X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/27f7006d3136f93a67086f125afca174554c3f5e..8cd6895f11e7da5ddbb04fbc117ae1f3244cca29:/src/kernel/lmm/lagrange.cpp diff --git a/src/kernel/lmm/lagrange.cpp b/src/kernel/lmm/lagrange.cpp index bb355c5f27..98b6fd2aeb 100644 --- a/src/kernel/lmm/lagrange.cpp +++ b/src/kernel/lmm/lagrange.cpp @@ -1,4 +1,4 @@ -/* Copyright (c) 2007-2017. The SimGrid Team. All rights reserved. */ +/* Copyright (c) 2007-2018. The SimGrid Team. All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ @@ -12,156 +12,131 @@ #include "xbt/sysdep.h" #include -#include -#ifndef MATH #include -#endif +#include XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_lagrange, surf, "Logging specific to SURF (lagrange)"); XBT_LOG_NEW_SUBCATEGORY(surf_lagrange_dichotomy, surf_lagrange, "Logging specific to SURF (lagrange dichotomy)"); -#define SHOW_EXPR(expr) XBT_CDEBUG(surf_lagrange, #expr " = %g", expr); -#define VEGAS_SCALING 1000.0 -#define RENO_SCALING 1.0 -#define RENO2_SCALING 1.0 +static constexpr double VEGAS_SCALING = 1000.0; +static constexpr double RENO_SCALING = 1.0; +static constexpr double RENO2_SCALING = 1.0; namespace simgrid { namespace kernel { namespace lmm { -double (*func_f_def)(lmm_variable_t, double); -double (*func_fp_def)(lmm_variable_t, double); -double (*func_fpi_def)(lmm_variable_t, double); +double (*func_f_def)(const Variable&, double); +double (*func_fp_def)(const Variable&, double); +double (*func_fpi_def)(const Variable&, double); + +System* make_new_lagrange_system(bool selective_update) +{ + return new Lagrange(selective_update); +} /* * Local prototypes to implement the Lagrangian optimization with optimal step, also called dichotomy. */ -// solves the proportional fairness using a Lagrangian optimization with dichotomy step -void lagrange_solve(lmm_system_t sys); // computes the value of the dichotomy using a initial values, init, with a specific variable or constraint -static double dichotomy(double init, double diff(double, void*), void* var_cnst, double min_error); -// computes the value of the differential of constraint param_cnst applied to lambda -static double partial_diff_lambda(double lambda, void* param_cnst); +static double dichotomy(double init, double diff(double, const Constraint&), const Constraint& cnst, double min_error); +// computes the value of the differential of constraint cnst applied to lambda +static double partial_diff_lambda(double lambda, const Constraint& cnst); -static int __check_feasible(xbt_swag_t cnst_list, xbt_swag_t var_list, int warn) +bool Lagrange::check_feasible(bool warn) { - void* _cnst; - void* _elem; - void* _var; - xbt_swag_t elem_list = nullptr; - lmm_element_t elem = nullptr; - lmm_constraint_t cnst = nullptr; - lmm_variable_t var = nullptr; - - xbt_swag_foreach(_cnst, cnst_list) - { - cnst = static_cast(_cnst); + for (Constraint const& cnst : active_constraint_set) { double tmp = 0; - elem_list = &(cnst->enabled_element_set); - xbt_swag_foreach(_elem, elem_list) - { - elem = static_cast(_elem); - var = elem->variable; + for (Element const& elem : cnst.enabled_element_set) { + Variable* var = elem.variable; xbt_assert(var->sharing_weight > 0); tmp += var->value; } - if (double_positive(tmp - cnst->bound, sg_maxmin_precision)) { + if (double_positive(tmp - cnst.bound, sg_maxmin_precision)) { if (warn) - XBT_WARN("The link (%p) is over-used. Expected less than %f and got %f", cnst, cnst->bound, tmp); - return 0; + XBT_WARN("The link (%p) is over-used. Expected less than %f and got %f", &cnst, cnst.bound, tmp); + return false; } - XBT_DEBUG("Checking feasability for