X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/8be7ea3f9e71cd563e91b6aba63f5c70f043fbd5..909864a6927db2f6105ab740ad185de7aa7e5a71:/src/include/surf/maxmin.h diff --git a/src/include/surf/maxmin.h b/src/include/surf/maxmin.h index 0db88a3b9d..1c7e1e85d0 100644 --- a/src/include/surf/maxmin.h +++ b/src/include/surf/maxmin.h @@ -1,4 +1,4 @@ -/* Copyright (c) 2004-2013. The SimGrid Team. +/* Copyright (c) 2004-2015. The SimGrid Team. * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it @@ -7,114 +7,435 @@ #ifndef _SURF_MAXMIN_H #define _SURF_MAXMIN_H -#include "portable.h" +#include "src/internal_config.h" #include "xbt/misc.h" +#include "xbt/asserts.h" #include "surf/datatypes.h" #include -extern double sg_maxmin_precision; -#define MAXMIN_PRECISION sg_maxmin_precision -static XBT_INLINE void double_update(double *variable, double value) +/** @addtogroup SURF_lmm + * @details + * A linear maxmin solver to resolve inequations systems. + * + * Most SimGrid model rely on a "fluid/steady-state" modeling that simulate the sharing of resources between actions at + * relatively coarse-grain. Such sharing is generally done by solving a set of linear inequations. Let's take an + * example and assume we have the variables \f$x_1\f$, \f$x_2\f$, \f$x_3\f$, and \f$x_4\f$ . Let's say that \f$x_1\f$ + * and \f$x_2\f$ correspond to activities running and the same CPU \f$A\f$ whose capacity is \f$C_A\f$. In such a + * case, we need to enforce: + * + * \f[ x_1 + x_2 \leq C_A \f] + * + * Likewise, if \f$x_3\f$ (resp. \f$x_4\f$) corresponds to a network flow \f$F_3\f$ (resp. \f$F_4\f$) that goes through + * a set of links \f$L_1\f$ and \f$L_2\f$ (resp. \f$L_2\f$ and \f$L_3\f$), then we need to enforce: + * + * \f[ x_3 \leq C_{L_1} \f] + * \f[ x_3 + x_4 \leq C_{L_2} \f] + * \f[ x_4 \leq C_{L_3} \f] + * + * One could set every variable to 0 to make sure the constraints are satisfied but this would obviously not be very + * realistic. A possible objective is to try to maximize the minimum of the \f$x_i\f$ . This ensures that all the + * \f$x_i\f$ are positive and "as large as possible". + * + * This is called *max-min fairness* and is the most commonly used objective in SimGrid. Another possibility is to + * maximize \f$\sum_if(x_i)\f$, where \f$f\f$ is a strictly increasing concave function. + * + * Constraint: + * - bound (set) + * - shared (set) + * - usage (computed) + * + * Variable: + * - weight (set) + * - bound (set) + * - value (computed) + * + * Element: + * - value (set) + * + * A possible system could be: + * - three variables: `var1`, `var2`, `var3` + * - two constraints: `cons1`, `cons2` + * - four elements linking: + * - `elem1` linking `var1` and `cons1` + * - `elem2` linking `var2` and `cons1` + * - `elem3` linking `var2` and `cons2` + * - `elem4` linking `var3` and `cons2` + * + * And the corresponding inequations will be: + * + * var1.value <= var1.bound + * var2.value <= var2.bound + * var3.value <= var3.bound + * var1.weight * var1.value * elem1.value + var2.weight * var2.value * elem2.value <= cons1.bound + * var2.weight * var2.value * elem3.value + var3.weight * var3.value * elem4.value <= cons2.bound + * + * where `var1.value`, `var2.value` and `var3.value` are the unknown values. + * + * If a constraint is not shared, the sum is replaced by a max. + * For example, a third non-shared constraint `cons3` and the associated elements `elem5` and `elem6` could write as: + * + * max( var1.weight * var1.value * elem5.value , var3.weight * var3.value * elem6.value ) <= cons3.bound + * + * This is usefull for the sharing of resources for various models. + * For instance, for the network model, each link is associated to a constraint and each communication to a variable. + * + * Implementation details + * + * For implementation reasons, we are interested in distinguishing variables that actually participate to the + * computation of constraints, and those who are part of the equations but are stuck to zero. + * We call