X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/d1f1e22acb2e2342b535c3847e804b4a5fee3167..b6693befe6eb03c83ec1e5fd44c588518223f3d9:/include/xbt/functional.hpp diff --git a/include/xbt/functional.hpp b/include/xbt/functional.hpp index 31f9430ea4..49d33f4e1c 100644 --- a/include/xbt/functional.hpp +++ b/include/xbt/functional.hpp @@ -7,114 +7,301 @@ #ifndef XBT_FUNCTIONAL_HPP #define XBT_FUNCTIONAL_HPP +#include #include +#include #include #include -#include +#include +#include +#include +#include #include +#include #include +#include namespace simgrid { namespace xbt { -class args { +template +class MainFunction { private: - int argc_ = 0; - char** argv_ = nullptr; + F code_; + std::shared_ptr> args_; public: + MainFunction(F code, std::vector args) : + code_(std::move(code)), + args_(std::make_shared>(std::move(args))) + {} + int operator()() const + { + const int argc = args_->size(); + std::vector args = *args_; + std::unique_ptr argv(new char*[argc + 1]); + for (int i = 0; i != argc; ++i) + argv[i] = args[i].empty() ? const_cast(""): &args[i].front(); + argv[argc] = nullptr; + return code_(argc, argv.get()); + } +}; + +template inline +std::function wrapMain(F code, std::vector args) +{ + return MainFunction(std::move(code), std::move(args)); +} - // Main constructors - args() {} +template inline +std::function wrapMain(F code, int argc, const char*const argv[]) +{ + std::vector args(argv, argv + argc); + return MainFunction(std::move(code), std::move(args)); +} + +namespace bits { +template +constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence) + -> decltype(std::forward(f)(std::get(std::forward(t))...)) +{ + return std::forward(f)(std::get(std::forward(t))...); +} +} - void assign(int argc, const char*const* argv) +/** Call a functional object with the values in the given tuple (from C++17) + * + * @code{.cpp} + * int foo(int a, bool b); + * + * auto args = std::make_tuple(1, false); + * int res = apply(foo, args); + * @encode + **/ +template +constexpr auto apply(F&& f, Tuple&& t) + -> decltype(simgrid::xbt::bits::apply( + std::forward(f), + std::forward(t), + simgrid::xbt::make_index_sequence< + std::tuple_size::type>::value + >())) +{ + return simgrid::xbt::bits::apply( + std::forward(f), + std::forward(t), + simgrid::xbt::make_index_sequence< + std::tuple_size::type>::value + >()); +} + +template class Task; + +namespace bits { + + // Something similar exist in C++14: + template + constexpr T max(T a, T b) { - clear(); - char** new_argv = xbt_new(char*,argc + 1); - for (int i = 0; i < argc; i++) - new_argv[i] = xbt_strdup(argv[i]); - new_argv[argc] = nullptr; - this->argc_ = argc; - this->argv_ = new_argv; + return (a > b) ? a : b; } - args(int argc, const char*const* argv) + template + constexpr T max(T a, Args... b) { - this->assign(argc, argv); + return max(std::forward(a), max(std::forward(b)...)); } - char** to_argv() const + struct whatever {}; + + // What we can store in a Task: + typedef void* ptr_callback; + struct funcptr_callback { + // Placeholder for any function pointer: + void(*callback)(); + void* data; + }; + struct member_funcptr_callback { + // Placeholder for any pointer to member function: + void (whatever::* callback)(); + whatever* data; + }; + typedef char any_callback[max( + sizeof(ptr_callback), + sizeof(funcptr_callback), + sizeof(member_funcptr_callback) + )]; + + // Union of what we can store in a Task: + union TaskErasure { + ptr_callback ptr; + funcptr_callback funcptr; + member_funcptr_callback member_funcptr; + any_callback any; + }; + + // Can we copy F in Task (or do we have to use the heap)? + template + constexpr bool isUsableDirectlyInTask() { - const int argc = argc_; - char** argv = xbt_new(char*, argc + 1); - for (int i=0; i< argc; i++) - argv[i] = xbt_strdup(argv_[i]); - argv[argc] = nullptr; - return argv; + // The only types we can portably store directly in the Task are the + // trivially copyable ones (we can memcpy) which are small enough to fit: + return std::is_trivially_copyable::value && + sizeof(F) <= sizeof(bits::any_callback); } - // Free - void clear() +} + +/** Type-erased run-once task + * + * * Like std::function but callable only once. + * However, it works with move-only types. + * + * * Like std::packaged_task<> but without the shared state. + */ +template +class