X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/347996b4a10c4e8579080692afa60e0afb88b60a..fcf33975379cd050a6d70b94ae7857910dd01217:/include/simgrid/simix.hpp diff --git a/include/simgrid/simix.hpp b/include/simgrid/simix.hpp index fb3fd5aa5d..9e3ec63a77 100644 --- a/include/simgrid/simix.hpp +++ b/include/simgrid/simix.hpp @@ -1,4 +1,4 @@ -/* Copyright (c) 2007-2010, 2012-2015. The SimGrid Team. +/* Copyright (c) 2007-2022. The SimGrid Team. * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it @@ -7,235 +7,117 @@ #ifndef SIMGRID_SIMIX_HPP #define SIMGRID_SIMIX_HPP -#include +#include +#include +#include #include -#include -#include -#include -#include -#include +#include -#include -#include - -XBT_PUBLIC(void) simcall_run_kernel(std::function const& code); +XBT_PUBLIC void simcall_run_answered(std::function const& code, + simgrid::kernel::actor::SimcallObserver* observer); +XBT_PUBLIC void simcall_run_blocking(std::function const& code, + simgrid::kernel::actor::SimcallObserver* observer); +XBT_PUBLIC void simcall_run_object_access(std::function const& code, + simgrid::kernel::actor::ObjectAccessSimcallItem* item); namespace simgrid { -namespace simix { - -/** Fulfill a promise by executing a given code */ -template -void fulfill_promise(std::promise& promise, F&& code) -{ - try { - promise.set_value(std::forward(code)()); - } - catch(...) { - promise.set_exception(std::current_exception()); - } -} +namespace kernel { +namespace actor { -/** Fulfill a promise by executing a given code +/** Execute some code in kernel context on behalf of the user code. * - * This is a special version for `std::promise` because the default - * version does not compile in this case. - */ -template -void fulfill_promise(std::promise& promise, F&& code) -{ - try { - std::forward(code)(); - promise.set_value(); - } - catch(...) { - promise.set_exception(std::current_exception()); - } -} - -/** Execute some code in the kernel/maestro + * Every modification of the environment must be protected this way: every setter, constructor and similar. + * Getters don't have to be protected this way, and setters may use the simcall_object_access() variant (see below). + * + * This allows deterministic parallel simulation without any locking, even if almost nobody uses parallel simulation in + * SimGrid. More interestingly it makes every modification of the simulated world observable by the model-checker, + * allowing the whole MC business. * - * This can be used to enforce mutual exclusion with other simcall. - * More importantly, this enforces a deterministic/reproducible ordering - * of the operation with respect to other simcalls. + * It is highly inspired from the syscalls in a regular operating system, allowing the user code to get some specific + * code executed in the kernel context. But here, there is almost no security involved. Parameters get checked for + * finiteness but that's all. The main goal remain to ensure reproducible ordering of uncomparable events (in + * [parallel] simulation) and observability of events (in model-checking). + * + * The code passed as argument is supposed to terminate at the exact same simulated timestamp. + * Do not use it if your code may block waiting for a subsequent event, e.g. if you lock a mutex, + * you may need to wait for that mutex to be unlocked by its current owner. + * Potentially blocking simcall must be issued using simcall_blocking(), right below in this file. */ -template -typename std::result_of::type kernel(F&& code) +template typename std::result_of_t simcall_answered(F&& code, SimcallObserver* observer = nullptr) { // If we are in the maestro, we take the fast path and execute the - // code directly without simcall mashalling/unmarshalling/dispatch: - if (SIMIX_is_maestro()) + // code directly without simcall marshalling/unmarshalling/dispatch: + if (s4u::Actor::is_maestro()) return std::forward(code)(); - // If we are in the application, pass the code to the maestro which is + // If we are in the application, pass the code to the maestro which // executes it for us and reports the result. We use a std::future which // conveniently handles the success/failure value for us. - typedef typename std::result_of::type R; - std::promise promise; - simcall_run_kernel([&]{ - xbt_assert(SIMIX_is_maestro(), "Not in maestro"); - fulfill_promise(promise, std::forward(code)); - }); - return promise.get_future().get(); + using R = typename std::result_of_t; + simgrid::xbt::Result result; + simcall_run_answered([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, observer); + return result.get(); } -class args { -private: - int argc_; - char** argv_; -public: - - // Main constructors - args() : argc_(0), argv_(nullptr) {} - args(int argc, char** argv) : argc_(argc), argv_(argv) {} - - // Free - void clear() - { - for (int i = 0; i < this->argc_; i++) - free(this->argv_[i]); - free(this->argv_); - this->argc_ = 0; - this->argv_ = nullptr; - } - ~args() { clear(); } - - // Copy - args(args const& that) = delete; - args& operator=(args const& that) = delete; - - // Move: - args(args&& that) : argc_(that.argc_), argv_(that.argv_) - { - that.argc_ = 0; - that.argv_ = nullptr; - } - args& operator=(args&& that) - { - this->argc_ = that.argc_; - this->argv_ = that.argv_; - that.argc_ = 0; - that.argv_ = nullptr; - return *this; - } - - int argc() const { return argc_; } - char** argv() { return argv_; } - const char*const* argv() const { return argv_; } - char* operator[](std::size_t i) { return argv_[i]; } -}; - -inline -std::function wrap_main(xbt_main_func_t code, int argc, char **argv) +/** Use a setter on the `item` object. That's a simcall only if running in parallel or with MC activated. + * + * Simulation without MC and without parallelism (contexts/nthreads=1) will not pay the price of a simcall for an + * harmless setter. When running in parallel, you want your write access to be done in a mutual exclusion way, while the + * getters can still occure out of order. + * + * When running in MC, you want to make this access visible to the checker. Actually in this case, it's not visible from + * the checker (and thus still use a fast track) if the setter is called from the actor that created the object. + */ +template typename std::result_of_t simcall_object_access(ObjectAccessSimcallItem* item, F&& code) { - if (code) { - auto arg = std::make_shared(argc, argv); - return [=]() { - code(arg->argc(), arg->argv()); - }; - } - // TODO, we should free argv - else return std::function(); -} - -class Context; -class ContextFactory; - -XBT_PUBLIC_CLASS ContextFactory { -private: - std::string name_; -public: - - ContextFactory(std::string name) : name_(std::move(name)) {} - virtual ~ContextFactory(); - virtual Context* create_context(std::function code, - void_pfn_smxprocess_t cleanup, smx_process_t process) = 0; - - // Optional methods for attaching main() as a context: - - /** Creates a context from the current context of execution - * - * This will not work on all implementation of `ContextFactory`. - */ - virtual Context* attach(void_pfn_smxprocess_t cleanup_func, smx_process_t process); - virtual Context* create_maestro(std::function code, smx_process_t process); - - virtual void run_all() = 0; - virtual Context* self(); - std::string const& name() const - { - return name_; - } -private: - void declare_context(void* T, std::size_t size); -protected: - template - T* new_context(Args&&... args) - { - T* context = new T(std::forward(args)...); - this->declare_context(context, sizeof(T)); - return context; - } -}; - -XBT_PUBLIC_CLASS Context { -private: - std::function code_; - void_pfn_smxprocess_t cleanup_func_ = nullptr; - smx_process_t process_ = nullptr; -public: - bool iwannadie; -public: - Context(std::function code, - void_pfn_smxprocess_t cleanup_func, - smx_process_t process); - void operator()() - { - code_(); - } - bool has_code() const - { - return (bool) code_; - } - smx_process_t process() - { - return this->process_; - } - void set_cleanup(void_pfn_smxprocess_t cleanup) - { - cleanup_func_ = cleanup; - } - - // Virtual methods - virtual ~Context(); - virtual void stop(); - virtual void suspend() = 0; -}; - -XBT_PUBLIC_CLASS AttachContext : public Context { -public: - - AttachContext(std::function code, - void_pfn_smxprocess_t cleanup_func, - smx_process_t process) - : Context(std::move(code), cleanup_func, process) - {} - - ~AttachContext(); + // If we are in the maestro, we take the fast path and execute the code directly + if (simgrid::s4u::Actor::is_maestro()) + return std::forward(code)(); - /** Called by the context when it is ready to give control - * to the maestro. - */ - virtual void attach_start() = 0; + // If called from another thread, do a real simcall. It will be short-cut on need + using R = typename std::result_of_t; + simgrid::xbt::Result result; + simcall_run_object_access([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, item); - /** Called by the context when it has finished its job */ - virtual void attach_stop() = 0; -}; + return result.get(); +} -XBT_PUBLIC(void) set_maestro(std::function code); -XBT_PUBLIC(void) create_maestro(std::function code); +/** Execute some code (that does not return immediately) in kernel context + * + * This is very similar to simcall_answered() above, but the calling actor will not get rescheduled until + * actor->simcall_answer() is called explicitly. + * + * This is meant for blocking actions. For example, locking a mutex is a blocking simcall. + * First it's a simcall because that's obviously a modification of the world. Then, that's a blocking simcall because if + * the mutex happens not to be free, the actor is added to a queue of actors in the mutex. Every mutex->unlock() takes + * the first actor from the queue, mark it as current owner of the mutex and call actor->simcall_answer() to mark that + * this mutex is now unblocked and ready to run again. If the mutex is initially free, the calling actor is unblocked + * right away with actor->simcall_answer() once the mutex is marked as locked. + * + * If your code never calls actor->simcall_answer() itself, the actor will never return from its simcall. + * + * The return value is obtained from observer->get_result() if it exists. Otherwise void is returned. + */ +template void simcall_blocking(F&& code, SimcallObserver* observer = nullptr) +{ + xbt_assert(not s4u::Actor::is_maestro(), "Cannot execute blocking call in kernel mode"); -} + // Pass the code to the maestro which executes it for us and reports the result. We use a std::future which + // conveniently handles the success/failure value for us. + simgrid::xbt::Result result; + simcall_run_blocking([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward(code)); }, observer); + result.get(); // rethrow stored exception if any } +template +auto simcall_blocking(F&& code, Observer* observer) -> decltype(observer->get_result()) +{ + simcall_blocking(std::forward(code), static_cast(observer)); + return observer->get_result(); +} +// compact namespaces are C++17 and this is a public header file so let's stick to C++14 +} // namespace actor +} // namespace kernel +} // namespace simgrid #endif