X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/509304ee1435b62cd49eb9071995fab468f68f58..12900371925594a27b91457d6db67020eb4df4e5:/src/xbt/heap.c diff --git a/src/xbt/heap.c b/src/xbt/heap.c index 394056d779..f2f75bab0f 100644 --- a/src/xbt/heap.c +++ b/src/xbt/heap.c @@ -1,36 +1,61 @@ /* a generic and efficient heap */ -/* Authors: Arnaud Legrand */ +/* Copyright (c) 2004-2005, 2007-2014. The SimGrid Team. + * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it - under the terms of the license (GNU LGPL) which comes with this package. */ + * under the terms of the license (GNU LGPL) which comes with this package. */ #include "xbt/sysdep.h" -#include "xbt/error.h" +#include "xbt/log.h" #include "heap_private.h" +#include +XBT_LOG_NEW_DEFAULT_SUBCATEGORY(xbt_heap, xbt, "Heap"); + +static void xbt_heap_max_heapify(xbt_heap_t H, int i); +static void xbt_heap_increase_key(xbt_heap_t H, int i); + +/** @addtogroup XBT_heap + * \brief This section describes the API to generic heap with O(log(n)) access. + */ + /** - * xbt_heap_new: - * @init_size: initial size of the heap - * @free_func: function to call on each element when you want to free the whole heap (or NULL if nothing to do). + * @brief Creates a new heap. + * \param init_size initial size of the heap + * \param free_func function to call on each element when you want to free + * the whole heap (or NULL if nothing to do). * * Creates a new heap. */ -xbt_heap_t xbt_heap_new(int init_size, void_f_pvoid_t * const free_func) +XBT_INLINE xbt_heap_t xbt_heap_new(int init_size, + void_f_pvoid_t const free_func) { xbt_heap_t H = xbt_new0(struct xbt_heap, 1); H->size = init_size; H->count = 0; - H->items = (xbt_heapItem_t) xbt_new0(struct xbt_heapItem, init_size); + H->items = (xbt_heap_item_t) xbt_new0(struct xbt_heap_item, init_size); H->free = free_func; return H; } /** - * xbt_heap_free: - * @H: poor victim - * - * kilkil a heap and its content + * @brief Set the update callback function. + * @param H the heap we're working on + * \param update_callback function to call on each element to update its index when needed. + */ +XBT_INLINE void xbt_heap_set_update_callback(xbt_heap_t H, + void (*update_callback) (void + *, + int)) +{ + H->update_callback = update_callback; +} + + +/** + * @brief kilkil a heap and its content + * @param H poor victim */ void xbt_heap_free(xbt_heap_t H) { @@ -38,52 +63,55 @@ void xbt_heap_free(xbt_heap_t H) if (H->free) for (i = 0; i < H->count; i++) H->free(H->items[i].content); - xbt_free(H->items); - xbt_free(H); + free(H->items); + free(H); return; } /** - * xbt_heap_size: - * @H: the heap we're working on - * - * returns the number of elements in the heap + * @brief returns the number of elements in the heap + * @param H the heap we're working on + * @return the number of elements in the heap */ -int xbt_heap_size(xbt_heap_t H) +XBT_INLINE int xbt_heap_size(xbt_heap_t H) { return (H->count); } /** - * xbt_heap_push: - * @H: the heap we're working on - * @content: the object you want to add to the heap - * @key: the key associated to this object + * @brief Add an element into the heap. + * \param H the heap we're working on + * \param content the object you want to add to the heap + * \param key the key associated to this object * - * Add an element int the heap. The element with the smallest key is - * automatically moved at the top of the heap. + * The element with the smallest key is automatically moved at the top of the heap. */ -void xbt_heap_push(xbt_heap_t H, void *content, xbt_heap_float_t key) +void xbt_heap_push(xbt_heap_t H, void *content, double key) { int count = ++(H->count); + int size = H->size; - xbt_heapItem_t item; + xbt_heap_item_t item; + if (count > size) { - H->size = 2 * size + 1; + H->size = (size << 1) + 1; H->items = - (void *) realloc(H->items, - (H->size) * sizeof(struct xbt_heapItem)); + (void *) xbt_realloc(H->items, + (H->size) * sizeof(struct xbt_heap_item)); } + item = &(H->items[count - 1]); item->key = key; item->content = content; - xbt_heap_increaseKey(H, count - 1); + xbt_heap_increase_key(H, count - 1); + XBT_DEBUG("Heap has now %d elements and max elem is %g",xbt_heap_size(H),xbt_heap_maxkey(H)); return; } /** - * xbt_heap_pop: - * @H: the heap we're working on + * @brief Extracts from the heap and returns the element with the smallest key. + * \param H the heap we're working on + * \return the element with the smallest key * * Extracts from the heap and returns the element with the smallest * key. The element with the next smallest key is automatically moved @@ -91,92 +119,173 @@ void xbt_heap_push(xbt_heap_t H, void *content, xbt_heap_float_t key) */ void *xbt_heap_pop(xbt_heap_t H) { - void *max ; + xbt_heap_item_t items = H->items; + int size = H->size; + void *max; + + if (H->count == 0) + return NULL; - if(H->count==0) return NULL; + XBT_DEBUG("Heap has %d elements before extraction and max elem was %g",xbt_heap_size(H),xbt_heap_maxkey(H)); max = CONTENT(H, 0); - H->items[0] = H->items[(H->count) - 1]; + items[0] = items[(H->count) - 1]; (H->count)--; - xbt_heap_maxHeapify(H); - if (H->count < H->size / 4 && H->size > 16) { - H->size = H->size / 2 + 1; + xbt_heap_max_heapify(H,0); + if (H->count < size >> 2 && size > 16) { + size = (size >> 1) + 1; H->items = - (void *) realloc(H->items, - (H->size) * sizeof(struct xbt_heapItem)); + (void *) xbt_realloc(items, + size * sizeof(struct xbt_heap_item)); + H->size = size; } + + if (H->update_callback) + H->update_callback(max, -1); return max; } /** - * xbt_heap_maxkey: - * @H: the heap we're working on + * @brief Extracts from the heap and returns the element at position i. + * \param H the heap we're working on + * \param i element position + * \return the element at position i if ok, NULL otherwise * - * Returns the smallest key in the heap without modifying the heap. + * Extracts from the heap and returns the element at position i. The heap is automatically reorded. */ -xbt_heap_float_t xbt_heap_maxkey(xbt_heap_t H) +void *xbt_heap_remove(xbt_heap_t H, int i) { - if(H->count==0) abort(); + XBT_DEBUG("Heap has %d elements: extracting element %d",xbt_heap_size(H),i); + + if ((i < 0) || (i > H->count - 1)) + return NULL; + /* put element i at head */ + if (i > 0) { + KEY(H, i) = MIN_KEY_VALUE; + xbt_heap_increase_key(H, i); + } + + return xbt_heap_pop(H); +} +/** @brief Remove an arbitrary element from the heap + * @param H the heap we're working on + * @param content the object you want to add to the heap + * @param key the key associated to this object + */ +void xbt_heap_rm_elm(xbt_heap_t H, void *content, double key) { + int i=0; + while (i < H->count && (KEY(H, i) != key || CONTENT(H, i) != content)) + i++; + if (i == H->count) + return; + xbt_heap_remove(H,i); +} + +/** + * @brief Updates an element of the heap with a new value. + * \param H the heap we're working on + * \param i element position + * \param key new value for the element + * + * Updates an element of the heap with a new value. + */ +void xbt_heap_update(xbt_heap_t H, int i, double key) +{ + XBT_DEBUG("Heap has %d elements: updating element %d : was %1.12f to %1.12f ",xbt_heap_size(H),i,KEY(H, i), key); + + if ((i < 0) || (i > H->count - 1) || key == KEY(H, i)) + return ; + + if(key< KEY(H, i)){ + KEY(H, i)=key; + xbt_heap_increase_key(H, i); + }else{ + KEY(H, i)=key; + xbt_heap_max_heapify(H,i); + } +} + +/** + * @brief returns the smallest key in the heap (heap unchanged) + * \param H the heap we're working on + * + * \return the smallest key in the heap without modifying the heap. + */ +XBT_INLINE double xbt_heap_maxkey(xbt_heap_t H) +{ + xbt_assert(H->count != 0, "Empty heap"); return KEY(H, 0); } /** - * xbt_heap_maxcontent: - * @H: the heap we're working on + * @brief returns the value associated to the smallest key in the heap (heap unchanged) + * \param H the heap we're working on * - * Returns the value associated to the smallest key in the heap + * \return the value associated to the smallest key in the heap * without modifying the heap. */ void *xbt_heap_maxcontent(xbt_heap_t H) { - if(H->count==0) abort(); + xbt_assert(H->count != 0, "Empty heap"); return CONTENT(H, 0); } -/** - * xbt_heap_maxcontent: - * @H: the heap we're working on - * +/* <<<< private >>>> + * \param H the heap we're working on + * * Restores the heap property once an element has been deleted. */ -static void xbt_heap_maxHeapify(xbt_heap_t H) +static void xbt_heap_max_heapify(xbt_heap_t H, int index) { - int i = 0; + int i = index; + int count = H->count; + xbt_heap_item_t items = H->items; + while (1) { int greatest = i; int l = LEFT(i); - int r = RIGHT(i); - int count = H->count; - if (l < count && KEY(H, l) < KEY(H, i)) + int r = l + 1; + if (l < count && items[l].key < items[i].key) greatest = l; - if (r < count && KEY(H, r) < KEY(H, greatest)) + if (r < count && items[r].key < items[greatest].key) greatest = r; if (greatest != i) { - struct xbt_heapItem tmp = H->items[i]; - H->items[i] = H->items[greatest]; - H->items[greatest] = tmp; + struct xbt_heap_item tmp = items[i]; + items[i] = items[greatest]; + items[greatest] = tmp; + if (H->update_callback) + H->update_callback(items[i].content, i); i = greatest; - } else + } else { + if (H->update_callback) + H->update_callback(items[i].content, i); return; + } } } -/** - * xbt_heap_maxcontent: - * @H: the heap we're working on - * @i: an item position in the heap - * +/* <<<< private >>>> + * \param H the heap we're working on + * \param i an item position in the heap + * * Moves up an item at position i to its correct position. Works only * when called from xbt_heap_push. Do not use otherwise. */ -static void xbt_heap_increaseKey(xbt_heap_t H, int i) +static void xbt_heap_increase_key(xbt_heap_t H, int i) { - while (i > 0 && KEY(H, PARENT(i)) > KEY(H, i)) { - struct xbt_heapItem tmp = H->items[i]; - H->items[i] = H->items[PARENT(i)]; - H->items[PARENT(i)] = tmp; - i = PARENT(i); + xbt_heap_item_t items = H->items; + int p = PARENT(i); + while (i > 0 && items[p].key > items[i].key) { + struct xbt_heap_item tmp = items[i]; + items[i] = items[p]; + items[p] = tmp; + if (H->update_callback) + H->update_callback(items[i].content, i); + i = p; + p = PARENT(i); } + if (H->update_callback) + H->update_callback(items[i].content, i); return; }