X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/c2f951e38bdf2b8639bf42b78b69c1530510b6f0..65e200cd6cca5e000376f689bd6b51d0a1fa886b:/src/surf/lagrange.cpp diff --git a/src/surf/lagrange.cpp b/src/surf/lagrange.cpp index 0f671f5d37..e81ea8e96f 100644 --- a/src/surf/lagrange.cpp +++ b/src/surf/lagrange.cpp @@ -7,10 +7,11 @@ * Modeling the proportional fairness using the Lagrangian Optimization Approach. For a detailed description see: * "ssh://username@scm.gforge.inria.fr/svn/memo/people/pvelho/lagrange/ppf.ps". */ +#include "surf/maxmin.hpp" #include "xbt/log.h" #include "xbt/sysdep.h" -#include "maxmin_private.hpp" +#include #include #ifndef MATH #include @@ -20,6 +21,12 @@ XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, "Logging specific to SURF ( XBT_LOG_NEW_SUBCATEGORY(surf_lagrange_dichotomy, surf_lagrange, "Logging specific to SURF (lagrange dichotomy)"); #define SHOW_EXPR(expr) XBT_CDEBUG(surf_lagrange,#expr " = %g",expr); +#define VEGAS_SCALING 1000.0 +#define RENO_SCALING 1.0 +#define RENO2_SCALING 1.0 + +namespace simgrid { +namespace surf { double (*func_f_def) (lmm_variable_t, double); double (*func_fp_def) (lmm_variable_t, double); @@ -37,7 +44,9 @@ static double partial_diff_lambda(double lambda, void *param_cnst); static int __check_feasible(xbt_swag_t cnst_list, xbt_swag_t var_list, int warn) { - void *_cnst, *_elem, *_var; + void* _cnst; + void* _elem; + void* _var; xbt_swag_t elem_list = nullptr; lmm_element_t elem = nullptr; lmm_constraint_t cnst = nullptr; @@ -84,8 +93,8 @@ static double new_value(lmm_variable_t var) { double tmp = 0; - for (int i = 0; i < var->cnsts_number; i++) { - tmp += (var->cnsts[i].constraint)->lambda; + for (s_lmm_element_t const& elem : var->cnsts) { + tmp += elem.constraint->lambda; } if (var->bound > 0) tmp += var->mu; @@ -99,8 +108,8 @@ static double new_mu(lmm_variable_t var) double mu_i = 0.0; double sigma_i = 0.0; - for (int j = 0; j < var->cnsts_number; j++) { - sigma_i += (var->cnsts[j].constraint)->lambda; + for (s_lmm_element_t const& elem : var->cnsts) { + sigma_i += elem.constraint->lambda; } mu_i = var->func_fp(var, var->bound) - sigma_i; if (mu_i < 0.0) @@ -124,8 +133,8 @@ static double dual_objective(xbt_swag_t var_list, xbt_swag_t cnst_list) if (not var->sharing_weight) break; - for (int j = 0; j < var->cnsts_number; j++) - sigma_i += (var->cnsts[j].constraint)->lambda; + for (s_lmm_element_t const& elem : var->cnsts) + sigma_i += elem.constraint->lambda; if (var->bound > 0) sigma_i += var->mu; @@ -154,38 +163,23 @@ void lagrange_solve(lmm_system_t sys) double dichotomy_min_error = 1e-14; double overall_modification = 1; - /* Variables to manipulate the data structure proposed to model the maxmin fairness. See documentation for details. */ - xbt_swag_t cnst_list = nullptr; - void *_cnst; - lmm_constraint_t cnst = nullptr; - - xbt_swag_t var_list = nullptr; - void *_var; - lmm_variable_t var = nullptr; - - /* Auxiliary variables. */ - int iteration = 0; - double tmp = 0; - int i; - double obj; - double new_obj; - XBT_DEBUG("Iterative method configuration snapshot =====>"); XBT_DEBUG("#### Maximum number of iterations : %d", max_iterations); XBT_DEBUG("#### Minimum error tolerated : %e", epsilon_min_error); XBT_DEBUG("#### Minimum error tolerated (dichotomy) : %e", dichotomy_min_error); if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { - lmm_print(sys); + sys->print(); } if (not sys->modified) return; /* Initialize lambda. */ - cnst_list = &(sys->active_constraint_set); + xbt_swag_t cnst_list = &(sys->active_constraint_set); + void* _cnst; xbt_swag_foreach(_cnst, cnst_list) { - cnst = (lmm_constraint_t)_cnst; + lmm_constraint_t cnst = (lmm_constraint_t)_cnst; cnst->lambda = 1.0; cnst->new_lambda = 2.0; XBT_DEBUG("#### cnst(%p)->lambda : %e", cnst, cnst->lambda); @@ -195,40 +189,37 @@ void lagrange_solve(lmm_system_t sys) * Initialize the var list variable with only the active variables. * Associate an index in the swag variables. Initialize mu. */ - var_list = &(sys->variable_set); - i = 0; + xbt_swag_t var_list = &(sys->variable_set); + void* _var; xbt_swag_foreach(_var, var_list) { - var = static_cast(_var); - if (not var->sharing_weight) - var->value = 0.0; - else { - int nb = 0; - if (var->bound < 0.0) { - XBT_DEBUG("#### NOTE var(%d) is a boundless variable", i); - var->mu = -1.0; + lmm_variable_t var = static_cast(_var); + if (not var->sharing_weight) + var->value = 0.0; + else { + if (var->bound < 0.0) { + XBT_DEBUG("#### NOTE var(%p) is a boundless variable", var); + var->mu = -1.0; + } else { + var->mu = 1.0; + var->new_mu = 2.0; + } var->value = new_value(var); - } else { - var->mu = 1.0; - var->new_mu = 2.0; - var->value = new_value(var); - } - XBT_DEBUG("#### var(%p) ->weight : %e", var, var->sharing_weight); - XBT_DEBUG("#### var(%p) ->mu : %e", var, var->mu); - XBT_DEBUG("#### var(%p) ->weight: %e", var, var->sharing_weight); - XBT_DEBUG("#### var(%p) ->bound: %e", var, var->bound); - for (i = 0; i < var->cnsts_number; i++) { - if (var->cnsts[i].consumption_weight == 0.0) - nb++; - } - if (nb == var->cnsts_number) - var->value = 1.0; + XBT_DEBUG("#### var(%p) ->weight : %e", var, var->sharing_weight); + XBT_DEBUG("#### var(%p) ->mu : %e", var, var->mu); + XBT_DEBUG("#### var(%p) ->weight: %e", var, var->sharing_weight); + XBT_DEBUG("#### var(%p) ->bound: %e", var, var->bound); + auto weighted = std::find_if(begin(var->cnsts), end(var->cnsts), + [](s_lmm_element_t const& x) { return x.consumption_weight != 0.0; }); + if (weighted == end(var->cnsts)) + var->value = 1.0; } } /* Compute dual objective. */ - obj = dual_objective(var_list, cnst_list); + double obj = dual_objective(var_list, cnst_list); /* While doesn't reach a minimum error or a number maximum of iterations. */ + int iteration = 0; while (overall_modification > epsilon_min_error && iteration < max_iterations) { iteration++; XBT_DEBUG("************** ITERATION %d **************", iteration); @@ -236,16 +227,14 @@ void lagrange_solve(lmm_system_t sys) /* Improve the value of mu_i */ xbt_swag_foreach(_var, var_list) { - var = static_cast(_var); - if (not var->sharing_weight) - break; - if (var->bound >= 0) { + lmm_variable_t var = static_cast(_var); + if (var->sharing_weight && var->bound >= 0) { XBT_DEBUG("Working on var (%p)", var); var->new_mu = new_mu(var); XBT_DEBUG("Updating mu : var->mu (%p) : %1.20f -> %1.20f", var, var->mu, var->new_mu); var->mu = var->new_mu; - new_obj = dual_objective(var_list, cnst_list); + double new_obj = dual_objective(var_list, cnst_list); XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, obj - new_obj); xbt_assert(obj - new_obj >= -epsilon_min_error, "Our gradient sucks! (%1.20f)", obj - new_obj); obj = new_obj; @@ -254,13 +243,13 @@ void lagrange_solve(lmm_system_t sys) /* Improve the value of lambda_i */ xbt_swag_foreach(_cnst, cnst_list) { - cnst = static_cast(_cnst); + lmm_constraint_t cnst = static_cast(_cnst); XBT_DEBUG("Working on cnst (%p)", cnst); cnst->new_lambda = dichotomy(cnst->lambda, partial_diff_lambda, cnst, dichotomy_min_error); XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", cnst, cnst->lambda, cnst->new_lambda); cnst->lambda = cnst->new_lambda; - new_obj = dual_objective(var_list, cnst_list); + double new_obj = dual_objective(var_list, cnst_list); XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, obj - new_obj); xbt_assert(obj - new_obj >= -epsilon_min_error, "Our gradient sucks! (%1.20f)", obj - new_obj); obj = new_obj; @@ -270,13 +259,13 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("-------------- Check convergence ----------"); overall_modification = 0; xbt_swag_foreach(_var, var_list) { - var = static_cast(_var); + lmm_variable_t var = static_cast(_var); if (var->sharing_weight <= 0) var->value = 0.0; else { - tmp = new_value(var); + double tmp = new_value(var); - overall_modification = MAX(overall_modification, fabs(var->value - tmp)); + overall_modification = std::max(overall_modification, fabs(var->value - tmp)); var->value = tmp; XBT_DEBUG("New value of var (%p) = %e, overall_modification = %e", var, var->value, overall_modification); @@ -299,7 +288,7 @@ void lagrange_solve(lmm_system_t sys) } if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { - lmm_print(sys); + sys->print(); } } @@ -433,8 +422,8 @@ static double partial_diff_lambda(double lambda, void *param_cnst) double sigma_i = 0.0; // Compute sigma_i - for (int j = 0; j < var->cnsts_number; j++) { - sigma_i += (var->cnsts[j].constraint)->lambda; + for (s_lmm_element_t const& elem : var->cnsts) { + sigma_i += elem.constraint->lambda; } //add mu_i if this flow has a RTT constraint associated @@ -479,8 +468,6 @@ void lmm_set_default_protocol_function(double (*func_f) (lmm_variable_t var, dou * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ */ -#define VEGAS_SCALING 1000.0 - double func_vegas_f(lmm_variable_t var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); @@ -504,7 +491,6 @@ double func_vegas_fpi(lmm_variable_t var, double x) * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ */ -#define RENO_SCALING 1.0 double func_reno_f(lmm_variable_t var, double x) { xbt_assert(var->sharing_weight > 0.0, "Don't call me with stupid values!"); @@ -536,7 +522,6 @@ double func_reno_fpi(lmm_variable_t var, double x) * Therefore: $fp(x) = 2/(Weight*x + 2) * Therefore: $fpi(x) = (2*Weight)/x - 4 */ -#define RENO2_SCALING 1.0 double func_reno2_f(lmm_variable_t var, double x) { xbt_assert(var->sharing_weight > 0.0, "Don't call me with stupid values!"); @@ -561,3 +546,5 @@ double func_reno2_fpi(lmm_variable_t var, double x) res_fpi = RENO2_SCALING * (-3.0 * tmp + sqrt(res_fpi)) / (4.0 * tmp); return res_fpi; } +} +}