enabled variables, those which var.weight is strictly positive. Zero-weight variables are called disabled + * variables. + * Unfortunately this concept of enabled/disabled variables intersects with active/inactive variable. + * Semantically, the intent is similar, but the conditions under which a variable is active is slightly more strict + * than the conditions for it to be enabled. + * A variable is active only if its var.value is non-zero (and, by construction, its var.weight is non-zero). + * In general, variables remain disabled after their creation, which often models an initialization phase (e.g. first + * packet propagating in the network). Then, it is enabled by the corresponding model. Afterwards, the max-min solver + * (lmm_solve()) activates it when appropriate. It is possible that the variable is again disabled, e.g. to model the + * pausing of an action. + * + * Concurrency limit and maximum + * + * We call concurrency, the number of variables that can be enabled at any time for each constraint. + * From a model perspective, this "concurrency" often represents the number of actions that actually compete for one + * constraint. + * The LMM solver is able to limit the concurrency for each constraint, and to monitor its maximum value. + * + * One may want to limit the concurrency of constraints for essentially three reasons: + * - Keep LMM system in a size that can be solved (it does not react very well with tens of thousands of variables per + * constraint) + * - Stay within parameters where the fluid model is accurate enough. + * - Model serialization effects + * + * The concurrency limit can also be set to a negative value to disable concurrency limit. This can improve performance + * slightly. + * + * Overall, each constraint contains three fields related to concurrency: + * - concurrency_limit which is the limit enforced by the solver + * - concurrency_current which is the current concurrency + * - concurrency_maximum which is the observed maximum concurrency + * + * Variables also have one field related to concurrency: concurrency_share. + * In effect, in some cases, one variable is involved multiple times (i.e. two elements) in a constraint. + * For example, cross-traffic is modeled using 2 elements per constraint. + * concurrency_share formally corresponds to the maximum number of elements that associate the variable and any given + * constraint. + */ + +XBT_PUBLIC_DATA(double) sg_maxmin_precision; +XBT_PUBLIC_DATA(double) sg_surf_precision; + +static inline void double_update(double *variable, double value, double precision) { + //printf("Updating %g -= %g +- %g\n",*variable,value,precision); + //xbt_assert(value==0 || value>precision); + //Check that precision is higher than the machine-dependent size of the mantissa. If not, brutal rounding may happen, + //and the precision mechanism is not active... + //xbt_assert(*variable< (2< MAXMIN_PRECISION); + return (value > precision); } -static XBT_INLINE int double_equals(double value1, double value2) +static inline int double_equals(double value1, double value2, double precision) { - return (fabs(value1 - value2) < MAXMIN_PRECISION); + return (fabs(value1 - value2) < precision); } +SG_BEGIN_DECL() + +/** @{ @ingroup SURF_lmm */ +/** + * @brief Create a new Linear MaxMim system + * @param selective_update [description] + */ XBT_PUBLIC(lmm_system_t) lmm_system_new(int selective_update); + +/** + * @brief Free an existing Linear MaxMin system + * @param sys The lmm system to free + */ XBT_PUBLIC(void) lmm_system_free(lmm_system_t sys); -void lmm_variable_disable(lmm_system_t sys, lmm_variable_t var); -XBT_PUBLIC(lmm_constraint_t) lmm_constraint_new(lmm_system_t sys, void *id, - double bound_value); -void lmm_constraint_shared(lmm_constraint_t cnst); -int lmm_constraint_is_shared(lmm_constraint_t cnst); +/** + * @brief Create a new Linear MaxMin constraint + * @param sys The system in which we add a constraint + * @param id Data associated to the constraint (e.g.: a network link) + * @param bound_value The bound value of the constraint + */ +XBT_PUBLIC(lmm_constraint_t) lmm_constraint_new(lmm_system_t sys, void *id,double bound_value); + +/** + * @brief Share a constraint + * @param cnst The constraint to share + */ +XBT_PUBLIC(void) lmm_constraint_shared(lmm_constraint_t cnst); + +/** + * @brief Check if a constraint is shared (shared by default) + * @param cnst The constraint to share + * @return 1 if shared, 0 otherwise + */ +XBT_PUBLIC(int) lmm_constraint_sharing_policy(lmm_constraint_t cnst); + +/** + * @brief Free a constraint + * @param sys The system associated to the constraint + * @param cnst The constraint to free + */ +XBT_PUBLIC(void) lmm_constraint_free(lmm_system_t sys, lmm_constraint_t cnst); + +/** + * @brief Get the usage of the constraint after the last lmm solve + * @param cnst A constraint + * @return The usage of the constraint + */ +XBT_PUBLIC(double) lmm_constraint_get_usage(lmm_constraint_t cnst); + +/** + * @brief Sets the concurrency limit for this constraint + * @param cnst A constraint + * @param concurrency_limit The concurrency limit to use for this constraint + */ +XBT_PUBLIC(void) lmm_constraint_concurrency_limit_set(lmm_constraint_t cnst, int concurrency_limit); + +/** + * @brief Gets the concurrency limit for this constraint + * @param cnst A constraint + * @return The concurrency limit used by this constraint + */ +XBT_PUBLIC(int) lmm_constraint_concurrency_limit_get(lmm_constraint_t cnst); -void lmm_constraint_free(lmm_system_t sys, lmm_constraint_t cnst); +/** + * @brief Reset the concurrency maximum for a given variable (we will update the maximum to reflect constraint + * evolution). + * @param cnst A constraint +*/ +XBT_PUBLIC(void) lmm_constraint_concurrency_maximum_reset(lmm_constraint_t cnst); -double lmm_constraint_get_usage(lmm_constraint_t cnst); +/** + * @brief Get the concurrency maximum for a given variable (which reflects constraint evolution). + * @param cnst A constraint + * @return the maximum concurrency of the constraint + */ +XBT_PUBLIC(int) lmm_constraint_concurrency_maximum_get(lmm_constraint_t cnst); -XBT_PUBLIC(lmm_variable_t) lmm_variable_new(lmm_system_t sys, void *id, - double weight_value, - double bound, +/** + * @brief Create a new Linear MaxMin variable + * @param sys The system in which we add a constaint + * @param id Data associated to the variable (e.g.: a network communication) + * @param weight_value The weight of the variable (0.0 if not used) + * @param bound The maximum value of the variable (-1.0 if no maximum value) + * @param number_of_constraints The maximum number of constraint to associate to the variable + */ +XBT_PUBLIC(lmm_variable_t) lmm_variable_new(lmm_system_t sys, void *id, double weight_value, double bound, int number_of_constraints); +/** + * @brief Free a variable + * @param sys The system associated to the variable + * @param var The variable to free + */ XBT_PUBLIC(void) lmm_variable_free(lmm_system_t sys, lmm_variable_t var); + +/** + * @brief Get the value of the variable after the last lmm solve + * @param var A variable + * @return The value of the variable + */ XBT_PUBLIC(double) lmm_variable_getvalue(lmm_variable_t var); + +/** + * @brief Get the maximum value of the variable (-1.0 if no maximum value) + * @param var A variable + * @return The bound of the variable + */ XBT_PUBLIC(double) lmm_variable_getbound(lmm_variable_t var); -XBT_PUBLIC(void) lmm_expand(lmm_system_t sys, lmm_constraint_t cnst, - lmm_variable_t var, double value); -void lmm_expand_add(lmm_system_t sys, lmm_constraint_t cnst, - lmm_variable_t var, double value); -void lmm_elem_set_value(lmm_system_t sys, lmm_constraint_t cnst, - lmm_variable_t var, double value); +/** + * @brief Set the concurrent share of the variable + * @param var A variable + * @param concurrency_share The new concurrency share + */ +XBT_PUBLIC(void) lmm_variable_concurrency_share_set(lmm_variable_t var, short int concurrency_share); -lmm_constraint_t