X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/f20fe8a11db9e893dbf55a03d4cf6132bdc4c65c..e71a2a302d28430dc1bfee906f842f5f3d0fa3ce:/include/xbt/functional.hpp diff --git a/include/xbt/functional.hpp b/include/xbt/functional.hpp index 537ba8f9dc..4f5ca2ce32 100644 --- a/include/xbt/functional.hpp +++ b/include/xbt/functional.hpp @@ -1,5 +1,4 @@ -/* Copyright (c) 2015-2016. The SimGrid Team. - * All rights reserved. */ +/* Copyright (c) 2015-2021. The SimGrid Team. All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ @@ -7,121 +6,60 @@ #ifndef XBT_FUNCTIONAL_HPP #define XBT_FUNCTIONAL_HPP +#include + +#include #include +#include +#include +#include #include #include -#include +#include +#include +#include +#include #include - -#include -#include +#include namespace simgrid { namespace xbt { -class args { -private: - int argc_ = 0; - char** argv_ = nullptr; -public: +template class MainFunction { + F code_; + std::shared_ptr> args_; - // Main constructors - args() {} - - void assign(int argc, const char*const* argv) - { - clear(); - char** new_argv = xbt_new(char*,argc + 1); - for (int i = 0; i < argc; i++) - new_argv[i] = xbt_strdup(argv[i]); - new_argv[argc] = nullptr; - this->argc_ = argc; - this->argv_ = new_argv; - } - args(int argc, const char*const* argv) - { - this->assign(argc, argv); - } - - char** to_argv() const - { - const int argc = argc_; - char** argv = xbt_new(char*, argc + 1); - for (int i=0; i< argc; i++) - argv[i] = xbt_strdup(argv_[i]); - argv[argc] = nullptr; - return argv; - } - - // Free - void clear() - { - for (int i = 0; i < this->argc_; i++) - std::free(this->argv_[i]); - std::free(this->argv_); - this->argc_ = 0; - this->argv_ = nullptr; - } - ~args() { clear(); } - - // Copy - args(args const& that) - { - this->assign(that.argc(), that.argv()); - } - args& operator=(args const& that) - { - this->assign(that.argc(), that.argv()); - return *this; - } - - // Move: - args(args&& that) : argc_(that.argc_), argv_(that.argv_) +public: + MainFunction(F code, std::vector&& args) + : code_(std::move(code)), args_(std::make_shared>(std::move(args))) { - that.argc_ = 0; - that.argv_ = nullptr; } - args& operator=(args&& that) + void operator()() const { - this->argc_ = that.argc_; - this->argv_ = that.argv_; - that.argc_ = 0; - that.argv_ = nullptr; - return *this; + const int argc = args_->size(); + std::vector args = *args_; + std::vector argv(args.size() + 1); // argv[argc] is nullptr + std::transform(begin(args), end(args), begin(argv), [](std::string& s) { return &s.front(); }); + code_(argc, argv.data()); } - - int argc() const { return argc_; } - char** argv() { return argv_; } - const char*const* argv() const { return argv_; } - char* operator[](std::size_t i) { return argv_[i]; } }; -template inline -std::function wrapMain(F code, std::shared_ptr args) -{ - return [=]() { - code(args->argc(), args->argv()); - }; -} - -template inline -std::function wrapMain(F code, simgrid::xbt::args args) +template inline std::function wrap_main(F code, std::vector&& args) { - return wrapMain(std::move(code), - std::unique_ptr(new simgrid::xbt::args(std::move(args)))); + return MainFunction(std::move(code), std::move(args)); } -template inline -std::function wrapMain(F code, int argc, const char*const* argv) +template inline std::function wrap_main(F code, int argc, const char* const argv[]) { - return wrapMain(std::move(code), args(argc, argv)); + std::vector args(argv, argv + argc); + return MainFunction(std::move(code), std::move(args)); } namespace bits { template -constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence) - -> decltype(std::forward(f)(std::get(std::forward(t))...)) +constexpr auto apply(F&& f, Tuple&& t, std::index_sequence) + -> decltype(std::forward(f)(std::get(std::forward(t))...)) { return std::forward(f)(std::get(std::forward(t))...); } @@ -134,26 +72,195 @@ constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence) * * auto args = std::make_tuple(1, false); * int res = apply(foo, args); - * @encode + * @endcode **/ template -constexpr auto apply(F&& f, Tuple&& t) - -> decltype(simgrid::xbt::bits::apply( - std::forward(f), - std::forward(t), - simgrid::xbt::make_index_sequence< - std::tuple_size::type>::value - >())) +constexpr auto apply(F&& f, Tuple&& t) -> decltype( + simgrid::xbt::bits::apply(std::forward(f), std::forward(t), + std::make_index_sequence>::value>())) { - return simgrid::xbt::bits::apply( - std::forward(f), - std::forward(t), - simgrid::xbt::make_index_sequence< - std::tuple_size::type>::value - >()); + return simgrid::xbt::bits::apply(std::forward(f), std::forward(t), + std::make_index_sequence>::value>()); } -} +template class Task; + +/** Type-erased run-once task + * + * * Like std::function but callable only once. + * However, it works with move-only types. + * + * * Like std::packaged_task<> but without the shared state. + */ +template +class Task { + // Placeholder for some class type: + struct whatever {}; + + // Union used for storage: + using TaskUnion = + typename std::aligned_union_t<0, void*, std::pair, std::pair>; + + // Is F suitable for small buffer optimization? + template + static constexpr bool canSBO() + { + return sizeof(F) <= sizeof(TaskUnion) && + alignof(F) <= alignof(TaskUnion); + } + + static_assert(canSBO>(), + "SBO not working for reference_wrapper"); + + // Call (and possibly destroy) the function: + using call_function = R (*)(TaskUnion&, Args...); + // Destroy the function (of needed): + using destroy_function = void (*)(TaskUnion&); + // Move the function (otherwise memcpy): + using move_function = void (*)(TaskUnion& dest, TaskUnion& src); + + // Vtable of functions for manipulating whatever is in the TaskUnion: + struct TaskVtable { + call_function call; + destroy_function destroy; + move_function move; + }; + + TaskUnion buffer_; + const TaskVtable* vtable_ = nullptr; + + void clear() + { + if (vtable_ && vtable_->destroy) + vtable_->destroy(buffer_); + } + +public: + Task() = default; + explicit Task(std::nullptr_t) { /* Nothing to do */} + ~Task() + { + this->clear(); + } + + Task(Task const&) = delete; + + Task(Task&& that) noexcept + { + if (that.vtable_ && that.vtable_->move) + that.vtable_->move(buffer_, that.buffer_); + else + std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_)); + vtable_ = std::move(that.vtable_); + that.vtable_ = nullptr; + } + Task& operator=(Task const& that) = delete; + Task& operator=(Task&& that) noexcept + { + this->clear(); + if (that.vtable_ && that.vtable_->move) + that.vtable_->move(buffer_, that.buffer_); + else + std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_)); + vtable_ = std::move(that.vtable_); + that.vtable_ = nullptr; + return *this; + } + +private: + template typename std::enable_if_t()> init(F code) + { + const static TaskVtable vtable { + // Call: + [](TaskUnion& buffer, Args... args) { + auto* src = reinterpret_cast(&buffer); + F code = std::move(*src); + src->~F(); + // NOTE: std::forward(args)... is correct. + return code(std::forward(args)...); + }, + // Destroy: + std::is_trivially_destructible::value ? + static_cast(nullptr) : + [](TaskUnion& buffer) { + auto* code = reinterpret_cast(&buffer); + code->~F(); + }, + // Move: + [](TaskUnion& dst, TaskUnion& src) { + auto* src_code = reinterpret_cast(&src); + auto* dst_code = reinterpret_cast(&dst); + new(dst_code) F(std::move(*src_code)); + src_code->~F(); + } + }; + new(&buffer_) F(std::move(code)); + vtable_ = &vtable; + } + + template typename std::enable_if_t()> init(F code) + { + const static TaskVtable vtable { + // Call: + [](TaskUnion& buffer, Args... args) { + // Delete F when we go out of scope: + std::unique_ptr code(*reinterpret_cast(&buffer)); + // NOTE: std::forward(args)... is correct. + return (*code)(std::forward(args)...); + }, + // Destroy: + [](TaskUnion& buffer) { + F* code = *reinterpret_cast(&buffer); + delete code; + }, + // Move: + nullptr + }; + *reinterpret_cast(&buffer_) = new F(std::move(code)); + vtable_ = &vtable; + } + +public: + template explicit Task(F code) { this->init(std::move(code)); } + + operator bool() const { return vtable_ != nullptr; } + bool operator!() const { return vtable_ == nullptr; } + + R operator()(Args... args) + { + if (vtable_ == nullptr) + throw std::bad_function_call(); + const TaskVtable* vtable = vtable_; + vtable_ = nullptr; + // NOTE: std::forward(args)... is correct. + // see C++ [func.wrap.func.inv] for an example + return vtable->call(buffer_, std::forward(args)...); + } +}; + +template +class TaskImpl { + F code_; + std::tuple args_; + using result_type = decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))); + +public: + TaskImpl(F code, std::tuple args) : + code_(std::move(code)), + args_(std::move(args)) + {} + result_type operator()() + { + return simgrid::xbt::apply(std::move(code_), std::move(args_)); + } +}; + +template auto make_task(F code, Args... args) -> Task +{ + TaskImpl task(std::move(code), std::make_tuple(std::move(args)...)); + return Task(std::move(task)); } +} // namespace xbt +} // namespace simgrid #endif