X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/7b496924ab1db1e2168e21d85f1bb5c5db2ae264..bb6ac9c6781e2639da8957ccf08957974d6ce697:/src/surf/lagrange.c diff --git a/src/surf/lagrange.c b/src/surf/lagrange.c index a768517eae..479a91a984 100644 --- a/src/surf/lagrange.c +++ b/src/surf/lagrange.c @@ -1,10 +1,7 @@ /* $Id$ */ - /* Copyright (c) 2007 Arnaud Legrand, Pedro Velho. All rights reserved. */ - /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ - /* * Modelling the proportional fairness using the Lagrange Optimization * Approach. For a detailed description see: @@ -12,7 +9,6 @@ */ #include "xbt/log.h" #include "xbt/sysdep.h" -#include "xbt/mallocator.h" #include "maxmin_private.h" #include @@ -20,185 +16,629 @@ #include #endif - XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, "Logging specific to SURF (lagrange)"); +XBT_LOG_NEW_SUBCATEGORY(surf_lagrange_dichotomy, surf_lagrange, + "Logging specific to SURF (lagrange dichotomy)"); + +#define SHOW_EXPR(expr) CDEBUG1(surf_lagrange,#expr " = %g",expr); +double (*func_f_def) (lmm_variable_t, double); +double (*func_fp_def) (lmm_variable_t, double); +double (*func_fpi_def) (lmm_variable_t, double); + +/* + * Local prototypes to implement the lagrangian optimization with optimal step, also called dichotomy. + */ +//solves the proportional fairness using a lagrange optimizition with dichotomy step void lagrange_solve(lmm_system_t sys); +//computes the value of the dichotomy using a initial values, init, with a specific variable or constraint +static double dichotomy(double init, double diff(double, void *), + void *var_cnst, double min_error); +//computes the value of the differential of variable param_var applied to mu +static double partial_diff_mu(double mu, void *param_var); +//computes the value of the differential of constraint param_cnst applied to lambda +static double partial_diff_lambda(double lambda, void *param_cnst); + +static int __check_feasible(xbt_swag_t cnst_list, xbt_swag_t var_list, + int warn) +{ + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + lmm_constraint_t cnst = NULL; + lmm_variable_t var = NULL; -void lagrange_solve(lmm_system_t sys) + double tmp; + + xbt_swag_foreach(cnst, cnst_list) { + tmp = 0; + elem_list = &(cnst->element_set); + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if (var->weight <= 0) + continue; + tmp += var->value; + } + + if (double_positive(tmp - cnst->bound)) { + if (warn) + WARN3 + ("The link (%p) is over-used. Expected less than %f and got %f", + cnst, cnst->bound, tmp); + return 0; + } + DEBUG3 + ("Checking feasability for constraint (%p): sat = %f, lambda = %f ", + cnst, tmp - cnst->bound, cnst->lambda); + } + + xbt_swag_foreach(var, var_list) { + if (!var->weight) + break; + if (var->bound < 0) + continue; + DEBUG3("Checking feasability for variable (%p): sat = %f mu = %f", var, + var->value - var->bound, var->mu); + + if (double_positive(var->value - var->bound)) { + if (warn) + WARN3 + ("The variable (%p) is too large. Expected less than %f and got %f", + var, var->bound, var->value); + return 0; + } + } + return 1; +} + +static double new_value(lmm_variable_t var) +{ + double tmp = 0; + int i; + + for (i = 0; i < var->cnsts_number; i++) { + tmp += (var->cnsts[i].constraint)->lambda; + } + if (var->bound > 0) + tmp += var->mu; + DEBUG3("\t Working on var (%p). cost = %e; Df = %e", var, tmp, var->df); + //uses the partial differential inverse function + return var->func_fpi(var, tmp); +} + +static