X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/d64b23f264fa43f785c688073c66297a7c475c40..d8983d99631ddba747941cadb391ce80243a5529:/examples/smpi/NAS/BT/x_solve.f diff --git a/examples/smpi/NAS/BT/x_solve.f b/examples/smpi/NAS/BT/x_solve.f deleted file mode 100644 index 5386732616..0000000000 --- a/examples/smpi/NAS/BT/x_solve.f +++ /dev/null @@ -1,761 +0,0 @@ - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_solve - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c -c Performs line solves in X direction by first factoring -c the block-tridiagonal matrix into an upper triangular matrix, -c and then performing back substitution to solve for the unknow -c vectors of each line. -c -c Make sure we treat elements zero to cell_size in the direction -c of the sweep. -c -c--------------------------------------------------------------------- - - include 'header.h' - include 'mpinpb.h' - integer c, istart, stage, - > first, last, recv_id, error, r_status(MPI_STATUS_SIZE), - > isize,jsize,ksize,send_id - - istart = 0 - -c--------------------------------------------------------------------- -c in our terminology stage is the number of the cell in the x-direction -c i.e. stage = 1 means the start of the line stage=ncells means end -c--------------------------------------------------------------------- - do stage = 1,ncells - c = slice(1,stage) - isize = cell_size(1,c) - 1 - jsize = cell_size(2,c) - 1 - ksize = cell_size(3,c) - 1 - -c--------------------------------------------------------------------- -c set last-cell flag -c--------------------------------------------------------------------- - if (stage .eq. ncells) then - last = 1 - else - last = 0 - endif - - if (stage .eq. 1) then -c--------------------------------------------------------------------- -c This is the first cell, so solve without receiving data -c--------------------------------------------------------------------- - first = 1 -c call lhsx(c) - call x_solve_cell(first,last,c) - else -c--------------------------------------------------------------------- -c Not the first cell of this line, so receive info from -c processor working on preceeding cell -c--------------------------------------------------------------------- - first = 0 - call x_receive_solve_info(recv_id,c) -c--------------------------------------------------------------------- -c overlap computations and communications -c--------------------------------------------------------------------- -c call lhsx(c) -c--------------------------------------------------------------------- -c wait for completion -c--------------------------------------------------------------------- - call mpi_wait(send_id,r_status,error) - call mpi_wait(recv_id,r_status,error) -c--------------------------------------------------------------------- -c install C'(istart) and rhs'(istart) to be used in this cell -c--------------------------------------------------------------------- - call x_unpack_solve_info(c) - call x_solve_cell(first,last,c) - endif - - if (last .eq. 0) call x_send_solve_info(send_id,c) - enddo - -c--------------------------------------------------------------------- -c now perform backsubstitution in reverse direction -c--------------------------------------------------------------------- - do stage = ncells, 1, -1 - c = slice(1,stage) - first = 0 - last = 0 - if (stage .eq. 1) first = 1 - if (stage .eq. ncells) then - last = 1 -c--------------------------------------------------------------------- -c last cell, so perform back substitute without waiting -c--------------------------------------------------------------------- - call x_backsubstitute(first, last,c) - else - call x_receive_backsub_info(recv_id,c) - call mpi_wait(send_id,r_status,error) - call mpi_wait(recv_id,r_status,error) - call x_unpack_backsub_info(c) - call x_backsubstitute(first,last,c) - endif - if (first .eq. 0) call x_send_backsub_info(send_id,c) - enddo - - - return - end - - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_unpack_solve_info(c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c unpack C'(-1) and rhs'(-1) for -c all j and k -c--------------------------------------------------------------------- - - include 'header.h' - integer j,k,m,n,ptr,c,istart - - istart = 0 - ptr = 0 - do k=0,KMAX-1 - do j=0,JMAX-1 - do m=1,BLOCK_SIZE - do n=1,BLOCK_SIZE - lhsc(m,n,istart-1,j,k,c) = out_buffer(ptr+n) - enddo - ptr = ptr+BLOCK_SIZE - enddo - do n=1,BLOCK_SIZE - rhs(n,istart-1,j,k,c) = out_buffer(ptr+n) - enddo - ptr = ptr+BLOCK_SIZE - enddo - enddo - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_send_solve_info(send_id,c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c pack up and send C'(iend) and rhs'(iend) for -c all j and k -c--------------------------------------------------------------------- - - include 'header.h' - include 'mpinpb.h' - - integer j,k,m,n,isize,ptr,c,jp,kp - integer error,send_id,buffer_size - - isize = cell_size(1,c)-1 - jp = cell_coord(2,c) - 1 - kp = cell_coord(3,c) - 1 - buffer_size=MAX_CELL_DIM*MAX_CELL_DIM* - > (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE) - -c--------------------------------------------------------------------- -c pack up buffer -c--------------------------------------------------------------------- - ptr = 0 - do k=0,KMAX-1 - do j=0,JMAX-1 - do m=1,BLOCK_SIZE - do n=1,BLOCK_SIZE - in_buffer(ptr+n) = lhsc(m,n,isize,j,k,c) - enddo - ptr = ptr+BLOCK_SIZE - enddo - do n=1,BLOCK_SIZE - in_buffer(ptr+n) = rhs(n,isize,j,k,c) - enddo - ptr = ptr+BLOCK_SIZE - enddo - enddo - -c--------------------------------------------------------------------- -c send buffer -c--------------------------------------------------------------------- - call mpi_isend(in_buffer, buffer_size, - > dp_type, successor(1), - > WEST+jp+kp*NCELLS, comm_solve, - > send_id,error) - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_send_backsub_info(send_id,c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c pack up and send U(istart) for all j and k -c--------------------------------------------------------------------- - - include 'header.h' - include 'mpinpb.h' - - integer j,k,n,ptr,c,istart,jp,kp - integer error,send_id,buffer_size - -c--------------------------------------------------------------------- -c Send element 0 to previous processor -c--------------------------------------------------------------------- - istart = 0 - jp = cell_coord(2,c)-1 - kp = cell_coord(3,c)-1 - buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE - ptr = 0 - do k=0,KMAX-1 - do j=0,JMAX-1 - do n=1,BLOCK_SIZE - in_buffer(ptr+n) = rhs(n,istart,j,k,c) - enddo - ptr = ptr+BLOCK_SIZE - enddo - enddo - call mpi_isend(in_buffer, buffer_size, - > dp_type, predecessor(1), - > EAST+jp+kp*NCELLS, comm_solve, - > send_id,error) - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_unpack_backsub_info(c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c unpack U(isize) for all j and k -c--------------------------------------------------------------------- - - include 'header.h' - integer j,k,n,ptr,c - - ptr = 0 - do k=0,KMAX-1 - do j=0,JMAX-1 - do n=1,BLOCK_SIZE - backsub_info(n,j,k,c) = out_buffer(ptr+n) - enddo - ptr = ptr+BLOCK_SIZE - enddo - enddo - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_receive_backsub_info(recv_id,c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c post mpi receives -c--------------------------------------------------------------------- - - include 'header.h' - include 'mpinpb.h' - - integer error,recv_id,jp,kp,c,buffer_size - jp = cell_coord(2,c) - 1 - kp = cell_coord(3,c) - 1 - buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE - call mpi_irecv(out_buffer, buffer_size, - > dp_type, successor(1), - > EAST+jp+kp*NCELLS, comm_solve, - > recv_id, error) - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_receive_solve_info(recv_id,c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c post mpi receives -c--------------------------------------------------------------------- - - include 'header.h' - include 'mpinpb.h' - - integer jp,kp,recv_id,error,c,buffer_size - jp = cell_coord(2,c) - 1 - kp = cell_coord(3,c) - 1 - buffer_size=MAX_CELL_DIM*MAX_CELL_DIM* - > (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE) - call mpi_irecv(out_buffer, buffer_size, - > dp_type, predecessor(1), - > WEST+jp+kp*NCELLS, comm_solve, - > recv_id, error) - - return - end - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_backsubstitute(first, last, c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c back solve: if last cell, then generate U(isize)=rhs(isize) -c else assume U(isize) is loaded in un pack backsub_info -c so just use it -c after call u(istart) will be sent to next cell -c--------------------------------------------------------------------- - - include 'header.h' - - integer first, last, c, i, j, k - integer m,n,isize,jsize,ksize,istart - - istart = 0 - isize = cell_size(1,c)-1 - jsize = cell_size(2,c)-end(2,c)-1 - ksize = cell_size(3,c)-end(3,c)-1 - if (last .eq. 0) then - do k=start(3,c),ksize - do j=start(2,c),jsize -c--------------------------------------------------------------------- -c U(isize) uses info from previous cell if not last cell -c--------------------------------------------------------------------- - do