X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/d2cc5a5e537a7b2915f781dd75ad8f4d02f6fcf7..a3928e348b652b4d2c7c7ebf058205dbedac94cf:/include/simgrid/simix.hpp diff --git a/include/simgrid/simix.hpp b/include/simgrid/simix.hpp index 08bb97b713..6e17fd6ebc 100644 --- a/include/simgrid/simix.hpp +++ b/include/simgrid/simix.hpp @@ -16,26 +16,8 @@ #include #include -namespace simgrid { -namespace kernel { -namespace actor { - -class Transition { -public: - virtual bool fireable() - { - return true; - } // whether this transition can currently be taken (if not, it could block the process) - virtual bool visible() { return true; } // whether the model-checker should pay any attention to this simcall - virtual std::string to_string() = 0; - virtual std::string dot_label() = 0; -}; -} // namespace actor -} // namespace kernel -} // namespace simgrid - -XBT_PUBLIC void simcall_run_kernel(std::function const& code, simgrid::kernel::actor::Transition* t); -XBT_PUBLIC void simcall_run_blocking(std::function const& code, simgrid::kernel::actor::Transition* t); +XBT_PUBLIC void simcall_run_kernel(std::function const& code, simgrid::mc::SimcallInspector* t); +XBT_PUBLIC void simcall_run_blocking(std::function const& code, simgrid::mc::SimcallInspector* t); namespace simgrid { namespace kernel { @@ -52,18 +34,18 @@ namespace actor { * * It is highly inspired from the syscalls in a regular operating system, allowing the user code to get some specific * code executed in the kernel context. But here, there is almost no security involved. Parameters get checked for - * finitness but that's all. The main goal remain to ensure reproductible ordering of uncomparable events (in [parallel] - * simulation) and observability of events (in model-checking). + * finiteness but that's all. The main goal remain to ensure reproducible ordering of uncomparable events (in + * [parallel] simulation) and observability of events (in model-checking). * * The code passed as argument is supposed to terminate at the exact same simulated timestamp. * Do not use it if your code may block waiting for a subsequent event, e.g. if you lock a mutex, * you may need to wait for that mutex to be unlocked by its current owner. * Potentially blocking simcall must be issued using simcall_blocking(), right below in this file. */ -template typename std::result_of::type simcall(F&& code, Transition* t = nullptr) +template typename std::result_of::type simcall(F&& code, mc::SimcallInspector* t = nullptr) { // If we are in the maestro, we take the fast path and execute the - // code directly without simcall mashalling/unmarshalling/dispatch: + // code directly without simcall marshalling/unmarshalling/dispatch: if (SIMIX_is_maestro()) return std::forward(code)(); @@ -79,7 +61,10 @@ template typename std::result_of::type simcall(F&& code, Transiti /** Execute some code (that does not return immediately) in kernel context * * This is very similar to simcall() right above, but the calling actor will not get rescheduled until - * actor->simcall_answer() is called explicitely. + * actor->simcall_answer() is called explicitly. + * + * Since the return value does not come from the lambda directly, its type cannot be guessed automatically and must + * be provided as template parameter. * * This is meant for blocking actions. For example, locking a mutex is a blocking simcall. * First it's a simcall because that's obviously a modification of the world. Then, that's a blocking simcall because if @@ -90,17 +75,16 @@ template typename std::result_of::type simcall(F&& code, Transiti * * If your code never calls actor->simcall_answer() itself, the actor will never return from its simcall. */ -template typename std::result_of::type simcall_blocking(F&& code, Transition* t = nullptr) +template R simcall_blocking(F&& code, mc::SimcallInspector* t = nullptr) { // If we are in the maestro, we take the fast path and execute the - // code directly without simcall mashalling/unmarshalling/dispatch: + // code directly without simcall marshalling/unmarshalling/dispatch: if (SIMIX_is_maestro()) return std::forward(code)(); // If we are in the application, pass the code to the maestro which // executes it for us and reports the result. We use a std::future which // conveniently handles the success/failure value for us. - typedef typename std::result_of::type R; simgrid::xbt::Result result; simcall_run_blocking([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, t); return result.get(); @@ -111,9 +95,6 @@ template typename std::result_of::type simcall_blocking(F&& code, namespace simgrid { namespace simix { -XBT_ATTRIB_DEPRECATED_v325("Please manifest if you actually need this function") - XBT_PUBLIC const std::vector& process_get_runnable(); - // What's executed as SIMIX actor code: typedef std::function ActorCode; @@ -143,18 +124,6 @@ public: return set(date, simgrid::xbt::Task(std::move(callback))); } - template - XBT_ATTRIB_DEPRECATED_v325("Please use a lambda or std::bind") static inline Timer* set(double date, - R (*callback)(T*), T* arg) - { - return set(date, std::bind(callback, arg)); - } - - XBT_ATTRIB_DEPRECATED_v325("Please use a lambda or std::bind") static Timer* set(double date, void (*callback)(void*), - void* arg) - { - return set(date, std::bind(callback, arg)); - } static Timer* set(double date, simgrid::xbt::Task&& callback); static double next() { return simix_timers.empty() ? -1.0 : simix_timers.top().first; } }; @@ -166,7 +135,4 @@ XBT_PUBLIC smx_actor_t simcall_process_create(const std::string& name, const sim void* data, sg_host_t host, std::unordered_map* properties); -XBT_ATTRIB_DEPRECATED_v325("Please use simgrid::xbt::Timer::set") XBT_PUBLIC smx_timer_t - SIMIX_timer_set(double date, simgrid::xbt::Task&& callback); - #endif