X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/611d822b02f836d7abe031cced6adc4281ef4356..5b576eb1c0ab1acba1ceb0808b3708efe8a26dc1:/include/simgrid/simix.hpp diff --git a/include/simgrid/simix.hpp b/include/simgrid/simix.hpp index ac29c00906..9539451154 100644 --- a/include/simgrid/simix.hpp +++ b/include/simgrid/simix.hpp @@ -1,4 +1,4 @@ -/* Copyright (c) 2007-2018. The SimGrid Team. +/* Copyright (c) 2007-2019. The SimGrid Team. * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it @@ -12,45 +12,70 @@ #include #include -#include +#include #include +#include -XBT_PUBLIC void simcall_run_kernel(std::function const& code); +XBT_PUBLIC void simcall_run_kernel(std::function const& code, simgrid::mc::SimcallInspector* t); +XBT_PUBLIC void simcall_run_blocking(std::function const& code, simgrid::mc::SimcallInspector* t); -/** Execute some code in the kernel and block +namespace simgrid { +namespace kernel { +namespace actor { + +/** Execute some code in kernel context on behalf of the user code. + * + * Every modification of the environment must be protected this way: every setter, constructor and similar. + * Getters don't have to be protected this way. * - * run_blocking() is a generic blocking simcall. It is given a callback - * which is executed immediately in the SimGrid kernel. The callback is - * responsible for setting the suitable logic for waking up the process - * when needed. + * This allows deterministic parallel simulation without any locking, even if almost nobody uses parallel simulation in + * SimGrid. More interestingly it makes every modification of the simulated world observable by the model-checker, + * allowing the whole MC business. * - * @ref simix::kernelSync() is a higher level wrapper for this. + * It is highly inspired from the syscalls in a regular operating system, allowing the user code to get some specific + * code executed in the kernel context. But here, there is almost no security involved. Parameters get checked for + * finitness but that's all. The main goal remain to ensure reproductible ordering of uncomparable events (in [parallel] + * simulation) and observability of events (in model-checking). + * + * The code passed as argument is supposed to terminate at the exact same simulated timestamp. + * Do not use it if your code may block waiting for a subsequent event, e.g. if you lock a mutex, + * you may need to wait for that mutex to be unlocked by its current owner. + * Potentially blocking simcall must be issued using simcall_blocking(), right below in this file. */ -XBT_PUBLIC void simcall_run_blocking(std::function const& code); - -template inline -void simcall_run_kernel(F& f) +template typename std::result_of::type simcall(F&& code, mc::SimcallInspector* t = nullptr) { - simcall_run_kernel(std::function(std::ref(f))); -} -template inline -void simcall_run_blocking(F& f) -{ - simcall_run_blocking(std::function(std::ref(f))); -} - -namespace simgrid { + // If we are in the maestro, we take the fast path and execute the + // code directly without simcall mashalling/unmarshalling/dispatch: + if (SIMIX_is_maestro()) + return std::forward(code)(); -namespace simix { + // If we are in the application, pass the code to the maestro which + // executes it for us and reports the result. We use a std::future which + // conveniently handles the success/failure value for us. + typedef typename std::result_of::type R; + simgrid::xbt::Result result; + simcall_run_kernel([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, t); + return result.get(); +} -/** Execute some code in the kernel/maestro +/** Execute some code (that does not return immediately) in kernel context + * + * This is very similar to simcall() right above, but the calling actor will not get rescheduled until + * actor->simcall_answer() is called explicitely. + * + * Since the return value does not come from the lambda directly, its type cannot be guessed automatically and must + * be provided as template parameter. * - * This can be used to enforce mutual exclusion with other simcall. - * More importantly, this enforces a deterministic/reproducible ordering - * of the operation with respect to other simcalls. + * This is meant for blocking actions. For example, locking a mutex is a blocking simcall. + * First it's a simcall because that's obviously a modification of the world. Then, that's a blocking simcall because if + * the mutex happens not to be free, the actor is added to a queue of actors in the mutex. Every mutex->unlock() takes + * the first actor from the queue, mark it as current owner of the mutex and call actor->simcall_answer() to mark that + * this mutex is now unblocked and ready to run again. If the mutex is initially free, the calling actor is unblocked + * right away with actor->simcall_answer() once