X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/22e6546d2c6f14864cc93c4ed1470d8e8c1e2d95..bc32dc8200e58f87951a43bf5ba56bf116f08e62:/src/simdag/sd_task.cpp diff --git a/src/simdag/sd_task.cpp b/src/simdag/sd_task.cpp index 84b9b74997..4d88fa1f4b 100644 --- a/src/simdag/sd_task.cpp +++ b/src/simdag/sd_task.cpp @@ -1,10 +1,11 @@ -/* Copyright (c) 2006-2017. The SimGrid Team. +/* Copyright (c) 2006-2021. The SimGrid Team. * All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ #include "simdag_private.hpp" +#include "simgrid/kernel/routing/NetPoint.hpp" #include "src/surf/HostImpl.hpp" #include "src/surf/surf_interface.hpp" #include @@ -15,7 +16,8 @@ XBT_LOG_NEW_DEFAULT_SUBCATEGORY(sd_task, sd, "Logging specific to SimDag (task)" static void __SD_task_destroy_scheduling_data(SD_task_t task) { if (task->state != SD_SCHEDULED && task->state != SD_RUNNABLE) - THROWF(arg_error, 0, "Task '%s' must be SD_SCHEDULED or SD_RUNNABLE", SD_task_get_name(task)); + throw std::invalid_argument( + simgrid::xbt::string_printf("Task '%s' must be SD_SCHEDULED or SD_RUNNABLE", SD_task_get_name(task))); xbt_free(task->flops_amount); xbt_free(task->bytes_amount); @@ -24,110 +26,110 @@ static void __SD_task_destroy_scheduling_data(SD_task_t task) } /** - * \brief Creates a new task. + * @brief Creates a new task. * - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param amount amount of the task - * \return the new task - * \see SD_task_destroy() + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param amount amount of the task + * @return the new task + * @see SD_task_destroy() */ -SD_task_t SD_task_create(const char *name, void *data, double amount) +SD_task_t SD_task_create(const char* name, void* data, double amount) { - SD_task_t task = xbt_new0(s_SD_task_t, 1); - task->kind = SD_TASK_NOT_TYPED; - task->state= SD_NOT_SCHEDULED; - sd_global->initial_tasks->insert(task); + auto* task = xbt_new0(s_SD_task_t, 1); + task->kind = SD_TASK_NOT_TYPED; + task->state = SD_NOT_SCHEDULED; + sd_global->initial_tasks.insert(task); - task->marked = 0; - task->start_time = -1.0; - task->finish_time = -1.0; - task->surf_action = nullptr; + task->marked = false; + task->start_time = -1.0; + task->finish_time = -1.0; + task->surf_action = nullptr; task->watch_points = 0; - task->inputs = new std::set(); - task->outputs = new std::set(); + task->inputs = new std::set(); + task->outputs = new std::set(); task->predecessors = new std::set(); - task->successors = new std::set(); + task->successors = new std::set(); - task->data = data; - task->name = xbt_strdup(name); - task->amount = amount; + task->data = data; + task->name = xbt_strdup(name); + task->amount = amount; task->allocation = new std::vector(); - task->rate = -1; + task->rate = -1; return task; } -static inline SD_task_t SD_task_create_sized(const char *name, void *data, double amount, int count) +static inline SD_task_t SD_task_create_sized(const char* name, void* data, double amount, int count) { - SD_task_t task = SD_task_create(name, data, amount); - task->bytes_amount = xbt_new0(double, count * count); + SD_task_t task = SD_task_create(name, data, amount); + task->bytes_amount = xbt_new0(double, count* count); task->flops_amount = xbt_new0(double, count); return task; } -/** @brief create a end-to-end communication task that can then be auto-scheduled +/** @brief create an end-to-end communication task that can then be auto-scheduled * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at * creation, and decouple them from the scheduling process where you just specify which resource should deliver the * mandatory power. * * A end-to-end communication must be scheduled on 2 hosts, and the amount specified at creation is sent from hosts[0] * to hosts[1]. */ -SD_task_t SD_task_create_comm_e2e(const char *name, void *data, double amount) +SD_task_t SD_task_create_comm_e2e(const char* name, void* data, double amount) { - SD_task_t res = SD_task_create_sized(name, data, amount, 2); + SD_task_t res = SD_task_create_sized(name, data, amount, 2); res->bytes_amount[2] = amount; - res->kind = SD_TASK_COMM_E2E; + res->kind = SD_TASK_COMM_E2E; return res; } /** @brief create a sequential