X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/8e70cf8c19e3bc258c6ee36d9a5a917008451337..25137bd6bc44e1260223b141b46cedd6e7ef1da0:/src/surf/lagrange.c diff --git a/src/surf/lagrange.c b/src/surf/lagrange.c index 48cd3277f8..9fc36c9e1e 100644 --- a/src/surf/lagrange.c +++ b/src/surf/lagrange.c @@ -1,6 +1,5 @@ -/* $Id$ */ - -/* Copyright (c) 2007 Arnaud Legrand, Pedro Velho. All rights reserved. */ +/* Copyright (c) 2007, 2008, 2009, 2010. The SimGrid Team. + * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ @@ -12,7 +11,6 @@ */ #include "xbt/log.h" #include "xbt/sysdep.h" -#include "xbt/mallocator.h" #include "maxmin_private.h" #include @@ -20,323 +18,641 @@ #include #endif - XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, - "Logging specific to SURF (lagrange)"); + "Logging specific to SURF (lagrange)"); +XBT_LOG_NEW_SUBCATEGORY(surf_lagrange_dichotomy, surf_lagrange, + "Logging specific to SURF (lagrange dichotomy)"); + +#define SHOW_EXPR(expr) XBT_CDEBUG(surf_lagrange,#expr " = %g",expr); -XBT_LOG_NEW_SUBCATEGORY(surf_writelambda, surf, - "Generates the lambda.in file. WARNING: the size of this file might be a few GBs."); +double (*func_f_def) (lmm_variable_t, double); +double (*func_fp_def) (lmm_variable_t, double); +double (*func_fpi_def) (lmm_variable_t, double); +/* + * Local prototypes to implement the lagrangian optimization with optimal step, also called dichotomy. + */ +//solves the proportional fairness using a lagrange optimizition with dichotomy step void lagrange_solve(lmm_system_t sys); +//computes the value of the dichotomy using a initial values, init, with a specific variable or constraint +static double dichotomy(double init, double diff(double, void *), + void *var_cnst, double min_error); +//computes the value of the differential of variable param_var applied to mu +static double partial_diff_mu(double mu, void *param_var); +//computes the value of the differential of constraint param_cnst applied to lambda +static double partial_diff_lambda(double lambda, void *param_cnst); + +static int __check_feasible(xbt_swag_t cnst_list, xbt_swag_t var_list, + int warn) +{ + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + lmm_constraint_t cnst = NULL; + lmm_variable_t var = NULL; -void lagrange_solve(lmm_system_t sys) + double tmp; + + xbt_swag_foreach(cnst, cnst_list) { + tmp = 0; + elem_list = &(cnst->element_set); + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if (var->weight <= 0) + continue; + tmp += var->value; + } + + if (double_positive(tmp - cnst->bound)) { + if (warn) + XBT_WARN + ("The link (%p) is over-used. Expected less than %f and got %f", + cnst, cnst->bound, tmp); + return 0; + } + XBT_DEBUG + ("Checking feasability for constraint (%p): sat = %f, lambda = %f ", + cnst, tmp - cnst->bound, cnst->lambda); + } + + xbt_swag_foreach(var, var_list) { + if (!var->weight) + break; + if (var->bound < 0) + continue; + XBT_DEBUG("Checking feasability for variable (%p): sat = %f mu = %f", var, + var->value - var->bound, var->mu); + + if (double_positive(var->value - var->bound)) { + if (warn) + XBT_WARN + ("The variable (%p) is too large. Expected less than %f and got %f", + var, var->bound, var->value); + return 0; + } + } + return 1; +} + +static double new_value(lmm_variable_t var) +{ + double tmp = 0; + int i; + + for (i = 0; i < var->cnsts_number; i++) { + tmp += (var->cnsts[i].constraint)->lambda; + } + if (var->bound > 0) + tmp += var->mu; + XBT_DEBUG("\t Working on var (%p). cost = %e; Weight = %e", var, tmp, + var->weight); + //uses