constraint (%p): sat = %f, lambda = %f ", cnst, tmp - cnst->bound, - cnst->lambda); + XBT_DEBUG("Checking feasability for constraint (%p): sat = %f, lambda = %f ", &cnst, tmp - cnst.bound, cnst.lambda); } - xbt_swag_foreach(_var, var_list) - { - var = static_cast(_var); - if (not var->sharing_weight) + for (Variable const& var : variable_set) { + if (not var.sharing_weight) break; - if (var->bound < 0) + if (var.bound < 0) continue; - XBT_DEBUG("Checking feasability for variable (%p): sat = %f mu = %f", var, var->value - var->bound, var->mu); + XBT_DEBUG("Checking feasability for variable (%p): sat = %f mu = %f", &var, var.value - var.bound, var.mu); - if (double_positive(var->value - var->bound, sg_maxmin_precision)) { + if (double_positive(var.value - var.bound, sg_maxmin_precision)) { if (warn) - XBT_WARN("The variable (%p) is too large. Expected less than %f and got %f", var, var->bound, var->value); - return 0; + XBT_WARN("The variable (%p) is too large. Expected less than %f and got %f", &var, var.bound, var.value); + return false; } } - return 1; + return true; } -static double new_value(lmm_variable_t var) +static double new_value(const Variable& var) { double tmp = 0; - for (s_lmm_element_t const& elem : var->cnsts) { + for (Element const& elem : var.cnsts) { tmp += elem.constraint->lambda; } - if (var->bound > 0) - tmp += var->mu; - XBT_DEBUG("\t Working on var (%p). cost = %e; Weight = %e", var, tmp, var->sharing_weight); + if (var.bound > 0) + tmp += var.mu; + XBT_DEBUG("\t Working on var (%p). cost = %e; Weight = %e", &var, tmp, var.sharing_weight); // uses the partial differential inverse function - return var->func_fpi(var, tmp); + return var.func_fpi(var, tmp); } -static double new_mu(lmm_variable_t var) +static double new_mu(const Variable& var) { double mu_i = 0.0; double sigma_i = 0.0; - for (s_lmm_element_t const& elem : var->cnsts) { + for (Element const& elem : var.cnsts) { sigma_i += elem.constraint->lambda; } - mu_i = var->func_fp(var, var->bound) - sigma_i; + mu_i = var.func_fp(var, var.bound) - sigma_i; if (mu_i < 0.0) return 0.0; return mu_i; } -static double dual_objective(xbt_swag_t var_list, xbt_swag_t cnst_list) +double Lagrange::dual_objective() { - void* _cnst; - void* _var; - lmm_constraint_t cnst = nullptr; - lmm_variable_t var = nullptr; - double obj = 0.0; - xbt_swag_foreach(_var, var_list) - { - var = static_cast(_var); + for (Variable const& var : variable_set) { double sigma_i = 0.0; - if (not var->sharing_weight) + if (not var.sharing_weight) break; - for (s_lmm_element_t const& elem : var->cnsts) + for (Element const& elem : var.cnsts) sigma_i += elem.constraint->lambda; - if (var->bound > 0) - sigma_i += var->mu; + if (var.bound > 0) + sigma_i += var.mu; - XBT_DEBUG("var %p : sigma_i = %1.20f", var, sigma_i); + XBT_DEBUG("var %p : sigma_i = %1.20f", &var, sigma_i); - obj += var->func_f(var, var->func_fpi(var, sigma_i)) - sigma_i * var->func_fpi(var, sigma_i); + obj += var.func_f(var, var.func_fpi(var, sigma_i)) - sigma_i * var.func_fpi(var, sigma_i); - if (var->bound > 0) - obj += var->mu * var->bound; + if (var.bound > 0) + obj += var.mu * var.bound; } - xbt_swag_foreach(_cnst, cnst_list) - { - cnst = static_cast(_cnst); - obj += cnst->lambda * cnst->bound; - } + for (Constraint const& cnst : active_constraint_set) + obj += cnst.lambda * cnst.bound; return obj; } -void lagrange_solve(lmm_system_t sys) +// solves the proportional fairness using a Lagrangian optimization with dichotomy step +void Lagrange::lagrange_solve() { /* Lagrange Variables. */ int max_iterations = 100; @@ -176,56 +151,49 