X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/d18e17592e7aabd2cb96fd154858e0a3987d2800..e71a2a302d28430dc1bfee906f842f5f3d0fa3ce:/include/xbt/functional.hpp diff --git a/include/xbt/functional.hpp b/include/xbt/functional.hpp index 0a07a96c37..4f5ca2ce32 100644 --- a/include/xbt/functional.hpp +++ b/include/xbt/functional.hpp @@ -1,5 +1,4 @@ -/* Copyright (c) 2015-2016. The SimGrid Team. - * All rights reserved. */ +/* Copyright (c) 2015-2021. The SimGrid Team. All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ @@ -7,10 +6,13 @@ #ifndef XBT_FUNCTIONAL_HPP #define XBT_FUNCTIONAL_HPP +#include + #include #include #include +#include #include #include #include @@ -21,42 +23,34 @@ #include #include -#include -#include - namespace simgrid { namespace xbt { -template -class MainFunction { -private: +template class MainFunction { F code_; std::shared_ptr> args_; + public: - MainFunction(F code, std::vector args) : - code_(std::move(code)), - args_(std::make_shared>(std::move(args))) - {} + MainFunction(F code, std::vector&& args) + : code_(std::move(code)), args_(std::make_shared>(std::move(args))) + { + } void operator()() const { - const int argc = args_->size(); + const int argc = args_->size(); std::vector args = *args_; - std::unique_ptr argv(new char*[argc + 1]); - for (int i = 0; i != argc; ++i) - argv[i] = args[i].empty() ? const_cast(""): &args[i].front(); - argv[argc] = nullptr; - code_(argc, argv.get()); + std::vector argv(args.size() + 1); // argv[argc] is nullptr + std::transform(begin(args), end(args), begin(argv), [](std::string& s) { return &s.front(); }); + code_(argc, argv.data()); } }; -template inline -std::function wrapMain(F code, std::vector args) +template inline std::function wrap_main(F code, std::vector&& args) { return MainFunction(std::move(code), std::move(args)); } -template inline -std::function wrapMain(F code, int argc, const char*const argv[]) +template inline std::function wrap_main(F code, int argc, const char* const argv[]) { std::vector args(argv, argv + argc); return MainFunction(std::move(code), std::move(args)); @@ -64,8 +58,8 @@ std::function wrapMain(F code, int argc, const char*const argv[]) namespace bits { template -constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence) - -> decltype(std::forward(f)(std::get(std::forward(t))...)) +constexpr auto apply(F&& f, Tuple&& t, std::index_sequence) + -> decltype(std::forward(f)(std::get(std::forward(t))...)) { return std::forward(f)(std::get(std::forward(t))...); } @@ -78,87 +72,19 @@ constexpr auto apply(F&& f, Tuple&& t, simgrid::xbt::index_sequence) * * auto args = std::make_tuple(1, false); * int res = apply(foo, args); - * @encode + * @endcode **/ template -constexpr auto apply(F&& f, Tuple&& t) - -> decltype(simgrid::xbt::bits::apply( - std::forward(f), - std::forward(t), - simgrid::xbt::make_index_sequence< - std::tuple_size::type>::value - >())) +constexpr auto apply(F&& f, Tuple&& t) -> decltype( + simgrid::xbt::bits::apply(std::forward(f), std::forward(t), + std::make_index_sequence>::value>())) { - return simgrid::xbt::bits::apply( - std::forward(f), - std::forward(t), - simgrid::xbt::make_index_sequence< - std::tuple_size::type>::value - >()); + return simgrid::xbt::bits::apply(std::forward(f), std::forward(t), + std::make_index_sequence>::value>()); } template class Task; -namespace bits { - - // Compute the maximum size taken by any of the given types: - template struct max_size; - template <> - struct max_size<> : public std::integral_constant {}; - template - struct max_size : public std::integral_constant {}; - template - struct max_size : public std::integral_constant max_size::value) ? sizeof(T) : max_size::value - > {}; - - struct whatever {}; - - // What we can store in a Task: - typedef void* ptr_callback; - struct