the partial differential inverse function + return var->func_fpi(var, tmp); +} + +static double new_mu(lmm_variable_t var) { + double mu_i = 0.0; + double sigma_i = 0.0; + int j; + + for (j = 0; j < var->cnsts_number; j++) { + sigma_i += (var->cnsts[j].constraint)->lambda; + } + mu_i = var->func_fp(var, var->bound) - sigma_i; + if (mu_i < 0.0) + return 0.0; + return mu_i; +} +static double dual_objective(xbt_swag_t var_list, xbt_swag_t cnst_list) +{ + lmm_constraint_t cnst = NULL; + lmm_variable_t var = NULL; + + double obj = 0.0; + + xbt_swag_foreach(var, var_list) { + double sigma_i = 0.0; + int j; + + if (!var->weight) + break; + + for (j = 0; j < var->cnsts_number; j++) + sigma_i += (var->cnsts[j].constraint)->lambda; + + if (var->bound > 0) + sigma_i += var->mu; + + XBT_DEBUG("var %p : sigma_i = %1.20f", var, sigma_i); + + obj += var->func_f(var, var->func_fpi(var, sigma_i)) - + sigma_i * var->func_fpi(var, sigma_i); + + if (var->bound > 0) + obj += var->mu * var->bound; + } + + xbt_swag_foreach(cnst, cnst_list) + obj += cnst->lambda * cnst->bound; + + return obj; +} + +void lagrange_solve(lmm_system_t sys) +{ /* * Lagrange Variables. */ - double epsilon_min_error = 1e-6; - double overall_error = 1; - double sigma_step = 1e-3; - double capacity_error=0, bound_error=0; - + int max_iterations = 100; + double epsilon_min_error = MAXMIN_PRECISION; + double dichotomy_min_error = 1e-14; + double overall_modification = 1; /* * Variables to manipulate the data structure proposed to model the maxmin * fairness. See docummentation for more details. */ - xbt_swag_t elem_list = NULL; - lmm_element_t elem1 = NULL; - lmm_element_t elem = NULL; - xbt_swag_t cnst_list = NULL; - lmm_constraint_t cnst1 = NULL; - lmm_constraint_t cnst2 = NULL; lmm_constraint_t cnst = NULL; - double sum; + xbt_swag_t var_list = NULL; - lmm_variable_t var1 = NULL; lmm_variable_t var = NULL; - lmm_variable_t var2 = NULL; - /* * Auxiliar variables. */ - int iteration=0; - int max_iterations= 1000; - double mu_partial=0; - double lambda_partial=0; - double tmp=0; - int i,j; - FILE *gnuplot_file=NULL; - char print_buf[1024]; - char *trace_buf=xbt_malloc0(sizeof(char)); - - + int iteration = 0; + double tmp = 0; + int i; + double obj, new_obj; + + XBT_DEBUG("Iterative method configuration snapshot =====>"); + XBT_DEBUG("#### Maximum number of iterations : %d", max_iterations); + XBT_DEBUG("#### Minimum error tolerated : %e", + epsilon_min_error); + XBT_DEBUG("#### Minimum error tolerated (dichotomy) : %e", + dichotomy_min_error); + + if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { + lmm_print(sys); + } + if (!(sys->modified)) + return; + /* + * Initialize lambda. + */ + cnst_list = &(sys->active_constraint_set); + xbt_swag_foreach(cnst, cnst_list) { + cnst->lambda = 1.0; + cnst->new_lambda = 2.0; + XBT_DEBUG("#### cnst(%p)->lambda : %e", cnst, cnst->lambda); + } - if ( !(sys->modified)) - return; - /* * Initialize the var list variable with only the active variables. * Associate an index in the swag variables. Initialize mu. */ var_list = &(sys->variable_set); - i=0; - xbt_swag_foreach(var1, var_list) { - if((var1->bound > 0.0) || (var1->weight <= 0.0)){ - DEBUG1("## NOTE var1(%d) is a boundless variable", i); - var1->mu = -1.0; - } else - var1->mu = 1.0; - DEBUG2("## var1(%d)->mu: %e", i, var1->mu); - DEBUG2("## var1(%d)->weight: %e", i, var1->weight); - i++; + i = 0; + xbt_swag_foreach(var, var_list) { + if (!var->weight) + var->value = 0.0; + else { + int nb = 0; + if (var->bound < 0.0) { + XBT_DEBUG("#### NOTE var(%d) is a boundless variable", i); + var->mu = -1.0; + var->value = new_value(var); + } else { + var->mu = 1.0; + var->new_mu = 2.0; + var->value = new_value(var); + } + XBT_DEBUG("#### var(%p) ->weight : %e", var, var->weight); + XBT_DEBUG("#### var(%p) ->mu : %e", var, var->mu); + XBT_DEBUG("#### var(%p) ->weight: %e", var, var->weight); + XBT_DEBUG("#### var(%p) ->bound: %e", var, var->bound); + for (i = 0; i < var->cnsts_number; i++) { + if (var->cnsts[i].value == 0.0) + nb++; + } + if (nb == var->cnsts_number) + var->value = 1.0; + } } /* - * Initialize lambda. + * Compute dual objective. */ - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { - cnst1->lambda = 1.0; - DEBUG2("## cnst1(%p)->lambda: %e", cnst1, cnst1->lambda); - } - - if(XBT_LOG_ISENABLED(surf_writelambda, xbt_log_priority_debug)) { - gnuplot_file = fopen("lambda.in", "w"); - fprintf(gnuplot_file, "# iteration lambda1 lambda2 lambda3 ... lambdaP"); - } + obj = dual_objective(var_list, cnst_list); - /* * While doesn't reach a minimun error or a number maximum of iterations. */ - while(overall_error > epsilon_min_error && iteration < max_iterations){ - iteration++; - /* d Dual - * Compute the value of ----------- (\lambda^k, \mu^k) this portion - * d \mu_i^k - * of code depends on function f(x). - */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - mu_partial = 0; - if((var1->bound > 0) || (var1->weight <=0) ){ - //for each link with capacity cnsts[i] that uses flow of variable var1 do - for(i=0; icnsts_number; i++) - mu_partial += (var1->cnsts[i].constraint)->lambda; - - mu_partial = -1.0 / mu_partial + var1->bound; - var1->new_mu = var1->mu - sigma_step * mu_partial; - /* Assert that var1->new_mu is positive */ - } - } + while (overall_modification > epsilon_min_error + && iteration < max_iterations) { +/* int dual_updated=0; */ - if(XBT_LOG_ISENABLED(surf_writelambda, xbt_log_priority_debug)) { - fprintf(gnuplot_file, "\n%d ", iteration); - } + iteration++; + XBT_DEBUG("************** ITERATION %d **************", iteration); + XBT_DEBUG("-------------- Gradient Descent ----------"); - /* d Dual - * Compute the value of ------------- (\lambda^k, \mu^k) this portion - * d \lambda_i^k - * of code depends on function f(x). + /* + * Improve the value of mu_i */ - - DEBUG1("######Lambda partial at iteration %d", iteration); - cnst_list=&(sys->active_constraint_set); - j=0; - xbt_swag_foreach(cnst1, cnst_list) { - j++; - - lambda_partial = 0; - - elem_list = &(cnst1->element_set); - xbt_swag_foreach(elem1, elem_list) { - lambda_partial = 0; - - var2 = elem1->variable; - - if(var2->weight<=0) continue; - - tmp = 0; - - //for each link with capacity cnsts[i] that uses flow of variable var1 do - if(var2->bound > 0) - tmp += var2->mu; - - for(i=0; icnsts_number; i++) - tmp += (var2->cnsts[i].constraint)->lambda; - - lambda_partial += -1 / tmp; + xbt_swag_foreach(var, var_list) { + if (!var->weight) + break; + if (var->bound >= 0) { + XBT_DEBUG("Working on var (%p)", var); + var->new_mu = new_mu(var); +/* dual_updated += (fabs(var->new_mu-var->mu)>dichotomy_min_error); */ +/* XBT_DEBUG("dual_updated (%d) : %1.20f",dual_updated,fabs(var->new_mu-var->mu)); */ + XBT_DEBUG("Updating mu : var->mu (%p) : %1.20f -> %1.20f", var, + var->mu, var->new_mu); + var->mu = var->new_mu; + + new_obj = dual_objective(var_list, cnst_list); + XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, + obj - new_obj); + xbt_assert(obj - new_obj >= -epsilon_min_error, + "Our gradient