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("#### Minimum error tolerated (dichotomy) : %e", dichotomy_min_error); if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { - sys->print(); + print(); } - if (not sys->modified) + if (not modified) return; /* Initialize lambda. */ - xbt_swag_t cnst_list = &(sys->active_constraint_set); - void* _cnst; - xbt_swag_foreach(_cnst, cnst_list) - { - lmm_constraint_t cnst = (lmm_constraint_t)_cnst; - cnst->lambda = 1.0; - cnst->new_lambda = 2.0; - XBT_DEBUG("#### cnst(%p)->lambda : %e", cnst, cnst->lambda); + auto& cnst_list = active_constraint_set; + for (Constraint& cnst : cnst_list) { + cnst.lambda = 1.0; + cnst.new_lambda = 2.0; + XBT_DEBUG("#### cnst(%p)->lambda : %e", &cnst, cnst.lambda); } /* - * Initialize the var list variable with only the active variables. - * Associate an index in the swag variables. Initialize mu. + * Initialize the var_list variable with only the active variables. Initialize mu. */ - xbt_swag_t var_list = &(sys->variable_set); - void* _var; - xbt_swag_foreach(_var, var_list) - { - lmm_variable_t var = static_cast(_var); - if (not var->sharing_weight) - var->value = 0.0; + auto& var_list = variable_set; + for (Variable& var : var_list) { + if (not var.sharing_weight) + var.value = 0.0; else { - if (var->bound < 0.0) { - XBT_DEBUG("#### NOTE var(%p) is a boundless variable", var); - var->mu = -1.0; + if (var.bound < 0.0) { + XBT_DEBUG("#### NOTE var(%p) is a boundless variable", &var); + var.mu = -1.0; } else { - var->mu = 1.0; - var->new_mu = 2.0; + var.mu = 1.0; + var.new_mu = 2.0; } - var->value = new_value(var); - XBT_DEBUG("#### var(%p) ->weight : %e", var, var->sharing_weight); - XBT_DEBUG("#### var(%p) ->mu : %e", var, var->mu); - XBT_DEBUG("#### var(%p) ->weight: %e", var, var->sharing_weight); - XBT_DEBUG("#### var(%p) ->bound: %e", var, var->bound); - auto weighted = std::find_if(begin(var->cnsts), end(var->cnsts), - [](s_lmm_element_t const& x) { return x.consumption_weight != 0.0; }); - if (weighted == end(var->cnsts)) - var->value = 1.0; + var.value = new_value(var); + XBT_DEBUG("#### var(%p) ->weight : %e", &var, var.sharing_weight); + XBT_DEBUG("#### var(%p) ->mu : %e", &var, var.mu); + XBT_DEBUG("#### var(%p) ->weight: %e", &var, var.sharing_weight); + XBT_DEBUG("#### var(%p) ->bound: %e", &var, var.bound); + auto weighted = + std::find_if(begin(var.cnsts), end(var.cnsts), [](Element const& x) { return x.consumption_weight != 0.0; }); + if (weighted == end(var.cnsts)) + var.value = 1.0; } } /* Compute dual objective. */ - double obj = dual_objective(var_list, cnst_list); + double obj = dual_objective(); /* While doesn't reach a minimum error or a number maximum of iterations. */ int iteration = 0; @@ -235,16 +203,14 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("-------------- Gradient Descent ----------"); /* Improve the value of mu_i */ - xbt_swag_foreach(_var, var_list) - { - lmm_variable_t var = static_cast(_var); - if (var->sharing_weight && var->bound >= 0) { - XBT_DEBUG("Working on var (%p)", var); - var->new_mu = new_mu(var); - XBT_DEBUG("Updating mu : var->mu (%p) : %1.20f -> %1.20f", var, var->mu, var->new_mu); - var->mu = var->new_mu; - - double new_obj = dual_objective(var_list, cnst_list); + for (Variable& var : var_list) { + if (var.sharing_weight && var.bound >= 0) { + XBT_DEBUG("Working on var (%p)", &var); + var.new_mu = new_mu(var); + XBT_DEBUG("Updating mu : var->mu (%p) : %1.20f -> %1.20f", &var, var.mu, var.new_mu); + var.mu = var.new_mu; + + double new_obj = dual_objective(); XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, obj - new_obj); xbt_assert(obj - new_obj >= -epsilon_min_error, "Our gradient sucks! (%1.20f)", obj - new_obj); obj = new_obj; @@ -252,15 +218,13 @@ void lagrange_solve(lmm_system_t sys) } /* Improve the value of lambda_i */ - xbt_swag_foreach(_cnst, cnst_list) - { - lmm_constraint_t cnst = static_cast(_cnst); - XBT_DEBUG("Working on cnst (%p)", cnst); - cnst->new_lambda = dichotomy(cnst->lambda, partial_diff_lambda, cnst, dichotomy_min_error); - XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", cnst, cnst->lambda, cnst->new_lambda); - cnst->lambda = cnst->new_lambda; - - double new_obj = dual_objective(var_list, cnst_list); + for (Constraint& cnst : cnst_list) { + XBT_DEBUG("Working on cnst (%p)", &cnst); + cnst.new_lambda = dichotomy(cnst.lambda, partial_diff_lambda, cnst, dichotomy_min_error); + XBT_DEBUG("Updating lambda : cnst->lambda (%p) : %1.20f -> %1.20f", &cnst, cnst.lambda, cnst.new_lambda); + cnst.lambda = cnst.new_lambda; + + double new_obj = dual_objective(); XBT_DEBUG("Improvement for Objective (%g -> %g) : %g", obj, new_obj, obj - new_obj); xbt_assert(obj - new_obj >= -epsilon_min_error, "Our gradient sucks! (%1.20f)", obj - new_obj); obj = new_obj; @@ -269,28 +233,26 @@ void lagrange_solve(lmm_system_t sys) /* Now computes the values of each variable (\rho) based on the values of \lambda and \mu. */ XBT_DEBUG("-------------- Check convergence ----------"); overall_modification = 0; - xbt_swag_foreach(_var, var_list) - { - lmm_variable_t var = static_cast(_var); - if (var->sharing_weight <= 0) - var->value = 0.0; + for (Variable& var : var_list) { + if (var.sharing_weight <= 0) + var.value = 0.0; else { double tmp = new_value(var); - overall_modification = std::max(overall_modification, fabs(var->value - tmp)); + overall_modification = std::max(overall_modification, fabs(var.value - tmp)); - var->value = tmp; - XBT_DEBUG("New value of var (%p) = %e, overall_modification = %e", var, var->value, overall_modification); + var.value = tmp; + XBT_DEBUG("New value of var (%p) = %e, overall_modification = %e", &var, var.value, overall_modification); } } XBT_DEBUG("-------------- Check feasability ----------"); - if (not __check_feasible(cnst_list, var_list, 0)) + if (not check_feasible(false)) overall_modification = 1.0; XBT_DEBUG("Iteration %d: overall_modification : %f", iteration, overall_modification); } - __check_feasible(cnst_list, var_list, 1); + check_feasible(true); if (overall_modification <= epsilon_min_error) { XBT_DEBUG("The method converges in %d iterations.", iteration); @@ -300,7 +262,7 @@ void lagrange_solve(lmm_system_t sys) } if (XBT_LOG_ISENABLED(surf_lagrange, xbt_log_priority_debug)) { - sys->print(); + print(); } } @@ -315,7 +277,7 @@ void lagrange_solve(lmm_system_t sys) * * @return a double corresponding to the result of the dichotomy process */ -static double dichotomy(double init, double diff(double, void*), void* var_cnst, double min_error) +static double dichotomy(double init, double diff(double, const Constraint&), const Constraint& cnst, double min_error) { double min = init; double max = init; @@ -333,15 +295,15 @@ static double dichotomy(double init, double diff(double, void*), void* var_cnst, overall_error = 1; - diff_0 = diff(1e-16, var_cnst); + diff_0 = diff(1e-16, cnst); if (diff_0 >= 0) { XBT_CDEBUG(surf_lagrange_dichotomy, "returning 0.0 (diff = %e)", diff_0); XBT_OUT(); return 0.0; } - double min_diff = diff(min, var_cnst); - double max_diff = diff(max, var_cnst); + double min_diff = diff(min, cnst); + double max_diff = diff(max, cnst); while (overall_error > min_error) { XBT_CDEBUG(surf_lagrange_dichotomy, "[min, max] = [%1.20f, %1.20f] || diffmin, diffmax = %1.20f, %1.20f", min, max, @@ -351,7 +313,7 @@ static double dichotomy(double init, double diff(double, void*), void* var_cnst, if (min == max) { XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing min"); min = min / 2.0; - min_diff = diff(min, var_cnst); + min_diff = diff(min, cnst); } else { XBT_CDEBUG(surf_lagrange_dichotomy, "Decreasing max"); max = min; @@ -361,7 +323,7 @@ static double dichotomy(double init, double diff(double, void*), void* var_cnst, if (min == max) { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing max"); max = max * 2.0; - max_diff = diff(max, var_cnst); + max_diff = diff(max, cnst); } else { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); min = max; @@ -378,7 +340,7 @@ static double dichotomy(double init, double diff(double, void*), void* var_cnst, min, max - min, min_diff, max_diff); break; } - middle_diff = diff(middle, var_cnst); + middle_diff = diff(middle, cnst); if (middle_diff < 0) { XBT_CDEBUG(surf_lagrange_dichotomy, "Increasing min"); @@ -415,44 +377,38 @@ static double dichotomy(double init, double diff(double, void*), void* var_cnst, return ((min + max) / 2.0); } -static double partial_diff_lambda(double lambda, void* param_cnst) +static double partial_diff_lambda(double lambda, const Constraint& cnst) { - lmm_constraint_t cnst = static_cast(param_cnst); double diff = 0.0; XBT_IN(); - XBT_CDEBUG(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", cnst); + XBT_CDEBUG(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", &cnst); - xbt_swag_t elem_list = &(cnst->enabled_element_set); - void* _elem; - xbt_swag_foreach(_elem, elem_list) - { - lmm_element_t elem = static_cast(_elem); - lmm_variable_t var = elem->variable; - xbt_assert(var->sharing_weight > 0); - XBT_CDEBUG(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", var); + for (Element const& elem : cnst.enabled_element_set) { + Variable& var = *elem.variable; + xbt_assert(var.sharing_weight > 0); + XBT_CDEBUG(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", &var); // Initialize the summation variable double sigma_i = 0.0; // Compute sigma_i - for (s_lmm_element_t const& elem : var->cnsts) { - sigma_i += elem.constraint->lambda; - } + for (Element const& elem2 : var.cnsts) + sigma_i += elem2.constraint->lambda; // add mu_i if this flow has a RTT constraint associated - if (var->bound > 0) - sigma_i += var->mu; + if (var.bound > 0) + sigma_i += var.mu; - // replace value of cnst->lambda by the value of parameter lambda - sigma_i = (sigma_i - cnst->lambda) + lambda; + // replace value of cnst.lambda by the value of parameter lambda + sigma_i = (sigma_i - cnst.lambda) + lambda; - diff += -var->func_fpi(var, sigma_i); + diff += -var.func_fpi(var, sigma_i); } - diff += cnst->bound; + diff += cnst.bound; - XBT_CDEBUG(surf_lagrange_dichotomy, "d D/d lambda for cnst (%p) at %1.20f = %1.20f", cnst, lambda, diff); + XBT_CDEBUG(surf_lagrange_dichotomy, "d D/d lambda for cnst (%p) at %1.20f = %1.20f", &cnst, lambda, diff); XBT_OUT(); return diff; } @@ -465,9 +421,9 @@ static double partial_diff_lambda(double lambda, void* param_cnst) * programming. * */ -void lmm_set_default_protocol_function(double (*func_f)(lmm_variable_t var, double x), - double (*func_fp)(lmm_variable_t var, double x), - double (*func_fpi)(lmm_variable_t var, double x)) +void set_default_protocol_function(double (*func_f)(const Variable& var, double x), + double (*func_fp)(const Variable& var, double x), + double (*func_fpi)(const Variable& var, double x)) { func_f_def = func_f; func_fp_def = func_fp; @@ -482,22 +438,22 @@ void lmm_set_default_protocol_function(double (*func_f)(lmm_variable_t var, doub * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ */ -double func_vegas_f(lmm_variable_t var, double x) +double func_vegas_f(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); - return VEGAS_SCALING * var->sharing_weight * log(x); + return VEGAS_SCALING * var.sharing_weight * log(x); } -double func_vegas_fp(lmm_variable_t var, double x) +double func_vegas_fp(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); - return VEGAS_SCALING * var->sharing_weight / x; + return VEGAS_SCALING * var.sharing_weight / x; } -double func_vegas_fpi(lmm_variable_t var, double x) +double func_vegas_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); - return var->sharing_weight / (x / VEGAS_SCALING); + return var.sharing_weight / (x / VEGAS_SCALING); } /* @@ -505,27 +461,27 @@ double func_vegas_fpi(lmm_variable_t var, double x) * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ */ -double func_reno_f(lmm_variable_t var, double x) +double func_reno_f(const Variable& var, double x) { - xbt_assert(var->sharing_weight > 0.0, "Don't call me with stupid values!"); + xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); - return RENO_SCALING * sqrt(3.0 / 2.0) / var->sharing_weight * atan(sqrt(3.0 / 2.0) * var->sharing_weight * x); + return RENO_SCALING * sqrt(3.0 / 2.0) / var.sharing_weight * atan(sqrt(3.0 / 2.0) * var.sharing_weight * x); } -double func_reno_fp(lmm_variable_t var, double x) +double func_reno_fp(const Variable& var, double x) { - return RENO_SCALING * 3.0 / (3.0 * var->sharing_weight * var->sharing_weight * x * x + 2.0); + return RENO_SCALING * 3.0 / (3.0 * var.sharing_weight * var.sharing_weight * x * x + 2.0); } -double func_reno_fpi(lmm_variable_t var, double x) +double func_reno_fpi(const Variable& var, double x) { double res_fpi; - xbt_assert(var->sharing_weight > 0.0, "Don't call me with stupid values!"); + xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); xbt_assert(x > 0.0, "Don't call me with stupid values!"); - res_fpi = 1.0 / (var->sharing_weight * var->sharing_weight * (x / RENO_SCALING)) - - 2.0 / (3.0 * var->sharing_weight * var->sharing_weight); + res_fpi = 1.0 / (var.sharing_weight * var.sharing_weight * (x / RENO_SCALING)) - + 2.0 / (3.0 * var.sharing_weight * var.sharing_weight); if (res_fpi <= 0.0) return 0.0; return sqrt(res_fpi); @@ -536,22 +492,22 @@ double func_reno_fpi(lmm_variable_t var, double x) * Therefore: $fp(x) = 2/(Weight*x + 2) * Therefore: $fpi(x) = (2*Weight)/x - 4 */ -double func_reno2_f(lmm_variable_t var, double x) +double func_reno2_f(const Variable& var, double x) { - xbt_assert(var->sharing_weight > 0.0, "Don't call me with stupid values!"); - return RENO2_SCALING * (1.0 / var->sharing_weight) * - log((x * var->sharing_weight) / (2.0 * x * var->sharing_weight + 3.0)); + xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); + return RENO2_SCALING * (1.0 / var.sharing_weight) * + log((x * var.sharing_weight) / (2.0 * x * var.sharing_weight + 3.0)); } -double func_reno2_fp(lmm_variable_t var, double x) +double func_reno2_fp(const Variable& var, double x) { - return RENO2_SCALING * 3.0 / (var->sharing_weight * x * (2.0 * var->sharing_weight * x + 3.0)); + return RENO2_SCALING * 3.0 / (var.sharing_weight * x * (2.0 * var.sharing_weight * x + 3.0)); } -double func_reno2_fpi(lmm_variable_t var, double x) +double func_reno2_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values!"); - double tmp = x * var->sharing_weight * var->sharing_weight; + double tmp = x * var.sharing_weight * var.sharing_weight; double res_fpi = tmp * (9.0 * x + 24.0); if (res_fpi <= 0.0)