Task { +private: + + typedef bits::TaskErasure TaskErasure; + struct TaskErasureVtable { + // Call (and possibly destroy) the function: + R (*call)(TaskErasure&, Args...); + // Destroy the function: + void (*destroy)(TaskErasure&); + }; + + TaskErasure code_; + const TaskErasureVtable* vtable_ = nullptr; + +public: + Task() {} + Task(std::nullptr_t) {} + ~Task() { - for (int i = 0; i < this->argc_; i++) - std::free(this->argv_[i]); - std::free(this->argv_); - this->argc_ = 0; - this->argv_ = nullptr; + if (vtable_ && vtable_->destroy) + vtable_->destroy(code_); } - ~args() { clear(); } - // Copy - args(args const& that) + Task(Task const&) = delete; + Task& operator=(Task const&) = delete; + + Task(Task&& that) { - this->assign(that.argc(), that.argv()); + std::memcpy(&code_, &that.code_, sizeof(code_)); + vtable_ = that.vtable_; + that.vtable_ = nullptr; } - args& operator=(args const& that) + Task& operator=(Task&& that) { - this->assign(that.argc(), that.argv()); + if (vtable_ && vtable_->destroy) + vtable_->destroy(code_); + std::memcpy(&code_, &that.code_, sizeof(code_)); + vtable_ = that.vtable_; + that.vtable_ = nullptr; return *this; } - // Move: - args(args&& that) : argc_(that.argc_), argv_(that.argv_) + template()>::type> + Task(F const& code) { - that.argc_ = 0; - that.argv_ = nullptr; + const static TaskErasureVtable vtable { + // Call: + [](TaskErasure& erasure, Args... args) -> R { + // We need to wrap F un a union because F might not have a default + // constructor: this is especially the case for lambdas. + union no_ctor { + no_ctor() {} + ~no_ctor() {} + F code ; + } code; + if (!std::is_empty::value) + // AFAIU, this is safe as per [basic.types]: + std::memcpy(&code.code, &erasure.any, sizeof(code.code)); + code.code(std::forward(args)...); + }, + // Destroy: + nullptr + }; + if (!std::is_empty::value) + std::memcpy(&code_.any, &code, sizeof(code)); + vtable_ = &vtable; } - args& operator=(args&& that) + + template()>::type> + Task(F code) { - this->argc_ = that.argc_; - this->argv_ = that.argv_; - that.argc_ = 0; - that.argv_ = nullptr; - return *this; + const static TaskErasureVtable vtable { + // Call: + [](TaskErasure& erasure, Args... args) -> R { + // Delete F when we go out of scope: + std::unique_ptr code(static_cast(erasure.ptr)); + (*code)(std::forward(args)...); + }, + // Destroy: + [](TaskErasure& erasure) { + F* code = static_cast(erasure.ptr); + delete code; + } + }; + code_.ptr = new F(std::move(code)); + vtable_ = &vtable; } - int argc() const { return argc_; } - char** argv() { return argv_; } - const char*const* argv() const { return argv_; } - char* operator[](std::size_t i) { return argv_[i]; } -}; + template + Task(std::reference_wrapper code) + { + const static TaskErasureVtable vtable { + // Call: + [](TaskErasure& erasure, Args... args) -> R { + F* code = static_cast(erasure.ptr); + (*code)(std::forward(args)...); + }, + // Destroy: + nullptr + }; + code.code_.ptr = code.get(); + vtable_ = &vtable; + } -template inline -std::function wrapMain(F code, std::shared_ptr args) -{ - return [=]() { - code(args->argc(), args->argv()); - }; -} + operator bool() const { return vtable_ != nullptr; } + bool operator!() const { return vtable_ == nullptr; } -template inline -std::function wrapMain(F code, simgrid::xbt::args args) -{ - return wrapMain(std::move(code), - std::unique_ptr(new simgrid::xbt::args(std::move(args)))); -} + R operator()(Args... args) + { + if (!vtable_) + throw std::bad_function_call(); + const TaskErasureVtable* vtable = vtable_; + vtable_ = nullptr; + return vtable->call(code_, std::forward(args)...); + } +}; -template inline -std::function wrapMain(F code, int argc, const char*const* argv) +template +class TaskImpl { +private: + F code_; + std::tuple args_; + typedef decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))) result_type; +public: + TaskImpl(F code, std::tuple args) : + code_(std::move(code)), + args_(std::move(args)) + {} + result_type operator()() + { + return simgrid::xbt::apply(std::move(code_), std::move(args_)); + } +}; + +template +auto makeTask(F code, Args... args) +-> Task< decltype(code(std::move(args)...))() > { - return wrapMain(std::move(code), args(argc, argv)); + TaskImpl task(std::move(code), std::make_tuple(std::move(args)...)); + return std::move(task); } }