the same for all processors. Secondly, the commu-
nication and computation costs are linear in the load. Thirdly, when heterogeneity
is considered, di�erences between processors or network links are also expressed as
a ratio to a standard processor or link (closed form solutions for single-level tree
networks are established in the homogeneous case only).

Some works are closer to ours. The distribution of loops for heterogeneous pro-
cessors so as to balance the work-load is studied in [7] and, in particular, the case
of independent iterations, which is equivalent to a scatter operation. However, com-
putation and communication cost functions are a�ne. A load-balancing solution
is �rst presented for heterogeneous processors, only when no network contentions
occur. Then, the contention is taken into account but for homogeneous processors
only.

Another way to load-balance a scatter operation is to implement it following
the master/slave paradigm. This can be done using a dynamic approach as in [16]
where the MW library [13] is used to implement their solution. For a static load-
balancing, the general framework studied in [2] could serve this purpose. More
speci�cally and close to our framework, a polynomial-time algorithm is also presented
in [5] for allocating independent tasks on an heterogeneous single-level tree network.
The main di�erence with our work is that they allow communication/computation
overlapping. In our work, we chose to keep the same communication structure as
the original program, in order to have feasible automatic code transformation rules.
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Hence we do not consider interlacing computation and communication phases. At a
higher level, the work from [24] considers �nding the best locations for the master
and the slaves given their computation capabilities and the network topology using
a network �ow approach. Nonetheless, using the master/slave paradigm induces a
far more complex code rewriting process.

7 Conclusion

In this paper we partially addressed the problem of adapting to the grid existing
parallel applications designed for parallel computers. We studied the static load-
balancing of scatter operations when no assumptions are made on the processor
speeds or on the network links bandwidth. We presented two solutions to compute
load-balanced distributions: a general and exact algorithm, and a heuristic far more
e�cient for simple cases (a�ne computation and communication times). We also
proposed a policy on the processor ordering: we order them in decreasing order of the
network bandwidth they have with the root processor. On our target application,
our experiments showed that replacing MPI_Scatter by MPI_Scatterv calls used
with clever distributions leads to great performance improvement at low cost.
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