funcptr_callback { - // Placeholder for any function pointer: - void(*callback)(); - void* data; - }; - struct member_funcptr_callback { - // Placeholder for any pointer to member function: - void (whatever::* callback)(); - whatever* data; - }; - constexpr std::size_t any_size = max_size< - ptr_callback, - funcptr_callback, - member_funcptr_callback - >::value; - typedef std::array any_callback; - - // Union of what we can store in a Task: - union TaskErasure { - ptr_callback ptr; - funcptr_callback funcptr; - member_funcptr_callback member_funcptr; - any_callback any; - }; - - // Can we copy F in Task (or do we have to use the heap)? - template - constexpr bool isUsableDirectlyInTask() - { - // TODO, detect availability std::is_trivially_copyable / workaround -#if 1 - // std::is_trivially_copyable is not available before GCC 5. - return false; -#else - // The only types we can portably store directly in the Task are the - // trivially copyable ones (we can memcpy) which are small enough to fit: - return std::is_trivially_copyable::value && - sizeof(F) <= sizeof(bits::any_callback); -#endif - } - -} - /** Type-erased run-once task * * * Like std::function but callable only once. @@ -168,135 +94,156 @@ namespace bits { */ template class Task { -private: + // Placeholder for some class type: + struct whatever {}; + + // Union used for storage: + using TaskUnion = + typename std::aligned_union_t<0, void*, std::pair, std::pair>; - typedef bits::TaskErasure TaskErasure; - struct TaskErasureVtable { - // Call (and possibly destroy) the function: - R (*call)(TaskErasure&, Args...); - // Destroy the function: - void (*destroy)(TaskErasure&); + // Is F suitable for small buffer optimization? + template + static constexpr bool canSBO() + { + return sizeof(F) <= sizeof(TaskUnion) && + alignof(F) <= alignof(TaskUnion); + } + + static_assert(canSBO>(), + "SBO not working for reference_wrapper"); + + // Call (and possibly destroy) the function: + using call_function = R (*)(TaskUnion&, Args...); + // Destroy the function (of needed): + using destroy_function = void (*)(TaskUnion&); + // Move the function (otherwise memcpy): + using move_function = void (*)(TaskUnion& dest, TaskUnion& src); + + // Vtable of functions for manipulating whatever is in the TaskUnion: + struct TaskVtable { + call_function call; + destroy_function destroy; + move_function move; }; - TaskErasure code_; - const TaskErasureVtable* vtable_ = nullptr; + TaskUnion buffer_; + const TaskVtable* vtable_ = nullptr; + + void clear() + { + if (vtable_ && vtable_->destroy) + vtable_->destroy(buffer_); + } public: - Task() {} - Task(std::nullptr_t) {} + Task() = default; + explicit Task(std::nullptr_t) { /* Nothing to do */} ~Task() { - if (vtable_ && vtable_->destroy) - vtable_->destroy(code_); + this->clear(); } Task(Task const&) = delete; - Task& operator=(Task const&) = delete; - Task(Task&& that) + Task(Task&& that) noexcept { - std::memcpy(&code_, &that.code_, sizeof(code_)); - vtable_ = that.vtable_; + if (that.vtable_ && that.vtable_->move) + that.vtable_->move(buffer_, that.buffer_); + else + std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_)); + vtable_ = std::move(that.vtable_); that.vtable_ = nullptr; } - Task& operator=(Task&& that) + Task& operator=(Task const& that) = delete; + Task& operator=(Task&& that) noexcept { - if (vtable_ && vtable_->destroy) - vtable_->destroy(code_); - std::memcpy(&code_, &that.code_, sizeof(code_)); - vtable_ = that.vtable_; + this->clear(); + if (that.vtable_ && that.vtable_->move) + that.vtable_->move(buffer_, that.buffer_); + else + std::memcpy(&buffer_, &that.buffer_, sizeof(buffer_)); + vtable_ = std::move(that.vtable_); that.vtable_ = nullptr; return *this; } - template()>::type> - Task(F const& code) +private: + template