double new_mu(lmm_variable_t var) { + double mu_i = 0.0; + double sigma_i = 0.0; + int j; + + for (j = 0; j < var->cnsts_number; j++) { + sigma_i += (var->cnsts[j].constraint)->lambda; + } + mu_i = var->func_fp(var, var->bound) - sigma_i; + if (mu_i < 0.0) + return 0.0; + return mu_i; +} + +static double dual_objective(xbt_swag_t var_list, xbt_swag_t cnst_list) +{ + lmm_constraint_t cnst = NULL; + lmm_variable_t var = NULL; + + double obj = 0.0; + + xbt_swag_foreach(var, var_list) { + double sigma_i = 0.0; + int j; + + if (!var->weight) + break; + + for (j = 0; j < var->cnsts_number; j++) + sigma_i += (var->cnsts[j].constraint)->lambda; + + if (var->bound > 0) + sigma_i += var->mu; + DEBUG2("var %p : sigma_i = %1.20f", var, sigma_i); + + obj += var->func_f(var, var->func_fpi(var, sigma_i)) - + sigma_i * var->func_fpi(var, sigma_i); + + if (var->bound > 0) + obj += var->mu * var->bound; + } + + xbt_swag_foreach(cnst, cnst_list) + obj += cnst->lambda * cnst->bound; + + return obj; +} + +void lagrange_solve(lmm_system_t sys) +{ /* * Lagrange Variables. */ - double epsilon_min_error = 1e-6; - double overall_error = 1; - double sigma_step = 0.5e-3; - double capacity_error=0, bound_error=0; - + int max_iterations = 100; + double epsilon_min_error = MAXMIN_PRECISION; + double dichotomy_min_error = 1e-14; + double overall_modification = 1; /* * Variables to manipulate the data structure proposed to model the maxmin * fairness. See docummentation for more details. */ - xbt_swag_t elem_list = NULL; - lmm_element_t elem1 = NULL; - lmm_element_t elem2 = NULL; - xbt_swag_t cnst_list = NULL; - lmm_constraint_t cnst1 = NULL; - lmm_constraint_t cnst2 = NULL; + lmm_constraint_t cnst = NULL; xbt_swag_t var_list = NULL; - lmm_variable_t var1 = NULL; - lmm_variable_t var2 = NULL; - + lmm_variable_t var = NULL; /* * Auxiliar variables. */ - int iteration=0; - int max_iterations=100000; - double mu_partial=0; - double lambda_partial=0; - double tmp=0; + int iteration = 0; + double tmp = 0; int i; + double obj, new_obj; + DEBUG0("Iterative method configuration snapshot =====>"); + DEBUG1("#### Maximum number of iterations : %d", max_iterations); + DEBUG1("#### Minimum error tolerated : %e", + epsilon_min_error); + DEBUG1("#### Minimum error tolerated (dichotomy) : %e", + dichotomy_min_error); + + if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { + lmm_print(sys); + } - if ( !(sys->modified)) + if (!(sys->modified)) return; - + + + /* + * Initialize lambda. + */ + cnst_list = &(sys->active_constraint_set); + xbt_swag_foreach(cnst, cnst_list) { + cnst->lambda = 1.0; + cnst->new_lambda = 2.0; + DEBUG2("#### cnst(%p)->lambda : %e", cnst, cnst->lambda); + } + /* * Initialize the var list variable with only the active variables. - * Associate an index in the swag variables. Saves the initial value - * of bound associated with. + * Associate an index in the swag variables. Initialize mu. */ var_list = &(sys->variable_set); - i=0; - xbt_swag_foreach(var1, var_list) { - if(var1->weight != 0.0){ - i++; - var1->initial_bound = var1->bound; + i = 0; + xbt_swag_foreach(var, var_list) { + if (!var->weight) + var->value = 0.0; + else { + int nb = 0; + if (var->bound < 0.0) { + DEBUG1("#### NOTE var(%d) is a boundless variable", i); + var->mu = -1.0; + var->value = new_value(var); + } else { + var->mu = 1.0; + var->new_mu = 2.0; + var->value = new_value(var); + } + DEBUG2("#### var(%p) ->df : %e", var, var->df); + DEBUG2("#### var(%p) ->mu : %e", var, var->mu); + DEBUG2("#### var(%p) ->weight: %e", var, var->weight); + DEBUG2("#### var(%p) ->bound: %e", var, var->bound); + for (i = 0; i < var->cnsts_number; i++) { + if(var->cnsts[i].value==0.0) nb++; + } + if(nb==var->cnsts_number) var->value = 1.0; } } /* - * Saves the initial bound of each constraint. + * Compute dual objective. */ - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { - cnst1->initial_bound = cnst1->bound; - } + obj = dual_objective(var_list, cnst_list); - /* * While doesn't reach a minimun error or a number maximum of iterations. */ - while(overall_error > epsilon_min_error && iteration < max_iterations){ + while (overall_modification > epsilon_min_error + && iteration < max_iterations) { +/* int dual_updated=0; */ iteration++; - - - /* d Dual - * Compute the value of ----------- (\lambda^k, \mu^k) this portion - * d \mu_i^k - * of code depends on function f(x). - */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - - mu_partial = 0; - - //for each link with capacity cnsts[i] that uses flow of variable var1 do - for(i=0; icnsts_number; i++){ - elem1 = &(var1->cnsts[i]); - mu_partial += (elem1->constraint)->bound + var1->initial_bound; - } - - mu_partial = -1 / mu_partial + var1->initial_bound; - var1->bound = var1->bound + sigma_step * mu_partial; - } + DEBUG1("************** ITERATION %d **************", iteration); + DEBUG0("-------------- Gradient Descent ----------"); - - /* d Dual - * Compute the value of ------------- (\lambda^k, \mu^k) this portion - * d \lambda_i^k - * of code depends on function f(x). + /* + * Improve the value of mu_i */ - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { - - lambda_partial = 0; - - elem_list = &(cnst1->active_element_set); - - xbt_swag_foreach(elem1, elem_list) { - lambda_partial = 0; - - var2 = elem1->variable; - - //for each link with capacity cnsts[i] that uses flow of variable var1 do - for(i=0; icnsts_number; i++){ - elem2 = &(var2->cnsts[i]); - tmp += (elem2->constraint)->bound + var2->bound; - } - - lambda_partial += -1 / tmp; + xbt_swag_foreach(var, var_list) { + if (!var->weight) + break; + if (var->bound >= 0) { + DEBUG1("Working on var (%p)", var); + var->new_mu = new_mu(var); +/* dual_updated += (fabs(var->new_mu-var->mu)>dichotomy_min_error); */ +/* DEBUG2("dual_updated (%d) : %1.20f",dual_updated,fabs(var->new_mu-var->mu)); */ + DEBUG3("Updating mu : var->mu (%p) : %1.20f -> %1.20f", var, + var->mu, var->new_mu); + var->mu = var->new_mu; + + new_obj = dual_objective(var_list, cnst_list); + DEBUG3("Improvement for Objective (%g -> %g) : %g", obj, new_obj, + obj - new_obj); + xbt_assert1(obj - new_obj >= -epsilon_min_error, + "Our gradient sucks! (%1.20f)", obj - new_obj); + obj = new_obj; } - - lambda_partial += cnst1->initial_bound; - cnst1->bound = cnst1->bound + sigma_step * lambda_partial; } - - /* - * Verify for each capacity constraint (lambda) the error associated. + * Improve the value of lambda_i */ - cnst_list=&(sys->active_constraint_set); - xbt_swag_foreach(cnst1, cnst_list) { - cnst2 = xbt_swag_getNext(cnst1,(var_list)->offset); - if(cnst2 != NULL){ - capacity_error += fabs( cnst1->bound - cnst2->bound ); - } + xbt_swag_foreach(cnst, cnst_list) { + DEBUG1("Working on cnst (%p)", cnst); + cnst->new_lambda = + dichotomy(cnst->lambda, partial_diff_lambda, cnst, + dichotomy_min_error); +/* dual_updated += (fabs(cnst->new_lambda-cnst->lambda)>dichotomy_min_error); */ +/* DEBUG2("dual_updated (%d) : %1.20f",dual_updated,fabs(cnst->new_lambda-cnst->lambda)); */ + DEBUG3("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", + cnst, cnst->lambda, cnst->new_lambda); + cnst->lambda = cnst->new_lambda; + + new_obj = dual_objective(var_list, cnst_list); + DEBUG3("Improvement for Objective (%g -> %g) : %g", obj, new_obj, + obj - new_obj); + xbt_assert1(obj - new_obj >= -epsilon_min_error, + "Our gradient sucks! (%1.20f)", obj - new_obj); + obj = new_obj; } /* - * Verify for each variable the error of round trip time constraint (mu). + * Now computes the values of each variable (\rho) based on + * the values of \lambda and \mu. */ - bound_error = 0; - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - var2 = xbt_swag_getNext(var1,(var_list)->offset); - if(var2 != NULL){ - bound_error += fabs( var2->bound - var1->bound); + DEBUG0("-------------- Check convergence ----------"); + overall_modification = 0; + xbt_swag_foreach(var, var_list) { + if (var->weight <= 0) + var->value = 0.0; + else { + tmp = new_value(var); + + overall_modification = + MAX(overall_modification, fabs(var->value - tmp)); + + var->value = tmp; + DEBUG3("New value of var (%p) = %e, overall_modification = %e", + var, var->value, overall_modification); } } - overall_error = capacity_error + bound_error; + DEBUG0("-------------- Check feasability ----------"); + if (!__check_feasible(cnst_list, var_list, 0)) + overall_modification = 1.0; + DEBUG2("Iteration %d: overall_modification : %f", iteration, + overall_modification); +/* if(!dual_updated) { */ +/* WARN1("Could not improve the convergence at iteration %d. Drop it!",iteration); */ +/* break; */ +/* } */ } + __check_feasible(cnst_list, var_list, 1); - if(overall_error > epsilon_min_error){ - DEBUG1("The method converge in %d iterations.", iteration); + if (overall_modification <= epsilon_min_error) { + DEBUG1("The method converges in %d iterations.", iteration); } + if (iteration >= max_iterations) { + DEBUG1 + ("Method reach %d iterations, which is the maximum number of iterations allowed.", + iteration); + } +/* INFO1("Method converged after %d iterations", iteration); */ - /* - * Now computes the values of each variable (\rho) based on - * the values of \lambda and \mu. - */ - var_list = &(sys->variable_set); - xbt_swag_foreach(var1, var_list) { - tmp = 0; - for(i=0; icnsts_number; i++){ - elem1 = &(var1->cnsts[i]); - tmp += (elem1->constraint)->bound + var1->bound; + if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { + lmm_print(sys); + } +} + +/* + * Returns a double value corresponding to the result of a dichotomy proccess with + * respect to a given variable/constraint (\mu in the case of a variable or \lambda in + * case of a constraint) and a initial value init. + * + * @param init initial value for \mu or \lambda + * @param diff a function that computes the differential of with respect a \mu or \lambda + * @param var_cnst a pointer to a variable or constraint + * @param min_erro a minimun error tolerated + * + * @return a double correponding to the result of the dichotomyal process + */ +static double dichotomy(double init, double diff(double, void *), + void *var_cnst, double min_error) +{ + double min, max; + double overall_error; + double middle; + double min_diff, max_diff, middle_diff; + double diff_0 = 0.0; + min = max = init; + + XBT_IN; + + if (init == 0.0) { + min = max = 0.5; + } + + min_diff = max_diff = middle_diff = 0.0; + overall_error = 1; + + if ((diff_0 = diff(1e-16, var_cnst)) >= 0) { + CDEBUG1(surf_lagrange_dichotomy, "returning 