computation task that can then be auto-scheduled * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at * creation, and decouple them from the scheduling process where you just specify which resource should deliver the * mandatory power. * * A sequential computation must be scheduled on 1 host, and the amount specified at creation to be run on hosts[0]. * - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param flops_amount amount of compute work to be done by the task - * \return the new SD_TASK_COMP_SEQ typed task + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param flops_amount amount of compute work to be done by the task + * @return the new SD_TASK_COMP_SEQ typed task */ -SD_task_t SD_task_create_comp_seq(const char *name, void *data, double flops_amount) +SD_task_t SD_task_create_comp_seq(const char* name, void* data, double flops_amount) { - SD_task_t res = SD_task_create_sized(name, data, flops_amount, 1); + SD_task_t res = SD_task_create_sized(name, data, flops_amount, 1); res->flops_amount[0] = flops_amount; - res->kind = SD_TASK_COMP_SEQ; + res->kind = SD_TASK_COMP_SEQ; return res; } /** @brief create a parallel computation task that can then be auto-scheduled * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at * creation, and decouple them from the scheduling process where you just specify which resource should deliver the * mandatory power. * * A parallel computation can be scheduled on any number of host. * The underlying speedup model is Amdahl's law. - * To be auto-scheduled, \see SD_task_distribute_comp_amdahl has to be called first. - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param flops_amount amount of compute work to be done by the task - * \param alpha purely serial fraction of the work to be done (in [0.;1.[) - * \return the new task + * To be auto-scheduled, @see SD_task_distribute_comp_amdahl has to be called first. + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param flops_amount amount of compute work to be done by the task + * @param alpha purely serial fraction of the work to be done (in [0.;1.[) + * @return the new task */ -SD_task_t SD_task_create_comp_par_amdahl(const char *name, void *data, double flops_amount, double alpha) +SD_task_t SD_task_create_comp_par_amdahl(const char* name, void* data, double flops_amount, double alpha) { xbt_assert(alpha < 1. && alpha >= 0., "Invalid parameter: alpha must be in [0.;1.["); SD_task_t res = SD_task_create(name, data, flops_amount); - res->alpha = alpha; - res->kind = SD_TASK_COMP_PAR_AMDAHL; + res->alpha = alpha; + res->kind = SD_TASK_COMP_PAR_AMDAHL; return res; } @@ -135,32 +137,32 @@ SD_task_t SD_task_create_comp_par_amdahl(const char *name, void *data, double fl /** @brief create a complex data redistribution task that can then be auto-scheduled * * Auto-scheduling mean that the task can be used with SD_task_schedulev(). - * This allows to specify the task costs at creation, and decouple them from the scheduling process where you just + * This allows one to specify the task costs at creation, and decouple them from the scheduling process where you just * specify which resource should communicate. * * A data redistribution can be scheduled on any number of host. - * The assumed distribution is a 1D block distribution. Each host owns the same share of the \see amount. - * To be auto-scheduled, \see SD_task_distribute_comm_mxn_1d_block has to be called first. - * \param name the name of the task (can be \c nullptr) - * \param data the user data you want to associate with the task (can be \c nullptr) - * \param amount amount of data to redistribute by the task - * \return the new task + * The assumed distribution is a 1D block distribution. Each host owns the same share of the @see amount. + * To be auto-scheduled, @see SD_task_distribute_comm_mxn_1d_block has to be called first. + * @param name the name of the task (can be @c nullptr) + * @param data the user data you want to associate with the task (can be @c nullptr) + * @param amount amount of data to redistribute by the task + * @return the new task */ -SD_task_t SD_task_create_comm_par_mxn_1d_block(const char *name, void *data, double amount) +SD_task_t