typename std::enable_if_t()> init(F code) { - const static TaskErasureVtable vtable { + const static TaskVtable vtable { // Call: - [](TaskErasure& erasure, Args... args) -> R { - // We need to wrap F un a union because F might not have a default - // constructor: this is especially the case for lambdas. - union no_ctor { - no_ctor() {} - ~no_ctor() {} - F code ; - } code; - if (!std::is_empty::value) - // AFAIU, this is safe as per [basic.types]: - std::memcpy(&code.code, erasure.any.data(), sizeof(code.code)); - code.code(std::forward(args)...); + [](TaskUnion& buffer, Args... args) { + auto* src = reinterpret_cast(&buffer); + F code = std::move(*src); + src->~F(); + // NOTE: std::forward(args)... is correct. + return code(std::forward(args)...); }, // Destroy: - nullptr + std::is_trivially_destructible::value ? + static_cast(nullptr) : + [](TaskUnion& buffer) { + auto* code = reinterpret_cast(&buffer); + code->~F(); + }, + // Move: + [](TaskUnion& dst, TaskUnion& src) { + auto* src_code = reinterpret_cast(&src); + auto* dst_code = reinterpret_cast(&dst); + new(dst_code) F(std::move(*src_code)); + src_code->~F(); + } }; - if (!std::is_empty::value) - std::memcpy(code_.any.data(), &code, sizeof(code)); + new(&buffer_) F(std::move(code)); vtable_ = &vtable; } - template()>::type> - Task(F code) + template typename std::enable_if_t()> init(F code) { - const static TaskErasureVtable vtable { + const static TaskVtable vtable { // Call: - [](TaskErasure& erasure, Args... args) -> R { + [](TaskUnion& buffer, Args... args) { // Delete F when we go out of scope: - std::unique_ptr code(static_cast(erasure.ptr)); - (*code)(std::forward(args)...); + std::unique_ptr code(*reinterpret_cast(&buffer)); + // NOTE: std::forward(args)... is correct. + return (*code)(std::forward(args)...); }, // Destroy: - [](TaskErasure& erasure) { - F* code = static_cast(erasure.ptr); + [](TaskUnion& buffer) { + F* code = *reinterpret_cast(&buffer); delete code; - } - }; - code_.ptr = new F(std::move(code)); - vtable_ = &vtable; - } - - template - Task(std::reference_wrapper code) - { - const static TaskErasureVtable vtable { - // Call: - [](TaskErasure& erasure, Args... args) -> R { - F* code = static_cast(erasure.ptr); - (*code)(std::forward(args)...); }, - // Destroy: + // Move: nullptr }; - code.code_.ptr = code.get(); + *reinterpret_cast(&buffer_) = new F(std::move(code)); vtable_ = &vtable; } - // TODO, Task(funcptr) - // TODO, Task(funcptr, data) - // TODO, Task(method, object) - // TODO, Task(stateless lambda) +public: + template explicit Task(F code) { this->init(std::move(code)); } operator bool() const { return vtable_ != nullptr; } bool operator!() const { return vtable_ == nullptr; } R operator()(Args... args) { - if (!vtable_) + if (vtable_ == nullptr) throw std::bad_function_call(); - const TaskErasureVtable* vtable = vtable_; + const TaskVtable* vtable = vtable_; vtable_ = nullptr; - return vtable->call(code_, std::forward(args)...); + // NOTE: std::forward(args)... is correct. + // see C++ [func.wrap.func.inv] for an example + return vtable->call(buffer_, std::forward(args)...); } }; template class TaskImpl { -private: F code_; std::tuple args_; - typedef decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))) result_type; + using result_type = decltype(simgrid::xbt::apply(std::move(code_), std::move(args_))); + public: TaskImpl(F code, std::tuple args) : code_(std::move(code)), @@ -308,15 +255,12 @@ public: } }; -template -auto makeTask(F code, Args... args) --> Task< decltype(code(std::move(args)...))() > +template auto make_task(F code, Args... args) -> Task { TaskImpl task(std::move(code), std::make_tuple(std::move(args)...)); - return std::move(task); -} - -} + return Task(std::move(task)); } +} // namespace xbt +} // namespace simgrid #endif