X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/85e1d2c205ca99512b48bceca0f16677a401e233..2558c8c0eb206ff353cb88672f5a90cd0e2562d3:/src/kernel/lmm/lagrange.cpp diff --git a/src/kernel/lmm/lagrange.cpp b/src/kernel/lmm/lagrange.cpp index 8d6cb06ae6..fdab111a34 100644 --- a/src/kernel/lmm/lagrange.cpp +++ b/src/kernel/lmm/lagrange.cpp @@ -1,4 +1,4 @@ -/* Copyright (c) 2007-2018. The SimGrid Team. All rights reserved. */ +/* Copyright (c) 2007-2019. The SimGrid Team. All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ @@ -8,6 +8,7 @@ * "ssh://username@scm.gforge.inria.fr/svn/memo/people/pvelho/lagrange/ppf.ps". */ #include "src/kernel/lmm/maxmin.hpp" +#include "src/surf/surf_interface.hpp" #include "xbt/log.h" #include "xbt/sysdep.h" @@ -206,7 +207,7 @@ void Lagrange::lagrange_solve() /* Improve the value of lambda_i */ for (Constraint& cnst : active_constraint_set) { XBT_DEBUG("Working on cnst (%p)", &cnst); - cnst.new_lambda = dichotomy(cnst.lambda, partial_diff_lambda, cnst, dichotomy_min_error); + cnst.new_lambda = dichotomy(cnst.lambda, cnst, dichotomy_min_error); XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", &cnst, cnst.lambda, cnst.new_lambda); cnst.lambda = cnst.new_lambda; @@ -216,7 +217,7 @@ void Lagrange::lagrange_solve() obj = new_obj; } - /* Now computes the values of each variable (\rho) based on the values of \lambda and \mu. */ + /* Now computes the values of each variable (@rho) based on the values of @lambda and @mu. */ XBT_DEBUG("-------------- Check convergence ----------"); overall_modification = 0; for (Variable& var : variable_set) { @@ -254,17 +255,16 @@ void Lagrange::lagrange_solve() /* * Returns a double value corresponding to the result of a dichotomy process with respect to a given - * variable/constraint (\mu in the case of a variable or \lambda in case of a constraint) and a initial value init. + * variable/constraint (@mu in the case of a variable or @lambda in case of a constraint) and a initial value init. * - * @param init initial value for \mu or \lambda - * @param diff a function that computes the differential of with respect a \mu or \lambda + * @param init initial value for @mu or @lambda + * @param diff a function that computes the differential of with respect a @mu or @lambda * @param var_cnst a pointer to a variable or constraint * @param min_erro a minimum error tolerated * * @return a double corresponding to the result of the dichotomy process */ -double Lagrange::dichotomy(double init, double diff(double, const Constraint&), const Constraint& cnst, - double min_error) +double Lagrange::dichotomy(double init, const Constraint& cnst, double min_error) { double min = init; double max = init; @@ -282,15 +282,15 @@ double Lagrange::dichotomy(double init, double diff(double, const Constraint&), overall_error = 1; - diff_0 = diff(1e-16, cnst); + diff_0 = partial_diff_lambda(1e-16, cnst); if (diff_0 >= 0) { XBT_CDEBUG(surf_lagrange_dichotomy, "returning 0.0 (diff = %e)", diff_0); XBT_OUT(); return 0.0; } - double min_diff = diff(min, cnst); - double max_diff = diff(max, cnst); + double min_diff = partial_diff_lambda(min, cnst); + double max_diff = partial_diff_lambda(max, cnst); while (overall_error > min_error) { XBT_CDEBUG(surf_lagrange_dichotomy, "[min, max] = [%1.20f, %1.20f] || diffmin, diffmax = %1.20f, %1.20f", min, max, @@ -300,7 +300,7 @@ double Lagrange::dichotomy(double init, double diff(double, const Constraint&), if (min == max) { XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing min"); min = min / 2.0; - min_diff = diff(min, cnst); + min_diff = partial_diff_lambda(min, cnst); } else { XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing max"); max = min; @@ -310,7 +310,7 @@ double Lagrange::dichotomy(double init, double diff(double, const Constraint&), if (min == max) { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing max"); max = max * 2.0; - max_diff = diff(max, cnst); + max_diff = partial_diff_lambda(max, cnst); } else { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); min = max; @@ -327,7 +327,7 @@ double Lagrange::dichotomy(double init, double diff(double, const Constraint&), min, max - min, min_diff, max_diff); break; } - middle_diff = diff(middle, cnst); + middle_diff = partial_diff_lambda(middle, cnst); if (middle_diff < 0) { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); @@ -400,19 +400,21 @@ double Lagrange::partial_diff_lambda(double lambda, const Constraint& cnst) return diff; } -/** \brief Attribute the value bound to var->bound. +/** @brief Attribute the value bound to var->bound. * - * \param func_fpi inverse of the partial differential of f (f prime inverse, (f')^{-1}) + * @param f function (f) + * @param fp partial differential of f (f prime, (f')) + * @param fpi inverse of the partial differential of f (f prime inverse, (f')^{-1}) * * Set default functions to the ones passed as parameters. */ -void Lagrange::set_default_protocol_function(double (*func_f)(const Variable& var, double x), - double (*func_fp)(const Variable& var, double x), - double (*func_fpi)(const Variable& var, double x)) +void Lagrange::set_default_protocol_function(double (*f)(const Variable& var, double x), + double (*fp)(const Variable& var, double x), + double (*fpi)(const Variable& var, double x)) { - Lagrange::func_f = func_f; - Lagrange::func_fp = func_fp; - Lagrange::func_fpi = func_fpi; + func_f = f; + func_fp = fp; + func_fpi = fpi; } double (*Lagrange::func_f)(const Variable&, double); @@ -423,9 +425,9 @@ double (*Lagrange::func_fpi)(const Variable&, double); /* NOTE for Reno: all functions consider the network coefficient (alpha) equal to 1. */ /* - * For Vegas: $f(x) = \alpha D_f\ln(x)$ - * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ - * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ + * For Vegas: $f(x) = @alpha D_f@ln(x)$ + * Therefore: $fp(x) = @frac{@alpha D_f}{x}$ + * Therefore: $fpi(x) = @frac{@alpha D_f}{x}$ */ double func_vegas_f(const Variable& var, double x) { @@ -446,9 +448,9 @@ double func_vegas_fpi(const Variable& var, double x) } /* - * For Reno: $f(x) = \frac{\sqrt{3/2}}{D_f} atan(\sqrt{3/2}D_f x)$ - * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ - * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ + * For Reno: $f(x) = @frac{@sqrt{3/2}}{D_f} atan(@sqrt{3/2}D_f x)$ + * Therefore: $fp(x) = @frac{3}{3 D_f^2 x^2+2}$ + * Therefore: $fpi(x) = @sqrt{@frac{1}{{D_f}^2 x} - @frac{2}{3{D_f}^2}}$ */ double func_reno_f(const Variable& var, double x) { @@ -477,7 +479,7 @@ double func_reno_fpi(const Variable& var, double x) } /* Implementing new Reno-2 - * For Reno-2: $f(x) = U_f(x_f) = \frac{{2}{D_f}}*ln(2+x*D_f)$ + * For Reno-2: $f(x) = U_f(x_f) = @frac{{2}{D_f}}*ln(2+x*D_f)$ * Therefore: $fp(x) = 2/(Weight*x + 2) * Therefore: $fpi(x) = (2*Weight)/x - 4 */