SD_task_create_comm_par_mxn_1d_block(const char* name, void* data, double amount) { SD_task_t res = SD_task_create(name, data, amount); - res->kind = SD_TASK_COMM_PAR_MXN_1D_BLOCK; + res->kind = SD_TASK_COMM_PAR_MXN_1D_BLOCK; return res; } /** - * \brief Destroys a task. + * @brief Destroys a task. * * The user data (if any) should have been destroyed first. * - * \param task the task you want to destroy - * \see SD_task_create() + * @param task the task you want to destroy + * @see SD_task_create() */ void SD_task_destroy(SD_task_t task) { @@ -197,48 +199,48 @@ void SD_task_destroy(SD_task_t task) } /** - * \brief Returns the user data of a task + * @brief Returns the user data of a task * - * \param task a task - * \return the user data associated with this task (can be \c nullptr) - * \see SD_task_set_data() + * @param task a task + * @return the user data associated with this task (can be @c nullptr) + * @see SD_task_set_data() */ -void *SD_task_get_data(SD_task_t task) +void* SD_task_get_data(const_SD_task_t task) { return task->data; } /** - * \brief Sets the user data of a task + * @brief Sets the user data of a task * - * The new data can be \c nullptr. The old data should have been freed first, if it was not \c nullptr. + * The new data can be @c nullptr. The old data should have been freed first, if it was not @c nullptr. * - * \param task a task - * \param data the new data you want to associate with this task - * \see SD_task_get_data() + * @param task a task + * @param data the new data you want to associate with this task + * @see SD_task_get_data() */ -void SD_task_set_data(SD_task_t task, void *data) +void SD_task_set_data(SD_task_t task, void* data) { task->data = data; } /** - * \brief Sets the rate of a task + * @brief Sets the rate of a task * * This will change the network bandwidth a task can use. This rate cannot be dynamically changed. Once the task has * started, this call is ineffective. This rate depends on both the nominal bandwidth on the route onto which the task - * is scheduled (\see SD_task_get_current_bandwidth) and the amount of data to transfer. + * is scheduled (@see SD_task_get_current_bandwidth) and the amount of data to transfer. * * To divide the nominal bandwidth by 2, the rate then has to be : * rate = bandwidth/(2*amount) * - * \param task a \see SD_TASK_COMM_E2E task (end-to-end communication) - * \param rate the new rate you want to associate with this task. + * @param task a @see SD_TASK_COMM_E2E task (end-to-end communication) + * @param rate the new rate you want to associate with this task. */ void SD_task_set_rate(SD_task_t task, double rate) { xbt_assert(task->kind == SD_TASK_COMM_E2E, "The rate can be modified for end-to-end communications only."); - if(task->state < SD_RUNNING) { + if (task->state < SD_RUNNING) { task->rate = rate; } else { XBT_WARN("Task %p has started. Changing rate is ineffective.", task); @@ -246,14 +248,14 @@ void SD_task_set_rate(SD_task_t task, double rate) } /** - * \brief Returns the state of a task + * @brief Returns the state of a task * - * \param task a task - * \return the current \ref e_SD_task_state_t "state" of this task: + * @param task a task + * @return the current @ref e_SD_task_state_t "state" of this task: * #SD_NOT_SCHEDULED, #SD_SCHEDULED, #SD_RUNNABLE, #SD_RUNNING, #SD_DONE or #SD_FAILED - * \see e_SD_task_state_t + * @see e_SD_task_state_t */ -e_SD_task_state_t SD_task_get_state(SD_task_t task) +e_SD_task_state_t SD_task_get_state(const_SD_task_t task) { return task->state; } @@ -264,37 +266,37 @@ void SD_task_set_state(SD_task_t task, e_SD_task_state_t new_state) { std::set::iterator idx; XBT_DEBUG("Set state of '%s' to %d", task->name, new_state); - if ((new_state == SD_NOT_SCHEDULED || new_state == SD_SCHEDULABLE) && task->state == SD_FAILED){ - sd_global->completed_tasks->erase(task); - sd_global->initial_tasks->insert(task); + if ((new_state == SD_NOT_SCHEDULED || new_state == SD_SCHEDULABLE) && task->state == SD_FAILED) { + sd_global->completed_tasks.erase(task); + sd_global->initial_tasks.insert(task); } - if (new_state == SD_SCHEDULED && task->state == SD_RUNNABLE){ - sd_global->initial_tasks->insert(task); - sd_global->runnable_tasks->erase(task); + if (new_state == SD_SCHEDULED && task->state == SD_RUNNABLE) { + sd_global->initial_tasks.insert(task); + sd_global->runnable_tasks.erase(task); } - if (new_state == SD_RUNNABLE){ - idx = sd_global->initial_tasks->find(task); - if (idx != sd_global->initial_tasks->end()) { - sd_global->runnable_tasks->insert(*idx); - sd_global->initial_tasks->erase(idx); + if (new_state == SD_RUNNABLE) { + idx = sd_global->initial_tasks.find(task); + if (idx != sd_global->initial_tasks.end()) { + sd_global->runnable_tasks.insert(*idx); + sd_global->initial_tasks.erase(idx); } } if (new_state == SD_RUNNING) - sd_global->runnable_tasks->erase(task); + sd_global->runnable_tasks.erase(task); - if (new_state == SD_DONE || new_state == SD_FAILED){ - sd_global->completed_tasks->insert(task); - task->start_time = task->surf_action->getStartTime(); - if (new_state == SD_DONE){ - task->finish_time = task->surf_action->getFinishTime(); + if (new_state == SD_DONE || new_state == SD_FAILED) { + sd_global->completed_tasks.insert(task); + task->start_time = task->surf_action->get_start_time(); + if (new_state == SD_DONE) { + task->finish_time = task->surf_action->get_finish_time(); #if SIMGRID_HAVE_JEDULE jedule_log_sd_event(task); #endif } else - task->finish_time = surf_get_clock(); + task->finish_time = simgrid_get_clock(); task->surf_action->unref(); task->surf_action = nullptr; task->allocation->clear(); @@ -305,23 +307,23 @@ void SD_task_set_state(SD_task_t task, e_SD_task_state_t new_state) if (task->watch_points & new_state) { XBT_VERB("Watch point reached with task '%s'!", task->name); sd_global->watch_point_reached = true; - SD_task_unwatch(task, new_state); /* remove the watch point */ + SD_task_unwatch(task, new_state); /* remove the watch point */ } } /** - * \brief Returns the name of a task + * @brief Returns the name of a task * - * \param task a task - * \return the name of this task (can be \c nullptr) + * @param task a task + * @return the name of this task (can be @c nullptr) */ -const char *SD_task_get_name(SD_task_t task) +const char* SD_task_get_name(const_SD_task_t task) { return task->name; } /** @brief Allows to change the name of a task */ -void SD_task_set_name(SD_task_t task, const char *name) +void SD_task_set_name(SD_task_t task, const char* name) { xbt_free(task->name); task->name = xbt_strdup(name); @@ -329,11 +331,11 @@ void SD_task_set_name(SD_task_t task, const char *name) /** @brief Returns the dynar of the parents of a task * - * \param task a task - * \return a newly allocated dynar comprising the parents of this task + * @param task a task + * @return a newly allocated dynar comprising the parents of this task */ -xbt_dynar_t SD_task_get_parents(SD_task_t task) +xbt_dynar_t SD_task_get_parents(const_SD_task_t task) { xbt_dynar_t parents = xbt_dynar_new(sizeof(SD_task_t), nullptr); @@ -347,10 +349,10 @@ xbt_dynar_t SD_task_get_parents(SD_task_t task) /** @brief Returns the dynar of the parents of a task * - * \param task a task - * \return a newly allocated dynar comprising the parents of this task + * @param task a task + * @return a newly allocated dynar comprising the parents of this task */ -xbt_dynar_t SD_task_get_children(SD_task_t task) +xbt_dynar_t SD_task_get_children(const_SD_task_t task) { xbt_dynar_t children = xbt_dynar_new(sizeof(SD_task_t), nullptr); @@ -363,35 +365,35 @@ xbt_dynar_t SD_task_get_children(SD_task_t task) } /** - * \brief Returns the number of workstations involved in a task + * @brief Returns the number of workstations involved in a task * * Only call this on already scheduled tasks! - * \param task a task + * @param task a task */ -int SD_task_get_workstation_count(SD_task_t task) +int SD_task_get_workstation_count(const_SD_task_t task) { - return task->allocation->size(); + return static_cast(task->allocation->size()); } /** - * \brief Returns the list of workstations involved in a task + * @brief Returns the list of workstations involved in a task * * Only call this on already scheduled tasks! - * \param task a task + * @param task a task */ -sg_host_t *SD_task_get_workstation_list(SD_task_t task) +sg_host_t* SD_task_get_workstation_list(const_SD_task_t