sucks! (%1.20f)", obj - new_obj); + obj = new_obj; } + } - lambda_partial += cnst1->bound; - - DEBUG2("###########Lambda partial %p : %e", cnst1, lambda_partial); - - cnst1->new_lambda = cnst1->lambda - sigma_step * lambda_partial; - - if(XBT_LOG_ISENABLED(surf_writelambda, xbt_log_priority_debug)) { - fprintf(gnuplot_file, " %f", cnst1->lambda); - } + /* + * Improve the value of lambda_i + */ + xbt_swag_foreach(cnst, cnst_list) { + XBT_DEBUG("Working on cnst (%p)", cnst); + cnst->new_lambda = + dichotomy(cnst->lambda, partial_diff_lambda, cnst, + dichotomy_min_error); +/* dual_updated += (fabs(cnst->new_lambda-cnst->lambda)>dichotomy_min_error); */ +/* XBT_DEBUG("dual_updated (%d) : %1.20f",dual_updated,fabs(cnst->new_lambda-cnst->lambda)); */ + XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", + cnst, cnst->lambda, cnst->new_lambda); + cnst->lambda = cnst->new_lambda; + + new_obj = dual_objective(var_list, cnst_list); + XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, + obj - new_obj); + xbt_assert(obj - new_obj >= -epsilon_min_error, + "Our gradient sucks! (%1.20f)", obj - new_obj); + obj = new_obj; } - /* Updating lambda's and mu's */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) - if(!((var1->bound > 0.0) || (var1->weight <= 0.0))) - var1->mu = var1->new_mu; - - - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) - cnst1->lambda = cnst1->new_lambda; - /* * Now computes the values of each variable (\rho) based on * the values of \lambda and \mu. */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - if(var1->weight <=0) - var1->value = 0.0; + XBT_DEBUG("-------------- Check convergence ----------"); + overall_modification = 0; + xbt_swag_foreach(var, var_list) { + if (var->weight <= 0) + var->value = 0.0; else { - tmp = 0; - if(var1->bound >0) - tmp+=var1->mu; - for(i=0; icnsts_number; i++) - tmp += (var1->cnsts[i].constraint)->lambda; + tmp = new_value(var); + + overall_modification = + MAX(overall_modification, fabs(var->value - tmp)); - var1->value = 1 / tmp; + var->value = tmp; + XBT_DEBUG("New value of var (%p) = %e, overall_modification = %e", + var, var->value, overall_modification); } - - - DEBUG2("var1->value (id=%s) : %e", (char *)var1->id, var1->value); } - /* Printing Objective */ - var_list = &(sys->variable_set); - sprintf(print_buf,"MAX-MIN ( "); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - xbt_swag_foreach(var, var_list) { - sprintf(print_buf,"'%p'(%f) ",var,var->weight); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); + XBT_DEBUG("-------------- Check feasability ----------"); + if (!__check_feasible(cnst_list, var_list, 0)) + overall_modification = 1.0; + XBT_DEBUG("Iteration %d: overall_modification : %f", iteration, + overall_modification); +/* if(!dual_updated) { */ +/* XBT_WARN("Could not improve the convergence at iteration %d. Drop it!",iteration); */ +/* break; */ +/* } */ } - sprintf(print_buf,")"); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - DEBUG1("%s",trace_buf); - trace_buf[0]='\000'; - /* Printing Constraints */ - cnst_list = &(sys->active_constraint_set); - xbt_swag_foreach(cnst, cnst_list) { - sum=0.0; - elem_list = &(cnst->element_set); - sprintf(print_buf,"\t"); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - xbt_swag_foreach(elem, elem_list) { - sprintf(print_buf,"%f.'