m=1,BLOCK_SIZE - do n=1,BLOCK_SIZE - rhs(m,isize,j,k,c) = rhs(m,isize,j,k,c) - > - lhsc(m,n,isize,j,k,c)* - > backsub_info(n,j,k,c) -c--------------------------------------------------------------------- -c rhs(m,isize,j,k,c) = rhs(m,isize,j,k,c) -c $ - lhsc(m,n,isize,j,k,c)*rhs(n,isize+1,j,k,c) -c--------------------------------------------------------------------- - enddo - enddo - enddo - enddo - endif - do k=start(3,c),ksize - do j=start(2,c),jsize - do i=isize-1,istart,-1 - do m=1,BLOCK_SIZE - do n=1,BLOCK_SIZE - rhs(m,i,j,k,c) = rhs(m,i,j,k,c) - > - lhsc(m,n,i,j,k,c)*rhs(n,i+1,j,k,c) - enddo - enddo - enddo - enddo - enddo - - return - end - - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - - subroutine x_solve_cell(first,last,c) - -c--------------------------------------------------------------------- -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c performs guaussian elimination on this cell. -c -c assumes that unpacking routines for non-first cells -c preload C' and rhs' from previous cell. -c -c assumed send happens outside this routine, but that -c c'(IMAX) and rhs'(IMAX) will be sent to next cell -c--------------------------------------------------------------------- - - include 'header.h' - include 'work_lhs.h' - - integer first,last,c - integer i,j,k,isize,ksize,jsize,istart - - istart = 0 - isize = cell_size(1,c)-1 - jsize = cell_size(2,c)-end(2,c)-1 - ksize = cell_size(3,c)-end(3,c)-1 - - call lhsabinit(lhsa, lhsb, isize) - - do k=start(3,c),ksize - do j=start(2,c),jsize - -c--------------------------------------------------------------------- -c This function computes the left hand side in the xi-direction -c--------------------------------------------------------------------- - -c--------------------------------------------------------------------- -c determine a (labeled f) and n jacobians for cell c -c--------------------------------------------------------------------- - do i = start(1,c)-1, cell_size(1,c) - end(1,c) - - tmp1 = rho_i(i,j,k,c) - tmp2 = tmp1 * tmp1 - tmp3 = tmp1 * tmp2 -c--------------------------------------------------------------------- -c -c--------------------------------------------------------------------- - fjac(1,1,i) = 0.0d+00 - fjac(1,2,i) = 1.0d+00 - fjac(1,3,i) = 0.0d+00 - fjac(1,4,i) = 0.0d+00 - fjac(1,5,i) = 0.0d+00 - - fjac(2,1,i) = -(u(2,i,j,k,c) * tmp2 * - > u(2,i,j,k,c)) - > + c2 * qs(i,j,k,c) - fjac(2,2,i) = ( 2.0d+00 - c2 ) - > * ( u(2,i,j,k,c) * tmp1 ) - fjac(2,3,i) = - c2 * ( u(3,i,j,k,c) * tmp1 ) - fjac(2,4,i) = - c2 * ( u(4,i,j,k,c) * tmp1 ) - fjac(2,5,i) = c2 - - fjac(3,1,i) = - ( u(2,i,j,k,c)*u(3,i,j,k,c) ) * tmp2 - fjac(3,2,i) = u(3,i,j,k,c) * tmp1 - fjac(3,3,i) = u(2,i,j,k,c) * tmp1 - fjac(3,4,i) = 0.0d+00 - fjac(3,5,i) = 0.0d+00 - - fjac(4,1,i) = - ( u(2,i,j,k,c)*u(4,i,j,k,c) ) * tmp2 - fjac(4,2,i) = u(4,i,j,k,c) * tmp1 - fjac(4,3,i) = 0.0d+00 - fjac(4,4,i) = u(2,i,j,k,c) * tmp1 - fjac(4,5,i) = 0.0d+00 - - fjac(5,1,i) = ( c2 * 2.0d0 * qs(i,j,k,c) - > - c1 * ( u(5,i,j,k,c) * tmp1 ) ) - > * ( u(2,i,j,k,c) * tmp1 ) - fjac(5,2,i) = c1 * u(5,i,j,k,c) * tmp1 - > - c2 - > * ( u(2,i,j,k,c)*u(2,i,j,k,c) * tmp2 - > + qs(i,j,k,c) ) - fjac(5,3,i) = - c2 * ( u(3,i,j,k,c)*u(2,i,j,k,c) ) - > * tmp2 - fjac(5,4,i) = - c2 * ( u(4,i,j,k,c)*u(2,i,j,k,c) ) - > * tmp2 - fjac(5,5,i) = c1 * ( u(2,i,j,k,c) * tmp1 ) - - njac(1,1,i) = 0.0d+00 - njac(1,2,i) = 0.0d+00 - njac(1,3,i) = 0.0d+00 - njac(1,4,i) = 0.0d+00 - njac(1,5,i) = 0.0d+00 - - njac(2,1,i) = - con43 * c3c4 * tmp2 * u(2,i,j,k,c) - njac(2,2,i) = con43 * c3c4 * tmp1 - njac(2,3,i) = 0.0d+00 - njac(2,4,i) = 0.0d+00 - njac(2,5,i) = 0.0d+00 - - njac(3,1,i) = - c3c4 * tmp2 * u(3,i,j,k,c) - njac(3,2,i) = 0.0d+00 - njac(3,3,i) = c3c4 * tmp1 - njac(3,4,i) = 0.0d+00 - njac(3,5,i) = 0.0d+00 - - njac(4,1,i) = - c3c4 * tmp2 * u(4,i,j,k,c) - njac(4,2,i) = 0.0d+00 - njac(4,3,i) = 0.0d+00 - njac(4,4,i) = c3c4 * tmp1 - njac(4,5,i) = 0.0d+00 - - njac(5,1,i) = - ( con43 * c3c4 - > - c1345 ) * tmp3 * (u(2,i,j,k,c)**2) - > - ( c3c4 - c1345 ) * tmp3 * (u(3,i,j,k,c)**2) - > - ( c3c4 - c1345 ) * tmp3 * (u(4,i,j,k,c)**2) - > - c1345 * tmp2 * u(5,i,j,k,c) - - njac(5,2,i) = ( con43 * c3c4 - > - c1345 ) * tmp2 * u(2,i,j,k,c) - njac(5,3,i) = ( c3c4 - c1345 ) * tmp2 * u(3,i,j,k,c) - njac(5,4,i) = ( c3c4 - c1345 ) * tmp2 * u(4,i,j,k,c) - njac(5,5,i) = ( c1345 ) * tmp1 - - enddo -c--------------------------------------------------------------------- -c now jacobians set, so form left hand side in x direction -c--------------------------------------------------------------------- - do i = start(1,c), isize - end(1,c) - - tmp1 = dt * tx1 - tmp2 = dt * tx2 - - lhsa(1,1,i) = - tmp2 * fjac(1,1,i-1) - > - tmp1 * njac(1,1,i-1) - > - tmp1 * dx1 - lhsa(1,2,i) = - tmp2 * fjac(1,2,i-1) - > - tmp1 * njac(1,2,i-1) - lhsa(1,3,i) = - tmp2 * fjac(1,3,i-1) - > - tmp1 * njac(1,3,i-1) - lhsa(1,4,i) = - tmp2 * fjac(1,4,i-1) - > - tmp1 * njac(1,4,i-1) - lhsa(1,5,i) = - tmp2 * fjac(1,5,i-1) - > - tmp1 * njac(1,5,i-1) - - lhsa(2,1,i) = - tmp2 * fjac(2,1,i-1) - > - tmp1 * njac(2,1,i-1) - lhsa(2,2,i) = - tmp2 * fjac(2,2,i-1) - > - tmp1 * njac(2,2,i-1) - > - tmp1 * dx2 - lhsa(2,3,i) = - tmp2 * fjac(2,3,i-1) - > - tmp1 * njac(2,3,i-1) - lhsa(2,4,i) = - tmp2 * fjac(2,4,i-1) - > - tmp1 * njac(2,4,i-1) - lhsa(2,5,i) = - tmp2 * fjac(2,5,i-1) - > - tmp1 * njac(2,5,i-1) - - lhsa(3,1,i) = - tmp2 * fjac(3,1,i-1) - > - tmp1 * njac(3,1,i-1) - lhsa(3,2,i) = - tmp2 * fjac(3,2,i-1) - > - tmp1 * njac(3,2,i-1) - lhsa(3,3,i) = - tmp2 * fjac(3,3,i-1) - > - tmp1 * njac(3,3,i-1) - > - tmp1 * dx3 - lhsa(3,4,i) = - tmp2 * fjac(3,4,i-1) - > - tmp1 * njac(3,4,i-1) - lhsa(3,5,i) = - tmp2 * fjac(3,5,i-1) - > - tmp1 * njac(3,5,i-1) - - lhsa(4,1,i) = - tmp2 * fjac(4,1,i-1) - > - tmp1 * njac(4,1,i-1) - lhsa(4,2,i) = - tmp2 * fjac(4,2,i-1) - > - tmp1 * njac(4,2,i-1) - lhsa(4,3,i) = - tmp2 * fjac(4,3,i-1) - > - tmp1 * njac(4,3,i-1) - lhsa(4,4,i) = - tmp2 * fjac(4,4,i-1) - > - tmp1 * njac(4,4,i-1) - > - tmp1 * dx4 - lhsa(4,5,i) = - tmp2 * fjac(4,5,i-1) - > - tmp1 * njac(4,5,i-1) - - lhsa(5,1,i) = - tmp2 * fjac(5,1,i-1) - > - tmp1 * njac(5,1,i-1) - lhsa(5,2,i) = - tmp2 * fjac(5,2,i-1) - > - tmp1 * njac(5,2,i-1) - lhsa(5,3,i) = - tmp2 * fjac(5,3,i-1) - > - tmp1 * njac(5,3,i-1) - lhsa(5,4,i) = - tmp2 * fjac(5,4,i-1) - > - tmp1 * njac(5,4,i-1) - lhsa(5,5,i) = - tmp2 * fjac(5,5,i-1) - > - tmp1 * njac(5,5,i-1) - > - tmp1 * dx5 - - lhsb(1,1,i) = 1.0d+00 - > + tmp1 * 2.0d+00 * njac(1,1,i) - > + tmp1 * 2.0d+00 * dx1 - lhsb(1,2,i) = tmp1 * 2.0d+00 * njac(1,2,i) - lhsb(1,3,i) = tmp1 * 2.0d+00 * njac(1,3,i) - lhsb(1,4,i) = tmp1 * 2.0d+00 * njac(1,4,i) - lhsb(1,5,i) = tmp1 * 2.0d+00 * njac(1,5,i) - - lhsb(2,1,i) = tmp1 * 2.0d+00 * njac(2,1,i) - lhsb(2,2,i) = 1.0d+00 - > + tmp1 * 2.0d+00 * njac(2,2,i) - > + tmp1 * 2.0d+00 * dx2 - lhsb(2,3,i) = tmp1 * 2.0d+00 * njac(2,3,i) - lhsb(2,4,i) = tmp1 * 2.0d+00 * njac(2,4,i) - lhsb(2,5,i) = tmp1 * 2.0d+00 * njac(2,5,i) - - lhsb(3,1,i) = tmp1 * 2.0d+00 * njac(3,1,i) - lhsb(3,2,i) = tmp1 * 2.0d+00 * njac(3,2,i) - lhsb(3,3,i) = 1.0d+00 - > + tmp1 * 2.0d+00 * njac(3,3,i) - > + tmp1 * 2.0d+00 * dx3 - lhsb(3,4,i) = tmp1 * 2.0d+00 * njac(3,4,i) - lhsb(3,5,i) = tmp1 * 2.0d+00 * njac(3,5,i) - - lhsb(4,1,i) = tmp1 * 2.0d+00 * njac(4,1,i) - lhsb(4,2,i) = tmp1 * 2.0d+00 * njac(4,2,i) - lhsb(4,3,i) = tmp1 * 2.0d+00 * njac(4,3,i) - lhsb(4,4,i) = 1.0d+00 - > + tmp1 * 2.0d+00 * njac(4,4,i) - > + tmp1 * 2.0d+00 * dx4 - lhsb(4,5,i) = tmp1 * 2.0d+00 * njac(4,5,i) - - lhsb(5,1,i) = tmp1 * 2.0d+00 * njac(5,1,i) - lhsb(5,2,i) = tmp1 * 2.0d+00 * njac(5,2,i) - lhsb(5,3,i) = tmp1 * 2.0d+00 * njac(5,3,i) - lhsb(5,4,i) = tmp1 * 2.0d+00 * njac(5,4,i) - lhsb(5,5,i) = 1.0d+00 - > + tmp1 * 2.0d+00 * njac(5,5,i) - > + tmp1 * 2.0d+00 * dx5 - - lhsc(1,1,i,j,k,c) = tmp2 * fjac(1,1,i+1) - > - tmp1 * njac(1,1,i+1) - > - tmp1 * dx1 - lhsc(1,2,i,j,k,c) = tmp2 * fjac(1,2,i+1) - > - tmp1 * njac(1,2,i+1) - lhsc(1,3,i,j,k,c) = tmp2 * fjac(1,3,i+1) - > - tmp1 * njac(1,3,i+1) - lhsc(1,4,i,j,k,c) = tmp2 * fjac(1,4,i+1) - > - tmp1 * njac(1,4,i+1) - lhsc(1,5,i,j,k,c) = tmp2 * fjac(1,5,i+1) - > - tmp1 * njac(1,5,i+1) - - lhsc(2,1,i,j,k,c) = tmp2 * fjac(2,1,i+1) - > - tmp1 * njac(2,1,i+1) - lhsc(2,2,i,j,k,c) = tmp2 * fjac(2,2,i+1) - > - tmp1 * njac(2,2,i+1) - > - tmp1 * dx2 - lhsc(2,3,i,j,k,c) = tmp2 * fjac(2,3,i+1) - > - tmp1 * njac(2,3,i+1) - lhsc(2,4,i,j,k,c) = tmp2 * fjac(2,4,i+1) - > - tmp1 * njac(2,4,i+1) - lhsc(2,5,i,j,k,c) = tmp2 * fjac(2,5,i+1) - > - tmp1 * njac(2,5,i+1) - - lhsc(3,1,i,j,k,c) = tmp2 * fjac(3,1,i+1) - > - tmp1 * njac(3,1,i+1) - lhsc(3,2,i,j,k,c) = tmp2 * fjac(3,2,i+1) - > - tmp1 * njac(3,2,i+1) - lhsc(3,3,i,j,k,c) = tmp2 * fjac(3,3,i+1) - > - tmp1 * njac(3,3,i+1) - > - tmp1 * dx3 - lhsc(3,4,i,j,k,c) = tmp2 * fjac(3,4,i+1) - > - tmp1 * njac(3,4,i+1) - lhsc(3,5,i,j,k,c) = tmp2 * fjac(3,5,i+1) - > - tmp1 * njac(3,5,i+1) - - lhsc(4,1,i,j,k,c) = tmp2 * fjac(4,1,i+1) - > - tmp1 * njac(4,1,i+1) - lhsc(4,2,i,j,k,c) = tmp2 * fjac(4,2,i+1) - > - tmp1 * njac(4,2,i+1) - lhsc(4,3,i,j,k,c) = tmp2 * fjac(4,3,i+1) - > - tmp1 * njac(4,3,i+1) - lhsc(4,4,i,j,k,c) = tmp2 * fjac(4,4,i+1) - > - tmp1 * njac(4,4,i+1) - > - tmp1 * dx4 - lhsc(4,5,i,j,k,c) = tmp2 * fjac(4,5,i+1) - > - tmp1 * njac(4,5,i+1) - - lhsc(5,1,i,j,k,c) = tmp2 * fjac(5,1,i+1) - > - tmp1 * njac(5,1,i+1) - lhsc(5,2,i,j,k,c) = tmp2 * fjac(5,2,i+1) - > - tmp1 * njac(5,2,i+1) - lhsc(5,3,i,j,k,c) = tmp2 * fjac(5,3,i+1) - > - tmp1 * njac(5,3,i+1) - lhsc(5,4,i,j,k,c) = tmp2 * fjac(5,4,i+1) - > - tmp1 * njac(5,4,i+1) - lhsc(5,5,i,j,k,c) = tmp2 * fjac(5,5,i+1) - > - tmp1 * njac(5,5,i+1) - > - tmp1 * dx5 - - enddo - - -c--------------------------------------------------------------------- -c outer most do loops - sweeping in i direction -c--------------------------------------------------------------------- - if (first .eq. 1) then - -c--------------------------------------------------------------------- -c multiply c(istart,j,k) by b_inverse and copy back to c -c multiply rhs(istart) by b_inverse(istart) and copy to rhs -c--------------------------------------------------------------------- - call binvcrhs( lhsb(1,1,istart), - > lhsc(1,1,istart,j,k,c), - > rhs(1,istart,j,k,c) ) - - endif - -c--------------------------------------------------------------------- -c begin inner most do loop -c do all the elements of the cell unless last -c--------------------------------------------------------------------- - do i=istart+first,isize-last - -c--------------------------------------------------------------------- -c rhs(i) = rhs(i) - A*rhs(i-1) -c--------------------------------------------------------------------- - call matvec_sub(lhsa(1,1,i), - > rhs(1,i-1,j,k,c),rhs(1,i,j,k,c)) - -c--------------------------------------------------------------------- -c B(i) = B(i) - C(i-1)*A(i) -c--------------------------------------------------------------------- - call matmul_sub(lhsa(1,1,i), - > lhsc(1,1,i-1,j,k,c), - > lhsb(1,1,i)) - - -c--------------------------------------------------------------------- -c multiply c(i,j,k) by b_inverse and copy back to c -c multiply rhs(1,j,k) by b_inverse(1,j,k) and copy to rhs -c--------------------------------------------------------------------- - call binvcrhs( lhsb(1,1,i), - > lhsc(1,1,i,j,k,c), - > rhs(1,i,j,k,c) ) - - enddo - -c--------------------------------------------------------------------- -c Now finish up special cases for last cell -c--------------------------------------------------------------------- - if (last .eq. 1) then - -c--------------------------------------------------------------------- -c rhs(isize) = rhs(isize) - A*rhs(isize-1) -c--------------------------------------------------------------------- - call matvec_sub(lhsa(1,1,isize), - > rhs(1,isize-1,j,k,c),rhs(1,isize,j,k,c)) - -c--------------------------------------------------------------------- -c B(isize) = B(isize) - C(isize-1)*A(isize) -c--------------------------------------------------------------------- - call matmul_sub(lhsa(1,1,isize), - > lhsc(1,1,isize-1,j,k,c), - > lhsb(1,1,isize)) - -c--------------------------------------------------------------------- -c multiply rhs() by b_inverse() and copy to rhs -c--------------------------------------------------------------------- - call binvrhs( lhsb(1,1,isize), - > rhs(1,isize,j,k,c) ) - - endif - enddo - enddo - - - return - end -