lmm_get_cnst_from_var(lmm_system_t sys, - lmm_variable_t var, int num); -double lmm_get_cnst_weight_from_var(lmm_system_t sys, lmm_variable_t var, - int num); -int lmm_get_number_of_cnst_from_var(lmm_system_t sys, lmm_variable_t var); -lmm_variable_t lmm_get_var_from_cnst(lmm_system_t sys, - lmm_constraint_t cnst, - lmm_element_t * elem); +/** + * @brief Remove a variable from a constraint + * @param sys A system + * @param cnst A constraint + * @param var The variable to remove + */ +XBT_PUBLIC(void) lmm_shrink(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var); -lmm_constraint_t lmm_get_first_active_constraint(lmm_system_t sys); -lmm_constraint_t lmm_get_next_active_constraint(lmm_system_t sys, - lmm_constraint_t cnst); -#ifdef HAVE_LATENCY_BOUND_TRACKING -XBT_PUBLIC(int) lmm_is_variable_limited_by_latency(lmm_variable_t var); -#endif +/** + * @brief Associate a variable to a constraint with a coefficient + * @param sys A system + * @param cnst A constraint + * @param var A variable + * @param value The coefficient associated to the variable in the constraint + */ +XBT_PUBLIC(void) lmm_expand(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value); -void *lmm_constraint_id(lmm_constraint_t cnst); -void *lmm_variable_id(lmm_variable_t var); +/** + * @brief Add value to the coefficient between a constraint and a variable or create one + * @param sys A system + * @param cnst A constraint + * @param var A variable + * @param value The value to add to the coefficient associated to the variable in the constraint + */ +XBT_PUBLIC(void) lmm_expand_add(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value); + +/** + * @brief Get the numth constraint associated to the variable + * @param sys The system associated to the variable (not used) + * @param var A variable + * @param num The rank of constraint we want to get + * @return The numth constraint + */ +XBT_PUBLIC(lmm_constraint_t) lmm_get_cnst_from_var(lmm_system_t sys, lmm_variable_t var, int num); + +/** + * @brief Get the weigth of the numth constraint associated to the variable + * @param sys The system associated to the variable (not used) + * @param var A variable + * @param num The rank of constraint we want to get + * @return The numth constraint + */ +XBT_PUBLIC(double) lmm_get_cnst_weight_from_var(lmm_system_t sys, lmm_variable_t var, int num); + +/** + * @brief Get the number of constraint associated to a variable + * @param sys The system associated to the variable (not used) + * @param var A variable + * @return The number of constraint associated to the variable + */ +XBT_PUBLIC(int) lmm_get_number_of_cnst_from_var(lmm_system_t sys, lmm_variable_t var); -void lmm_update(lmm_system_t sys, lmm_constraint_t cnst, - lmm_variable_t var, double value); -void lmm_update_variable_bound(lmm_system_t sys, lmm_variable_t var, - double bound); +/** + * @brief Get a var associated to a constraint + * @details Get the first variable of the next variable of elem if elem is not NULL + * @param sys The system associated to the variable (not used) + * @param cnst A constraint + * @param elem A element of constraint of the constraint or NULL + * @return A variable associated to a constraint + */ +XBT_PUBLIC(lmm_variable_t) lmm_get_var_from_cnst(lmm_system_t sys, lmm_constraint_t cnst, lmm_element_t * elem); +/** + * @brief Get a var associated to a constraint + * @details Get the first variable of the next variable of elem if elem is not NULL + * @param cnst A constraint + * @param elem A element of constraint of the constraint or NULL + * @param nextelem A element of constraint of the constraint or NULL, the one after elem + * @param numelem parameter representing the number of elements to go + * + * @return A variable associated to a constraint + */ +XBT_PUBLIC(lmm_variable_t) lmm_get_var_from_cnst_safe(lmm_system_t /*sys*/, lmm_constraint_t cnst, + lmm_element_t * elem, lmm_element_t * nextelem, int * numelem); -XBT_PUBLIC(void) lmm_update_variable_weight(lmm_system_t