%p'(%f) + ",elem->value, - elem->variable,elem->variable->value); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - sum += elem->value * elem->variable->value; - } - sprintf(print_buf,"0 <= %f ('%p')",cnst->bound,cnst); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - - if(!cnst->shared) { - sprintf(print_buf," [MAX-Constraint]"); - trace_buf = xbt_realloc(trace_buf,strlen(trace_buf)+strlen(print_buf)+1); - strcat(trace_buf, print_buf); - } - DEBUG1("%s",trace_buf); - trace_buf[0]='\000'; - if(!(sum<=cnst->bound)) - DEBUG3("Incorrect value (%f is not smaller than %f): %g", - sum,cnst->bound,sum-cnst->bound); + __check_feasible(cnst_list, var_list, 1); + + if (overall_modification <= epsilon_min_error) { + XBT_DEBUG("The method converges in %d iterations.", iteration); } + if (iteration >= max_iterations) { + XBT_DEBUG + ("Method reach %d iterations, which is the maximum number of iterations allowed.", + iteration); + } +/* XBT_INFO("Method converged after %d iterations", iteration); */ - /* Printing Result */ - xbt_swag_foreach(var, var_list) { - if(var->bound>0) { - DEBUG4("'%p'(%f) : %f (<=%f)",var,var->weight,var->value, var->bound); - if(var->value<=var->bound) - DEBUG0("Incorrect value"); - } - else - DEBUG3("'%p'(%f) : %f",var,var->weight,var->value); + if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { + lmm_print(sys); } +} +/* + * Returns a double value corresponding to the result of a dichotomy proccess with + * respect to a given variable/constraint (\mu in the case of a variable or \lambda in + * case of a constraint) and a initial value init. + * + * @param init initial value for \mu or \lambda + * @param diff a function that computes the differential of with respect a \mu or \lambda + * @param var_cnst a pointer to a variable or constraint + * @param min_erro a minimun error tolerated + * + * @return a double correponding to the result of the dichotomyal process + */ +static double dichotomy(double init, double diff(double, void *), + void *var_cnst, double min_error) +{ + double min, max; + double overall_error; + double middle; + double min_diff, max_diff, middle_diff; + double diff_0 = 0.0; + min = max = init; - /* - * Verify for each capacity constraint (lambda) the error associated. - */ - capacity_error = 0; - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { - cnst2 = xbt_swag_getNext(cnst1,(var_list)->offset); - if(cnst2 != NULL){ - capacity_error += fabs( cnst1->lambda - cnst2->lambda ); - } - } + XBT_IN(""); - /* - * Verify for each variable the error of round trip time constraint (mu). - */ - bound_error = 0; - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - var2 = xbt_swag_getNext(var1,(var_list)->offset); - if(var2 != NULL){ - bound_error += fabs( var2->mu - var1->mu); + if (init == 0.0) { + min = max = 0.5; + } + + min_diff = max_diff = middle_diff = 0.0; + overall_error = 1; + + if ((diff_0 = diff(1e-16, var_cnst)) >= 0) { + XBT_CDEBUG(surf_lagrange_dichotomy, "returning 0.0 (diff = %e)", diff_0); + XBT_OUT(); + return 0.0; + } + + min_diff = diff(min, var_cnst); + max_diff = diff(max, var_cnst); + + while (overall_error > min_error) { + XBT_CDEBUG(surf_lagrange_dichotomy, + "[min, max] = [%1.20f, %1.20f] || diffmin, diffmax = %1.20f, %1.20f", + min, max, min_diff, max_diff); + + if (min_diff > 0 && max_diff > 0) { + if (min == max) { + XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing min"); + min = min / 2.0; + min_diff = diff(min, var_cnst); + } else { + XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing max"); + max = min; + max_diff = min_diff; + } + } else if (min_diff < 0 && max_diff < 0) { + if (min == max) { + XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing max"); + max = max * 2.0; + max_diff = diff(max, var_cnst); + } else { + XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); + min = max; + min_diff = max_diff; + } + } else if (min_diff < 0 && max_diff > 0) { + middle = (max + min) / 2.0; + XBT_CDEBUG(surf_lagrange_dichotomy, "Trying (max+min)/2 : %1.20f", + middle); + + if ((min == middle) || (max == middle)) { + XBT_CWARN(surf_lagrange_dichotomy, + "Cannot improve the convergence! min=max=middle=%1.20f, diff = %1.20f." + " Reaching the 'double' limits. Maybe scaling your function would help ([%1.20f,%1.20f]).", + min, max - min, min_diff, max_diff); + break; } + middle_diff = diff(middle, var_cnst); + + if (middle_diff < 0) { + XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); + min = middle; + overall_error = max_diff - middle_diff; + min_diff = middle_diff; +/* SHOW_EXPR(overall_error); */ + } else if (middle_diff > 0) { + XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing max"); + max = middle; + overall_error = max_diff - middle_diff; + max_diff = middle_diff; +/* SHOW_EXPR(overall_error); */ + } else { + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } + } else if (min_diff == 0) { + max = min; + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } else if (max_diff == 0) { + min = max; + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } else if (min_diff > 0 && max_diff < 0) { + XBT_CWARN(surf_lagrange_dichotomy, + "The impossible happened, partial_diff(min) > 0 && partial_diff(max) < 0"); + abort(); + } else { + XBT_CWARN(surf_lagrange_dichotomy, + "diffmin (%1.20f) or diffmax (%1.20f) are something I don't know, taking no action.", + min_diff, max_diff); + abort(); } - - overall_error = capacity_error + bound_error; } + XBT_CDEBUG(surf_lagrange_dichotomy, "returning %e", (min + max) / 2.0); + XBT_OUT(); + return ((min + max) / 2.0); +} +static double partial_diff_lambda(double lambda, void *param_cnst) +{ + int j; + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + lmm_variable_t var = NULL; + lmm_constraint_t cnst = (lmm_constraint_t) param_cnst; + double diff = 0.0; + double sigma_i = 0.0; - if(overall_error <= epsilon_min_error){ - DEBUG1("The method converge in %d iterations.", iteration); - }else{ - WARN1("Method reach %d iterations, which is the maxmimun number of iterations allowed.", iteration); - } + XBT_IN(""); + elem_list = &(cnst->element_set); + XBT_CDEBUG(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", cnst); - if(XBT_LOG_ISENABLED(surf_writelambda, xbt_log_priority_debug)) { - fclose(gnuplot_file); - } + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if (var->weight <= 0) + continue; + XBT_CDEBUG(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", + var); + // Initialize the summation variable + sigma_i = 0.0; - /* - * Now computes the values of each variable (\rho) based on - * the values of \lambda and \mu. - */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - tmp = 0; - for(i=0; icnsts_number; i++){ - elem1 = &(var1->cnsts[i]); - tmp += (elem1->constraint)->lambda + var1->mu; + // Compute sigma_i + for (j = 0; j < var->cnsts_number; j++) { + sigma_i += (var->cnsts[j].constraint)->lambda; } - var1->weight = 1 / tmp; - DEBUG2("var1->weight (id=%s) : %e", (char *)var1->id, var1->weight); + //add mu_i if this flow has a RTT constraint associated + if (var->bound > 0) + sigma_i += var->mu; + + //replace value of cnst->lambda by the value of parameter lambda + sigma_i = (sigma_i - cnst->lambda) + lambda; + + diff += -var->func_fpi(var, sigma_i); } + diff += cnst->bound; + + XBT_CDEBUG(surf_lagrange_dichotomy, + "d