the mutex is marked as locked. + * + * If your code never calls actor->simcall_answer() itself, the actor will never return from its simcall. */ -template -typename std::result_of::type kernelImmediate(F&& code) +template R simcall_blocking(F&& code, mc::SimcallInspector* t = nullptr) { // If we are in the maestro, we take the fast path and execute the // code directly without simcall mashalling/unmarshalling/dispatch: @@ -60,68 +85,72 @@ typename std::result_of::type kernelImmediate(F&& code) // If we are in the application, pass the code to the maestro which // executes it for us and reports the result. We use a std::future which // conveniently handles the success/failure value for us. - typedef typename std::result_of::type R; simgrid::xbt::Result result; - simcall_run_kernel([&]{ - xbt_assert(SIMIX_is_maestro(), "Not in maestro"); - simgrid::xbt::fulfillPromise(result, std::forward(code)); - }); + simcall_run_blocking([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, t); return result.get(); } +} // namespace actor +} // namespace kernel +} // namespace simgrid +namespace simgrid { +namespace simix { -XBT_PUBLIC const std::vector& process_get_runnable(); +XBT_ATTRIB_DEPRECATED_v325("Please manifest if you actually need this function") + XBT_PUBLIC const std::vector& process_get_runnable(); // What's executed as SIMIX actor code: typedef std::function ActorCode; -// Create ActorCode based on argv: +// Create an ActorCode based on a std::string typedef std::function args)> ActorCodeFactory; -XBT_PUBLIC void registerFunction(const char* name, ActorCodeFactory factory); +XBT_PUBLIC void register_function(const std::string& name, const ActorCodeFactory& factory); -/** These functions will be called when we detect a deadlock: any remaining process is locked on an action - * - * If these functions manage to unlock some of the processes, then the deadlock will be avoided. - */ -extern simgrid::xbt::signal onDeadlock; -} -} +typedef std::pair TimerQelt; +static boost::heap::fibonacci_heap>> simix_timers; -/* - * Type of function that creates a process. - * The function must accept the following parameters: - * void* process: the process created will be stored there - * const char *name: a name for the object. It is for user-level information and can be NULL - * xbt_main_func_t code: is a function describing the behavior of the process - * void *data: data a pointer to any data one may want to attach to the new object. - * sg_host_t host: the location where the new process is executed - * int argc, char **argv: parameters passed to code - * std::map* props: properties - */ -typedef smx_actor_t (*smx_creation_func_t)( - /* name */ const char*, std::function code, - /* userdata */ void*, - /* hostname */ sg_host_t, - /* props */ std::map*, - /* parent_process */ smx_actor_t); +/** @brief Timer datatype */ +class Timer { + double date = 0.0; -extern "C" XBT_PUBLIC void SIMIX_function_register_process_create(smx_creation_func_t function); +public: + decltype(simix_timers)::handle_type handle_; -XBT_PUBLIC smx_actor_t simcall_process_create(const char* name, std::function code, void* data, sg_host_t host, - std::map* properties); + Timer(double date, simgrid::xbt::Task&& callback) : date(date), callback(std::move(callback)) {} -XBT_PUBLIC smx_timer_t SIMIX_timer_set(double date, simgrid::xbt::Task callback); + simgrid::xbt::Task callback; + double get_date() { return date; } + void remove(); -template inline -smx_timer_t SIMIX_timer_set(double date, F callback) -{ - return SIMIX_timer_set(date, simgrid::xbt::Task(std::move(callback))); -} + template static inline Timer* set(double date, F callback) + { + return set(date, simgrid::xbt::Task(std::move(callback))); + } -template inline -smx_timer_t SIMIX_timer_set(double date, R(*callback)(T*), T* arg) -{ - return SIMIX_timer_set(date, [=](){ callback(arg); }); -} + template + XBT_ATTRIB_DEPRECATED_v325("Please use a lambda or std::bind") static inline Timer* set(double date, + R (*callback)(T*), T* arg) + { + return set(date, std::bind(callback, arg)); + } + + XBT_ATTRIB_DEPRECATED_v325("Please use a lambda or std::bind") static Timer* set(double date, void (*callback)(void*), + void* arg) + { + return set(date, std::bind(callback, arg)); + } + static Timer* set(double date, simgrid::xbt::Task&& callback); + static double next() { return simix_timers.empty() ? -1.0 : simix_timers.top().first; } +}; + +} // namespace simix +} // namespace simgrid + +XBT_PUBLIC smx_actor_t simcall_process_create(const std::string& name, const simgrid::simix::ActorCode& code, + void* data, sg_host_t host, + std::unordered_map* properties); + +XBT_ATTRIB_DEPRECATED_v325("Please use simgrid::xbt::Timer::set") XBT_PUBLIC smx_timer_t + SIMIX_timer_set(double date, simgrid::xbt::Task&& callback); #endif