sys, - lmm_variable_t var, - double weight); -double lmm_get_variable_weight(lmm_variable_t var); +/** + * @brief Get the first active constraint of a system + * @param sys A system + * @return The first active constraint + */ +XBT_PUBLIC(lmm_constraint_t) lmm_get_first_active_constraint(lmm_system_t sys); -XBT_PUBLIC(void) lmm_update_constraint_bound(lmm_system_t sys, - lmm_constraint_t cnst, - double bound); +/** + * @brief Get the next active constraint of a constraint in a system + * @param sys A system + * @param cnst An active constraint of the system + * + * @return The next active constraint + */ +XBT_PUBLIC(lmm_constraint_t) lmm_get_next_active_constraint(lmm_system_t sys, lmm_constraint_t cnst); -int lmm_constraint_used(lmm_system_t sys, lmm_constraint_t cnst); +/** + * @brief Get the data associated to a constraint + * @param cnst A constraint + * @return The data associated to the constraint + */ +XBT_PUBLIC(void *) lmm_constraint_id(lmm_constraint_t cnst); +/** + * @brief Get the data associated to a variable + * @param var A variable + * @return The data associated to the variable + */ +XBT_PUBLIC(void *) lmm_variable_id(lmm_variable_t var); +/** + * @brief Update the value of element linking the constraint and the variable + * @param sys A system + * @param cnst A constraint + * @param var A variable + * @param value The new value + */ +XBT_PUBLIC(void) lmm_update(lmm_system_t sys, lmm_constraint_t cnst, lmm_variable_t var, double value); + +/** + * @brief Update the bound of a variable + * @param sys A system + * @param var A constraint + * @param bound The new bound + */ +XBT_PUBLIC(void) lmm_update_variable_bound(lmm_system_t sys, lmm_variable_t var, double bound); + +/** + * @brief Update the weight of a variable + * @param sys A system + * @param var A variable + * @param weight The new weight of the variable + */ +XBT_PUBLIC(void) lmm_update_variable_weight(lmm_system_t sys, lmm_variable_t var, double weight); + +/** + * @brief Get the weight of a variable + * @param var A variable + * @return The weight of the variable + */ +XBT_PUBLIC(double) lmm_get_variable_weight(lmm_variable_t var); + +/** + * @brief Update a constraint bound + * @param sys A system + * @param cnst A constraint + * @param bound The new bound of the consrtaint + */ +XBT_PUBLIC(void) lmm_update_constraint_bound(lmm_system_t sys, lmm_constraint_t cnst, double bound); + +/** + * @brief [brief description] + * @param sys A system + * @param cnst A constraint + * @return [description] + */ +XBT_PUBLIC(int) lmm_constraint_used(lmm_system_t sys, lmm_constraint_t cnst); + +/** + * @brief Print the lmm system + * @param sys The lmm system to print + */ +XBT_PUBLIC(void) lmm_print(lmm_system_t sys); + +/** + * @brief Solve the lmm system + * @param sys The lmm system to solve + */ XBT_PUBLIC(void) lmm_solve(lmm_system_t sys); XBT_PUBLIC(void) lagrange_solve(lmm_system_t sys); XBT_PUBLIC(void) bottleneck_solve(lmm_system_t sys); -/** - * Default functions associated to the chosen protocol. When - * using the lagrangian approach. - */ +/** Default functions associated to the chosen protocol. When using the lagrangian approach. */ -XBT_PUBLIC(void) lmm_set_default_protocol_function(double (*func_f) - (lmm_variable_t var, - double x), - double (*func_fp) - (lmm_variable_t var, - double x), - double (*func_fpi) - (lmm_variable_t var, - double x)); +XBT_PUBLIC(void) lmm_set_default_protocol_function(double (*func_f)(lmm_variable_t var,double x), + double (*func_fp)(lmm_variable_t var,double x), + double (*func_fpi)(lmm_variable_t var,double x)); XBT_PUBLIC(double func_reno_f) (lmm_variable_t var, double x); XBT_PUBLIC(double func_reno_fp) (lmm_variable_t var, double x); @@ -128,5 +449,7 @@ XBT_PUBLIC(double func_vegas_f) (lmm_variable_t var, double x); XBT_PUBLIC(double func_vegas_fp) (lmm_variable_t var, double x); XBT_PUBLIC(double func_vegas_fpi) (lmm_variable_t var, double x); +/** @} */ +SG_END_DECL() #endif /* _SURF_MAXMIN_H */