D/d lambda for cnst (%p) at %1.20f = %1.20f", cnst, lambda, + diff); + XBT_OUT(); + return diff; +} + +/** \brief Attribute the value bound to var->bound. + * + * \param func_fpi inverse of the partial differential of f (f prime inverse, (f')^{-1}) + * + * Set default functions to the ones passed as parameters. This is a polimorfism in C pure, enjoy the roots of programming. + * + */ +void lmm_set_default_protocol_function(double (*func_f) + + + + + + + (lmm_variable_t var, double x), + double (*func_fp) (lmm_variable_t + var, double x), + double (*func_fpi) (lmm_variable_t + var, double x)) +{ + func_f_def = func_f; + func_fp_def = func_fp; + func_fpi_def = func_fpi; +} + + +/**************** Vegas and Reno functions *************************/ +/* + * NOTE for Reno: all functions consider the network + * coeficient (alpha) equal to 1. + */ + +/* + * For Vegas: $f(x) = \alpha D_f\ln(x)$ + * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ + * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ + */ +#define VEGAS_SCALING 1000.0 + +double func_vegas_f(lmm_variable_t var, double x) +{ + xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return VEGAS_SCALING * var->weight * log(x); +} + +double func_vegas_fp(lmm_variable_t var, double x) +{ + xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return VEGAS_SCALING * var->weight / x; +} + +double func_vegas_fpi(lmm_variable_t var, double x) +{ + xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return var->weight / (x / VEGAS_SCALING); +} + +/* + * For Reno: $f(x) = \frac{\sqrt{3/2}}{D_f} atan(\sqrt{3/2}D_f x)$ + * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ + * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ + */ +#define RENO_SCALING 1.0 +double func_reno_f(lmm_variable_t var, double x) +{ + xbt_assert(var->weight > 0.0, "Don't call me with stupid values!"); + + return RENO_SCALING * sqrt(3.0 / 2.0) / var->weight * + atan(sqrt(3.0 / 2.0) * var->weight * x); +} + +double func_reno_fp(lmm_variable_t var, double x) +{ + return RENO_SCALING * 3.0 / (3.0 * var->weight * var->weight * x * x + + 2.0); +} + +double func_reno_fpi(lmm_variable_t var, double x) +{ + double res_fpi; + + xbt_assert(var->weight > 0.0, "Don't call me with stupid values!"); + xbt_assert(x > 0.0, "Don't call me with stupid values!"); + + res_fpi = + 1.0 / (var->weight * var->weight * (x / RENO_SCALING)) - + 2.0 / (3.0 * var->weight * var->weight); + if (res_fpi <= 0.0) + return 0.0; +/* xbt_assert(res_fpi>0.0,"Don't call me with stupid values!"); */ + return sqrt(res_fpi); +} + + +/* Implementing new Reno-2 + * For Reno-2: $f(x) = U_f(x_f) = \frac{{2}{D_f}}*ln(2+x*D_f)$ + * Therefore: $fp(x) = 2/(Weight*x + 2) + * Therefore: $fpi(x) = (2*Weight)/x - 4 + */ +#define RENO2_SCALING 1.0 +double func_reno2_f(lmm_variable_t var, double x) +{ + xbt_assert(var->weight > 0.0, "Don't call me with stupid values!"); + return RENO2_SCALING * (1.0 / var->weight) * log((x * var->weight) / + (2.0 * x * var->weight + + 3.0)); +} + +double func_reno2_fp(lmm_variable_t var, double x) +{ + return RENO2_SCALING * 3.0 / (var->weight * x * + (2.0 * var->weight * x + 3.0)); +} + +double func_reno2_fpi(lmm_variable_t var, double x) +{ + double res_fpi; + double tmp; + + xbt_assert(x > 0.0, "Don't call me with stupid values!"); + tmp = x * var->weight * var->weight; + res_fpi = tmp * (9.0 * x + 24.0); + if (res_fpi <= 0.0) + return 0.0; + res_fpi = RENO2_SCALING * (-3.0 * tmp + sqrt(res_fpi)) / (4.0 * tmp); + return res_fpi; }