X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/6e99c3f212a73ef360ad80d8af6f760023b3cf1e..d4b2fe80fbab6343e6dce68a12eb522a2e0559b8:/src/kernel/lmm/lagrange.cpp diff --git a/src/kernel/lmm/lagrange.cpp b/src/kernel/lmm/lagrange.cpp index 500884e764..f9d999d821 100644 --- a/src/kernel/lmm/lagrange.cpp +++ b/src/kernel/lmm/lagrange.cpp @@ -29,9 +29,9 @@ namespace simgrid { namespace kernel { namespace lmm { -double (*func_f_def)(const s_lmm_variable_t&, double); -double (*func_fp_def)(const s_lmm_variable_t&, double); -double (*func_fpi_def)(const s_lmm_variable_t&, double); +double (*func_f_def)(const Variable&, double); +double (*func_fp_def)(const Variable&, double); +double (*func_fpi_def)(const Variable&, double); /* * Local prototypes to implement the Lagrangian optimization with optimal step, also called dichotomy. @@ -39,17 +39,16 @@ double (*func_fpi_def)(const s_lmm_variable_t&, double); // solves the proportional fairness using a Lagrangian optimization with dichotomy step void lagrange_solve(lmm_system_t sys); // computes the value of the dichotomy using a initial values, init, with a specific variable or constraint -static double dichotomy(double init, double diff(double, const s_lmm_constraint_t&), const s_lmm_constraint_t& cnst, - double min_error); +static double dichotomy(double init, double diff(double, const Constraint&), const Constraint& cnst, double min_error); // computes the value of the differential of constraint cnst applied to lambda -static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst); +static double partial_diff_lambda(double lambda, const Constraint& cnst); template static int __check_feasible(const CnstList& cnst_list, const VarList& var_list, int warn) { - for (s_lmm_constraint_t const& cnst : cnst_list) { + for (Constraint const& cnst : cnst_list) { double tmp = 0; - for (s_lmm_element_t const& elem : cnst.enabled_element_set) { + for (Element const& elem : cnst.enabled_element_set) { lmm_variable_t var = elem.variable; xbt_assert(var->sharing_weight > 0); tmp += var->value; @@ -63,7 +62,7 @@ static int __check_feasible(const CnstList& cnst_list, const VarList& var_list, XBT_DEBUG("Checking feasability for constraint (%p): sat = %f, lambda = %f ", &cnst, tmp - cnst.bound, cnst.lambda); } - for (s_lmm_variable_t const& var : var_list) { + for (Variable const& var : var_list) { if (not var.sharing_weight) break; if (var.bound < 0) @@ -79,11 +78,11 @@ static int __check_feasible(const CnstList& cnst_list, const VarList& var_list, return 1; } -static double new_value(const s_lmm_variable_t& var) +static double new_value(const Variable& var) { double tmp = 0; - for (s_lmm_element_t const& elem : var.cnsts) { + for (Element const& elem : var.cnsts) { tmp += elem.constraint->lambda; } if (var.bound > 0) @@ -93,12 +92,12 @@ static double new_value(const s_lmm_variable_t& var) return var.func_fpi(var, tmp); } -static double new_mu(const s_lmm_variable_t& var) +static double new_mu(const Variable& var) { double mu_i = 0.0; double sigma_i = 0.0; - for (s_lmm_element_t const& elem : var.cnsts) { + for (Element const& elem : var.cnsts) { sigma_i += elem.constraint->lambda; } mu_i = var.func_fp(var, var.bound) - sigma_i; @@ -112,13 +111,13 @@ static double dual_objective(const VarList& var_list, const CnstList& cnst_list) { double obj = 0.0; - for (s_lmm_variable_t const& var : var_list) { + for (Variable const& var : var_list) { double sigma_i = 0.0; if (not var.sharing_weight) break; - for (s_lmm_element_t const& elem : var.cnsts) + for (Element const& elem : var.cnsts) sigma_i += elem.constraint->lambda; if (var.bound > 0) @@ -132,7 +131,7 @@ static double dual_objective(const VarList& var_list, const CnstList& cnst_list) obj += var.mu * var.bound; } - for (s_lmm_constraint_t const& cnst : cnst_list) + for (Constraint const& cnst : cnst_list) obj += cnst.lambda * cnst.bound; return obj; @@ -161,18 +160,17 @@ void lagrange_solve(lmm_system_t sys) /* Initialize lambda. */ auto& cnst_list = sys->active_constraint_set; - for (s_lmm_constraint_t& cnst : cnst_list) { + for (Constraint& cnst : cnst_list) { cnst.lambda = 1.0; cnst.new_lambda = 2.0; XBT_DEBUG("#### cnst(%p)->lambda : %e", &cnst, cnst.lambda); } /* - * Initialize the var list variable with only the active variables. - * Associate an index in the swag variables. Initialize mu. + * Initialize the var_list variable with only the active variables. Initialize mu. */ auto& var_list = sys->variable_set; - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (not var.sharing_weight) var.value = 0.0; else { @@ -188,8 +186,8 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("#### var(%p) ->mu : %e", &var, var.mu); XBT_DEBUG("#### var(%p) ->weight: %e", &var, var.sharing_weight); XBT_DEBUG("#### var(%p) ->bound: %e", &var, var.bound); - auto weighted = std::find_if(begin(var.cnsts), end(var.cnsts), - [](s_lmm_element_t const& x) { return x.consumption_weight != 0.0; }); + auto weighted = + std::find_if(begin(var.cnsts), end(var.cnsts), [](Element const& x) { return x.consumption_weight != 0.0; }); if (weighted == end(var.cnsts)) var.value = 1.0; } @@ -206,7 +204,7 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("-------------- Gradient Descent ----------"); /* Improve the value of mu_i */ - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (var.sharing_weight && var.bound >= 0) { XBT_DEBUG("Working on var (%p)", &var); var.new_mu = new_mu(var); @@ -221,7 +219,7 @@ void lagrange_solve(lmm_system_t sys) } /* Improve the value of lambda_i */ - for (s_lmm_constraint_t& cnst : cnst_list) { + for (Constraint& cnst : cnst_list) { XBT_DEBUG("Working on cnst (%p)", &cnst); cnst.new_lambda = dichotomy(cnst.lambda, partial_diff_lambda, cnst, dichotomy_min_error); XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", &cnst, cnst.lambda, cnst.new_lambda); @@ -236,7 +234,7 @@ void lagrange_solve(lmm_system_t sys) /* Now computes the values of each variable (\rho) based on the values of \lambda and \mu. */ XBT_DEBUG("-------------- Check convergence ----------"); overall_modification = 0; - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (var.sharing_weight <= 0) var.value = 0.0; else { @@ -280,8 +278,7 @@ void lagrange_solve(lmm_system_t sys) * * @return a double corresponding to the result of the dichotomy process */ -static double dichotomy(double init, double diff(double, const s_lmm_constraint_t&), const s_lmm_constraint_t& cnst, - double min_error) +static double dichotomy(double init, double diff(double, const Constraint&), const Constraint& cnst, double min_error) { double min = init; double max = init; @@ -381,7 +378,7 @@ static double dichotomy(double init, double diff(double, const s_lmm_constraint_ return ((min + max) / 2.0); } -static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst) +static double partial_diff_lambda(double lambda, const Constraint& cnst) { double diff = 0.0; @@ -389,15 +386,15 @@ static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst) XBT_CDEBUG(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", &cnst); - for (s_lmm_element_t const& elem : cnst.enabled_element_set) { - s_lmm_variable_t& var = *elem.variable; + for (Element const& elem : cnst.enabled_element_set) { + Variable& var = *elem.variable; xbt_assert(var.sharing_weight > 0); XBT_CDEBUG(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", &var); // Initialize the summation variable double sigma_i = 0.0; // Compute sigma_i - for (s_lmm_element_t const& elem2 : var.cnsts) + for (Element const& elem2 : var.cnsts) sigma_i += elem2.constraint->lambda; // add mu_i if this flow has a RTT constraint associated @@ -425,9 +422,9 @@ static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst) * programming. * */ -void lmm_set_default_protocol_function(double (*func_f)(const s_lmm_variable_t& var, double x), - double (*func_fp)(const s_lmm_variable_t& var, double x), - double (*func_fpi)(const s_lmm_variable_t& var, double x)) +void set_default_protocol_function(double (*func_f)(const Variable& var, double x), + double (*func_fp)(const Variable& var, double x), + double (*func_fpi)(const Variable& var, double x)) { func_f_def = func_f; func_fp_def = func_fp; @@ -442,19 +439,19 @@ void lmm_set_default_protocol_function(double (*func_f)(const s_lmm_variable_t& * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ */ -double func_vegas_f(const s_lmm_variable_t& var, double x) +double func_vegas_f(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return VEGAS_SCALING * var.sharing_weight * log(x); } -double func_vegas_fp(const s_lmm_variable_t& var, double x) +double func_vegas_fp(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return VEGAS_SCALING * var.sharing_weight / x; } -double func_vegas_fpi(const s_lmm_variable_t& var, double x) +double func_vegas_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return var.sharing_weight / (x / VEGAS_SCALING); @@ -465,19 +462,19 @@ double func_vegas_fpi(const s_lmm_variable_t& var, double x) * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ */ -double func_reno_f(const s_lmm_variable_t& var, double x) +double func_reno_f(const Variable& var, double x) { xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); return RENO_SCALING * sqrt(3.0 / 2.0) / var.sharing_weight * atan(sqrt(3.0 / 2.0) * var.sharing_weight * x); } -double func_reno_fp(const s_lmm_variable_t& var, double x) +double func_reno_fp(const Variable& var, double x) { return RENO_SCALING * 3.0 / (3.0 * var.sharing_weight * var.sharing_weight * x * x + 2.0); } -double func_reno_fpi(const s_lmm_variable_t& var, double x) +double func_reno_fpi(const Variable& var, double x) { double res_fpi; @@ -496,19 +493,19 @@ double func_reno_fpi(const s_lmm_variable_t& var, double x) * Therefore: $fp(x) = 2/(Weight*x + 2) * Therefore: $fpi(x) = (2*Weight)/x - 4 */ -double func_reno2_f(const s_lmm_variable_t& var, double x) +double func_reno2_f(const Variable& var, double x) { xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); return RENO2_SCALING * (1.0 / var.sharing_weight) * log((x * var.sharing_weight) / (2.0 * x * var.sharing_weight + 3.0)); } -double func_reno2_fp(const s_lmm_variable_t& var, double x) +double func_reno2_fp(const Variable& var, double x) { return RENO2_SCALING * 3.0 / (var.sharing_weight * x * (2.0 * var.sharing_weight * x + 3.0)); } -double func_reno2_fpi(const s_lmm_variable_t& var, double x) +double func_reno2_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values!"); double tmp = x * var.sharing_weight * var.sharing_weight;