X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/a8e926e86ef601549e7f37b4b2b1d210dc6dd5f1..d3d060aead49b9969ac0e9cb83d58b7959925460:/src/surf/lagrange.c?ds=sidebyside diff --git a/src/surf/lagrange.c b/src/surf/lagrange.c index c6ad3d8f35..7cf03324c6 100644 --- a/src/surf/lagrange.c +++ b/src/surf/lagrange.c @@ -1,10 +1,7 @@ /* $Id$ */ - /* Copyright (c) 2007 Arnaud Legrand, Pedro Velho. All rights reserved. */ - /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ - /* * Modelling the proportional fairness using the Lagrange Optimization * Approach. For a detailed description see: @@ -21,125 +18,354 @@ #endif -XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, - "Logging specific to SURF (lagrange)"); +XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, "Logging specific to SURF (lagrange)"); + +/* + * Local prototypes to implement the lagrangian optimization with optimal step, also called dicotomi. + */ +//solves the proportional fairness using a lagrange optimizition with dicotomi step +void lagrange_solve (lmm_system_t sys); +//computes the value of the dicotomi using a initial values, init, with a specific variable or constraint +double dicotomi(double init, double diff(double, void*), void *var_cnst, double min_error); +//computes the value of the differential of variable param_var applied to mu +double partial_diff_mu (double mu, void * param_var); +//computes the value of the differential of constraint param_cnst applied to lambda +double partial_diff_lambda (double lambda, void * param_cnst); + void lagrange_solve(lmm_system_t sys) { - /* * Lagrange Variables. */ - double epsilon_min_error = 1e-6; + int max_iterations= 10000; + double epsilon_min_error = 1e-4; + double dicotomi_min_error = 1e-8; double overall_error = 1; - double sigma_step = 0.5e-3; - double capacity_error, bound_error; - double sum_capacity = 0; - double sum_bound = 0; - /* * Variables to manipulate the data structure proposed to model the maxmin * fairness. See docummentation for more details. */ - lmm_element_t elem = NULL; - xbt_swag_t cnst_list = NULL; - lmm_constraint_t cnst1 = NULL; - lmm_constraint_t cnst2 = NULL; - xbt_swag_t var_list = NULL; - xbt_swag_t elem_list = NULL; - lmm_variable_t var1 = NULL; - lmm_variable_t var2 = NULL; + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + xbt_swag_t cnst_list = NULL; + lmm_constraint_t cnst = NULL; + + xbt_swag_t var_list = NULL; + lmm_variable_t var = NULL; /* * Auxiliar variables. */ int iteration=0; - int max_iterations=100000; - double mu_partial=0; - double lambda_partial=0; + double tmp=0; + int i; + + DEBUG0("Iterative method configuration snapshot =====>"); + DEBUG1("#### Maximum number of iterations : %d", max_iterations); + DEBUG1("#### Minimum error tolerated : %e", epsilon_min_error); + DEBUG1("#### Minimum error tolerated (dicotomi) : %e", dicotomi_min_error); if ( !(sys->modified)) return; - + /* * Initialize the var list variable with only the active variables. - * Associate an index in the swag variables and compute the sum - * of all round trip time constraints. May change depending on the - * function f(x). + * Associate an index in the swag variables. Initialize mu. */ - var_list = &(sys->active_variable_set); + var_list = &(sys->variable_set); i=0; - xbt_swag_foreach(var1, var_list) { - if(var1->weight != 0.0){ - i++; - sum_bound += var1->bound; + xbt_swag_foreach(var, var_list) { + if((var->bound > 0.0) || (var->weight <= 0.0)){ + DEBUG1("#### NOTE var(%d) is a boundless variable", i); + var->mu = -1.0; + } else{ + var->mu = 1.0; + var->new_mu = 2.0; } + DEBUG2("#### var(%d)->mu : %e", i, var->mu); + DEBUG2("#### var(%d)->weight: %e", i, var->weight); + i++; } /* - * Compute the sum of all capacities constraints. May change depending - * on the function f(x). + * Initialize lambda. */ cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { -  sum_capacity += cnst1->value; + xbt_swag_foreach(cnst, cnst_list){ + cnst->lambda = 1.0; + cnst->new_lambda = 2.0; + DEBUG2("#### cnst(%p)->lambda : %e", cnst, cnst->lambda); } - /* * While doesn't reach a minimun error or a number maximum of iterations. */ while(overall_error > epsilon_min_error && iteration < max_iterations){ - + iteration++; + DEBUG1("************** ITERATION %d **************", iteration); - - - /* d Dual - * Compute the value of ----------- (\lambda^k, \mu^k) this portion - * d \mu_i^k - * of code depends on function f(x). + /* + * Compute the value of mu_i */ - bound_error = 0; - xbt_swag_foreach(var1, var_list) { - - mu_partial = 0; - - //for each link elem1 that uses flow of variable var1 do - //mu_partial += elem1->weight + var1->bound; - - mu_partial = - (1 / mu_partial) + sum_bound; - - var1->bound = var1->bound + sigma_step * mu_partial; + //forall mu_i in mu_1, mu_2, ..., mu_n + xbt_swag_foreach(var, var_list) { + if((var->bound >= 0) && (var->weight > 0) ){ + var->new_mu = dicotomi(var->mu, partial_diff_mu, var, dicotomi_min_error); + if(var->new_mu < 0) var->new_mu = 0; + var->mu = var->new_mu; + } } - - /* - * Verify for each capacity constraint (lambda) the error associated. + * Compute the value of lambda_i */ - xbt_swag_foreach(cnst1, cnst_list) { - cnst2 = xbt_swag_getNext(cnst1,(var_list)->offset); - if(cnst2 != NULL){ -  capacity_error += fabs(cnst1->value - cnsts2->value); - } + //forall lambda_i in lambda_1, lambda_2, ..., lambda_n + xbt_swag_foreach(cnst, cnst_list) { + cnst->new_lambda = dicotomi(cnst->lambda, partial_diff_lambda, cnst, dicotomi_min_error); + DEBUG2("====> cnst->lambda (%p) = %e", cnst, cnst->new_lambda); + cnst->lambda = cnst->new_lambda; } + +/* /\* */ +/* * Update values of mu and lambda */ +/* *\/ */ +/* //forall mu_i in mu_1, mu_2, ..., mu_n */ +/* xbt_swag_foreach(var, var_list) { */ +/* var->mu = var->new_mu ; */ +/* } */ + +/* //forall lambda_i in lambda_1, lambda_2, ..., lambda_n */ +/* xbt_swag_foreach(cnst, cnst_list) { */ +/* cnst->lambda = cnst->new_lambda; */ +/* } */ + /* - * Verify for each variable the error of round trip time constraint (mu). + * Now computes the values of each variable (\rho) based on + * the values of \lambda and \mu. */ - bound_error = 0; - xbt_swag_foreach(var1, var_list) { - var2 = xbt_swag_getNext(var1,(var_list)->offset); - if(var2 != NULL){ - bound_error += fabs( var2->weight - var1->weight); + overall_error=0; + xbt_swag_foreach(var, var_list) { + if(var->weight <=0) + var->value = 0.0; + else { + tmp = 0; + for(i=0; icnsts_number; i++){ + tmp += (var->cnsts[i].constraint)->lambda; + if(var->bound > 0) + tmp+=var->mu; + } + + if(tmp == 0.0) + WARN0("CAUTION: division by 0.0"); + + //computes de overall_error + if(overall_error < fabs(var->value - 1.0/tmp)){ + overall_error = fabs(var->value - 1.0/tmp); + } + var->value = 1.0 / tmp; } + DEBUG4("======> value of var %s (%p) = %e, overall_error = %e", (char *)var->id, var, var->value, overall_error); } + } - overall_error = capacity_error + bound_error; + + //verify the KKT property for each link + xbt_swag_foreach(cnst, cnst_list){ + tmp = 0; + elem_list = &(cnst->element_set); + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if(var->weight<=0) continue; + tmp += var->value; + } + + tmp = tmp - cnst->bound; + + if(tmp > epsilon_min_error){ + WARN4("The link %s(%p) doesn't match the KKT property, expected less than %e and got %e", (char *)cnst->id, cnst, epsilon_min_error, tmp); + } + } + + //verify the KKT property of each flow + xbt_swag_foreach(var, var_list){ + if(var->bound <= 0 || var->weight <= 0) continue; + tmp = 0; + tmp = (var->value - var->bound); + + if(tmp != 0 || var->mu != 0){ + WARN4("The flow %s(%p) doesn't match the KKT property, value expected (=0) got (lambda=%e) (sum_rho=%e)", (char *)var->id, var, var->mu, tmp); + } + + } + + if(overall_error <= epsilon_min_error){ + DEBUG1("The method converge in %d iterations.", iteration); + }else{ + WARN1("Method reach %d iterations, which is the maxmimun number of iterations allowed.", iteration); + } } + +/* + * Returns a double value corresponding to the result of a dicotomi proccess with + * respect to a given variable/constraint (\mu in the case of a variable or \lambda in + * case of a constraint) and a initial value init. + * + * @param init initial value for \mu or \lambda + * @param diff a function that computes the differential of with respect a \mu or \lambda + * @param var_cnst a pointer to a variable or constraint + * @param min_erro a minimun error tolerated + * + * @return a double correponding to the result of the dicotomial process + */ +double dicotomi(double init, double diff(double, void*), void *var_cnst, double min_error){ + double min, max; + double overall_error; + double middle; + double min_diff, max_diff, middle_diff; + + min = max = init; + + if(init == 0){ + min = max = 1; + } + + min_diff = max_diff = middle_diff = 0.0; + overall_error = 1; + + if(diff(0.0, var_cnst) > 0){ + DEBUG1("====> returning 0.0 (diff = %e)", diff(0.0, var_cnst)); + return 0.0; + } + + DEBUG0("====> not detected positive diff in 0"); + + while(overall_error > min_error){ + + min_diff = diff(min, var_cnst); + max_diff = diff(max, var_cnst); + + DEBUG2("DICOTOMI ===> min = %e , max = %e", min, max); + DEBUG2("DICOTOMI ===> diffmin = %e , diffmax = %e", min_diff, max_diff); + + if( min_diff > 0 && max_diff > 0 ){ + if(min == max){ + min = min / 2.0; + }else{ + max = min; + } + }else if( min_diff < 0 && max_diff < 0 ){ + if(min == max){ + max = max * 2.0; + }else{ + min = max; + } + }else if( min_diff < 0 && max_diff > 0 ){ + middle = (max + min)/2.0; + middle_diff = diff(middle, var_cnst); + overall_error = fabs(min - max); + + if( middle_diff < 0 ){ + min = middle; + }else if( middle_diff > 0 ){ + max = middle; + }else{ + WARN0("Found an optimal solution with 0 error!"); + overall_error = 0; + return middle; + } + + }else if(min_diff == 0){ + return min; + }else if(max_diff == 0){ + return max; + }else if(min_diff > 0 && max_diff < 0){ + WARN0("The impossible happened, partial_diff(min) > 0 && partial_diff(max) < 0"); + } + } + + + DEBUG1("====> returning %e", (min+max)/2.0); + return ((min+max)/2.0); +} + +/* + * + */ +double partial_diff_mu(double mu, void *param_var){ + double mu_partial=0.0; + lmm_variable_t var = (lmm_variable_t)param_var; + int i; + + //for each link with capacity cnsts[i] that uses flow of variable var do + for(i=0; icnsts_number; i++) + mu_partial += (var->cnsts[i].constraint)->lambda + mu; + + mu_partial = (-1.0/mu_partial) + var->bound; + + return mu_partial; +} + +/* + * + */ +double partial_diff_lambda(double lambda, void *param_cnst){ + + double tmp=0.0; + int i; + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + lmm_variable_t var = NULL; + lmm_constraint_t cnst= (lmm_constraint_t) param_cnst; + double lambda_partial=0.0; + + + elem_list = &(cnst->element_set); + + + DEBUG2("Computting diff of cnst (%p) %s", cnst, (char *)cnst->id); + + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if(var->weight<=0) continue; + + tmp = 0; + + //DEBUG2("===> Variable (%p) %s", var, (char *)var->id); + + for(i=0; icnsts_number; i++){ + tmp += (var->cnsts[i].constraint)->lambda; + //DEBUG1("======> lambda %e + ", (var->cnsts[i].constraint)->lambda); + } + + if(var->bound > 0) + tmp += var->mu; + + + //DEBUG2("======> lambda - %e + %e ", cnst->lambda, lambda); + + tmp = tmp - cnst->lambda + lambda; + + //avoid a disaster value of lambda + //if(tmp==0) tmp = 10e-8; + + lambda_partial += (-1.0/tmp); + + //DEBUG1("======> %e ", (-1.0/tmp)); + } + + lambda_partial += cnst->bound; + + //DEBUG1("===> %e ", lambda_partial); + + return lambda_partial; +} + +