0.0 (diff = %e)", diff_0); + XBT_OUT; + return 0.0; + } + + min_diff = diff(min, var_cnst); + max_diff = diff(max, var_cnst); + + while (overall_error > min_error) { + CDEBUG4(surf_lagrange_dichotomy, + "[min, max] = [%1.20f, %1.20f] || diffmin, diffmax = %1.20f, %1.20f", + min, max, min_diff, max_diff); + + if (min_diff > 0 && max_diff > 0) { + if (min == max) { + CDEBUG0(surf_lagrange_dichotomy, "Decreasing min"); + min = min / 2.0; + min_diff = diff(min, var_cnst); + } else { + CDEBUG0(surf_lagrange_dichotomy, "Decreasing max"); + max = min; + max_diff = min_diff; + } + } else if (min_diff < 0 && max_diff < 0) { + if (min == max) { + CDEBUG0(surf_lagrange_dichotomy, "Increasing max"); + max = max * 2.0; + max_diff = diff(max, var_cnst); + } else { + CDEBUG0(surf_lagrange_dichotomy, "Increasing min"); + min = max; + min_diff = max_diff; + } + } else if (min_diff < 0 && max_diff > 0) { + middle = (max + min) / 2.0; + CDEBUG1(surf_lagrange_dichotomy, "Trying (max+min)/2 : %1.20f", + middle); + + if ((min == middle) || (max == middle)) { + CWARN4(surf_lagrange_dichotomy, + "Cannot improve the convergence! min=max=middle=%1.20f, diff = %1.20f." + " Reaching the 'double' limits. Maybe scaling your function would help ([%1.20f,%1.20f]).", + min, max - min, min_diff, max_diff); + break; + } + middle_diff = diff(middle, var_cnst); + + if (middle_diff < 0) { + CDEBUG0(surf_lagrange_dichotomy, "Increasing min"); + min = middle; + overall_error = max_diff - middle_diff; + min_diff = middle_diff; +/* SHOW_EXPR(overall_error); */ + } else if (middle_diff > 0) { + CDEBUG0(surf_lagrange_dichotomy, "Decreasing max"); + max = middle; + overall_error = max_diff - middle_diff; + max_diff = middle_diff; +/* SHOW_EXPR(overall_error); */ + } else { + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } + } else if (min_diff == 0) { + max = min; + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } else if (max_diff == 0) { + min = max; + overall_error = 0; +/* SHOW_EXPR(overall_error); */ + } else if (min_diff > 0 && max_diff < 0) { + CWARN0(surf_lagrange_dichotomy, + "The impossible happened, partial_diff(min) > 0 && partial_diff(max) < 0"); + abort(); + } else { + CWARN2(surf_lagrange_dichotomy, + "diffmin (%1.20f) or diffmax (%1.20f) are something I don't know, taking no action.", + min_diff, max_diff); + abort(); + } + } + + CDEBUG1(surf_lagrange_dichotomy, "returning %e", (min + max) / 2.0); + XBT_OUT; + return ((min + max) / 2.0); +} + +static double partial_diff_lambda(double lambda, void *param_cnst) +{ + + int j; + xbt_swag_t elem_list = NULL; + lmm_element_t elem = NULL; + lmm_variable_t var = NULL; + lmm_constraint_t cnst = (lmm_constraint_t) param_cnst; + double diff = 0.0; + double sigma_i = 0.0; + + XBT_IN; + elem_list = &(cnst->element_set); + + CDEBUG1(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", cnst); + + xbt_swag_foreach(elem, elem_list) { + var = elem->variable; + if (var->weight <= 0) + continue; + + CDEBUG1(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", + var); + // Initialize the summation variable + sigma_i = 0.0; + + // Compute sigma_i + for (j = 0; j < var->cnsts_number; j++) { + sigma_i += (var->cnsts[j].constraint)->lambda; } - var1->weight = 1 / tmp; + + //add mu_i if this flow has a RTT constraint associated + if (var->bound > 0) + sigma_i += var->mu; + + //replace value of cnst->lambda by the value of parameter lambda + sigma_i = (sigma_i - cnst->lambda) + lambda; + + diff += -var->func_fpi(var, sigma_i); } - + diff += cnst->bound; + + CDEBUG3(surf_lagrange_dichotomy, + "d D/d lambda for cnst (%p) at %1.20f = %1.20f", cnst, lambda, + diff); + XBT_OUT; + return diff; +} + +/** \brief Attribute the value bound to var->bound. + * + * \param func_fpi inverse of the partial differential of f (f prime inverse, (f')^{-1}) + * + * Set default functions to the ones passed as parameters. This is a polimorfism in C pure, enjoy the roots of programming. + * + */ +void +lmm_set_default_protocol_function(double (*func_f) + (lmm_variable_t var, double x), + double (*func_fp) (lmm_variable_t var, + double x), + double (*func_fpi) (lmm_variable_t var, + double x)) +{ + func_f_def = func_f; + func_fp_def = func_fp; + func_fpi_def = func_fpi; +} + + +/**************** Vegas and Reno functions *************************/ +/* + * NOTE for Reno: all functions consider the network + * coeficient (alpha) equal to 1. + */ + +/* + * For Vegas: $f(x) = \alpha D_f\ln(x)$ + * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ + * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ + */ +#define VEGAS_SCALING 1000.0 + +double func_vegas_f(lmm_variable_t var, double x) +{ + xbt_assert1(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return VEGAS_SCALING * var->df * log(x); +} + +double func_vegas_fp(lmm_variable_t var, double x) +{ + xbt_assert1(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return VEGAS_SCALING * var->df / x; +} + +double func_vegas_fpi(lmm_variable_t var, double x) +{ + xbt_assert1(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); + return var->df / (x / VEGAS_SCALING); +} + +/* + * For Reno: $f(x) = \frac{\sqrt{3/2}}{D_f} atan(\sqrt{3/2}D_f x)$ + * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ + * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ + */ +#define RENO_SCALING 1.0 +double func_reno_f(lmm_variable_t var, double x) +{ + xbt_assert0(var->df > 0.0, "Don't call me with stupid values!"); + + return RENO_SCALING * sqrt(3.0 / 2.0) / var->df * atan(sqrt(3.0 / 2.0) * + var->df * x); +} + +double func_reno_fp(lmm_variable_t var, double x) +{ + return RENO_SCALING * 3.0 / (3.0 * var->df * var->df * x * x + 2.0); +} + +double func_reno_fpi(lmm_variable_t var, double x) +{ + double res_fpi; + + xbt_assert0(var->df > 0.0, "Don't call me with stupid values!"); + xbt_assert0(x > 0.0, "Don't call me with stupid values!"); + + res_fpi = + 1.0 / (var->df * var->df * (x / RENO_SCALING)) - + 2.0 / (3.0 * var->df * var->df); + if (res_fpi <= 0.0) + return 0.0; +/* xbt_assert0(res_fpi>0.0,"Don't call me with stupid values!"); */ + return sqrt(res_fpi); +} + + +/* Implementing new Reno-2 + * For Reno-2: $f(x) = U_f(x_f) = \frac{{2}{D_f}}*ln(2+x*D_f)$ + * Therefore: $fp(x) = 2/(Df*x + 2) + * Therefore: $fpi(x) = (2*Df)/x - 4 + */ +#define RENO2_SCALING 1.0 +double func_reno2_f(lmm_variable_t var, double x) +{ + xbt_assert0(var->df > 0.0, "Don't call me with stupid values!"); + return RENO2_SCALING * (1.0/var->df) * log((x*var->df)/(2.0*x*var->df+3.0)); +} + +double func_reno2_fp(lmm_variable_t var, double x) +{ + return RENO2_SCALING * 3.0/(var->df*x*(2.0*var->df*x+3.0)); +} + +double func_reno2_fpi(lmm_variable_t var, double x) +{ + double res_fpi; + double tmp; + + xbt_assert0(x > 0.0, "Don't call me with stupid values!"); + tmp= x*var->df*var->df; + res_fpi= tmp*(9.0*x+24.0); + + if (res_fpi <= 0.0) + return 0.0; + res_fpi = RENO2_SCALING * (-3.0*tmp + sqrt(res_fpi))/(4.0*tmp); + return res_fpi; }