task) { return task->allocation->data(); } /** - * \brief Returns the total amount of work contained in a task + * @brief Returns the total amount of work contained in a task * - * \param task a task - * \return the total amount of work (computation or data transfer) for this task - * \see SD_task_get_remaining_amount() + * @param task a task + * @return the total amount of work (computation or data transfer) for this task + * @see SD_task_get_remaining_amount() */ -double SD_task_get_amount(SD_task_t task) +double SD_task_get_amount(const_SD_task_t task) { return task->amount; } @@ -401,8 +403,8 @@ double SD_task_get_amount(SD_task_t task) * bytes_amount arrays respectively. Nothing more than modifying task->amount is done for parallel typed tasks * (COMP_PAR_AMDAHL and COMM_PAR_MXN_1D_BLOCK) as the distribution of the amount of work is done at scheduling time. * - * \param task a task - * \param amount the new amount of work to execute + * @param task a task + * @param amount the new amount of work to execute */ void SD_task_set_amount(SD_task_t task, double amount) { @@ -414,39 +416,39 @@ void SD_task_set_amount(SD_task_t task, double amount) } /** - * \brief Returns the alpha parameter of a SD_TASK_COMP_PAR_AMDAHL task + * @brief Returns the alpha parameter of a SD_TASK_COMP_PAR_AMDAHL task * - * \param task a parallel task assuming Amdahl's law as speedup model - * \return the alpha parameter (serial part of a task in percent) for this task + * @param task a parallel task assuming Amdahl's law as speedup model + * @return the alpha parameter (serial part of a task in percent) for this task */ -double SD_task_get_alpha(SD_task_t task) +double SD_task_get_alpha(const_SD_task_t task) { xbt_assert(SD_task_get_kind(task) == SD_TASK_COMP_PAR_AMDAHL, "Alpha parameter is not defined for this kind of task"); return task->alpha; } /** - * \brief Returns the remaining amount work to do till the completion of a task + * @brief Returns the remaining amount work to do till the completion of a task * - * \param task a task - * \return the remaining amount of work (computation or data transfer) of this task - * \see SD_task_get_amount() + * @param task a task + * @return the remaining amount of work (computation or data transfer) of this task + * @see SD_task_get_amount() */ -double SD_task_get_remaining_amount(SD_task_t task) +double SD_task_get_remaining_amount(const_SD_task_t task) { if (task->surf_action) - return task->surf_action->getRemains(); + return task->surf_action->get_remains(); else return (task->state == SD_DONE) ? 0 : task->amount; } -e_SD_task_kind_t SD_task_get_kind(SD_task_t task) +e_SD_task_kind_t SD_task_get_kind(const_SD_task_t task) { return task->kind; } /** @brief Displays debugging information about a task */ -void SD_task_dump(SD_task_t task) +void SD_task_dump(const_SD_task_t task) { XBT_INFO("Displaying task %s", SD_task_get_name(task)); if (task->state == SD_RUNNABLE) @@ -458,28 +460,28 @@ void SD_task_dump(SD_task_t task) if (task->kind != 0) { switch (task->kind) { - case SD_TASK_COMM_E2E: - XBT_INFO(" - kind: end-to-end communication"); - break; - case SD_TASK_COMP_SEQ: - XBT_INFO(" - kind: sequential computation"); - break; - case SD_TASK_COMP_PAR_AMDAHL: - XBT_INFO(" - kind: parallel computation following Amdahl's law"); - break; - case SD_TASK_COMM_PAR_MXN_1D_BLOCK: - XBT_INFO(" - kind: MxN data redistribution assuming 1D block distribution"); - break; - default: - XBT_INFO(" - (unknown kind %d)", task->kind); + case SD_TASK_COMM_E2E: + XBT_INFO(" - kind: end-to-end communication"); + break; + case SD_TASK_COMP_SEQ: + XBT_INFO(" - kind: sequential computation"); + break; + case SD_TASK_COMP_PAR_AMDAHL: + XBT_INFO(" - kind: parallel computation following Amdahl's law"); + break; + case SD_TASK_COMM_PAR_MXN_1D_BLOCK: + XBT_INFO(" - kind: MxN data redistribution assuming 1D block distribution"); + break; + default: + XBT_INFO(" - (unknown kind %d)", task->kind); } } XBT_INFO(" - amount: %.0f", SD_task_get_amount(task)); if (task->kind == SD_TASK_COMP_PAR_AMDAHL) XBT_INFO(" - alpha: %.2f", task->alpha); - XBT_INFO(" - Dependencies to satisfy: %zu", task->inputs->size()+ task->predecessors->size()); - if ((task->inputs->size()+ task->predecessors->size()) > 0) { + XBT_INFO(" - Dependencies to satisfy: %zu", task->inputs->size() + task->predecessors->size()); + if ((task->inputs->size() + task->predecessors->size()) > 0) { XBT_INFO(" - pre-dependencies:"); for (auto const& it : *task->predecessors) XBT_INFO(" %s", it->name); @@ -498,21 +500,21 @@ void SD_task_dump(SD_task_t task) } /** @brief Dumps the task in dotty formalism into the FILE* passed as second argument */ -void SD_task_dotty(SD_task_t task, void *out) +void SD_task_dotty(const_SD_task_t task, void* out) { - FILE *fout = static_cast(out); + auto* fout = static_cast(out); fprintf(fout, " T%p [label=\"%.20s\"", task, task->name); switch (task->kind) { - case SD_TASK_COMM_E2E: - case SD_TASK_COMM_PAR_MXN_1D_BLOCK: - fprintf(fout, ", shape=box"); - break; - case SD_TASK_COMP_SEQ: - case SD_TASK_COMP_PAR_AMDAHL: - fprintf(fout, ", shape=circle"); - break; - default: - xbt_die("Unknown task type!"); + case SD_TASK_COMM_E2E: + case SD_TASK_COMM_PAR_MXN_1D_BLOCK: + fprintf(fout, ", shape=box"); + break; + case SD_TASK_COMP_SEQ: + case SD_TASK_COMP_PAR_AMDAHL: + fprintf(fout, ", shape=circle"); + break; + default: + xbt_die("Unknown task type!"); } fprintf(fout, "];\n"); for (auto const& it : *task->predecessors) @@ -522,44 +524,44 @@ void SD_task_dotty(SD_task_t task, void *out) } /** - * \brief Adds a dependency between two tasks + * @brief Adds a dependency between two tasks * - * \a dst will depend on \a src, ie \a dst will not start before \a src is finished. - * Their \ref e_SD_task_state_t "state" must be #SD_NOT_SCHEDULED, #SD_SCHEDULED or #SD_RUNNABLE. + * @a dst will depend on @a src, ie @a dst will not start before @a src is finished. + * Their @ref e_SD_task_state_t "state" must be #SD_NOT_SCHEDULED, #SD_SCHEDULED or #SD_RUNNABLE. * - * \param name the name of the new dependency (can be \c nullptr) - * \param data the user data you want to associate with this dependency (can be \c nullptr) - * \param src the task which must be executed first - * \param dst the task you want to make depend on \a src - * \see SD_task_dependency_remove() + * @param src the task which must be executed first + * @param dst the task you want to make depend on @a src + * @see SD_task_dependency_remove() */ -void SD_task_dependency_add(const char *name, void *data, SD_task_t src, SD_task_t dst) +void SD_task_dependency_add(SD_task_t src, SD_task_t dst) { if (src == dst) - THROWF(arg_error, 0, "Cannot add a dependency between task '%s' and itself", SD_task_get_name(src)); + throw std::invalid_argument( + simgrid::xbt::string_printf("Cannot add a dependency between task '%s' and itself", SD_task_get_name(src))); if (src->state == SD_DONE || src->state == SD_FAILED) - THROWF(arg_error, 0, "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, SD_RUNNABLE, or SD_RUNNING", - src->name); + throw std::invalid_argument(simgrid::xbt::string_printf( + "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, SD_RUNNABLE, or SD_RUNNING", src->name)); if (dst->state == SD_DONE || dst->state == SD_FAILED || dst->state == SD_RUNNING) - THROWF(arg_error, 0, "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, or SD_RUNNABLE", - dst->name); + throw std::invalid_argument(simgrid::xbt::string_printf( + "Task '%s' must be SD_NOT_SCHEDULED, SD_SCHEDULABLE, SD_SCHEDULED, or SD_RUNNABLE", dst->name)); if (dst->inputs->find(src) != dst->inputs->end() || src->outputs->find(dst) != src->outputs->end() || src->successors->find(dst) != src->successors->end() || dst->predecessors->find(src) != dst->predecessors->end()) - THROWF(arg_error, 0, "A dependency already exists between task '%s' and task '%s'", src->name, dst->name); + throw std::invalid_argument(simgrid::xbt::string_printf( + "A dependency already exists between task '%s' and task '%s'", src->name, dst->name)); XBT_DEBUG("SD_task_dependency_add: src = %s, dst = %s", src->name, dst->name); - if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK){ + if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) { if (dst->kind == SD_TASK_COMP_SEQ || dst->kind == SD_TASK_COMP_PAR_AMDAHL) - dst->inputs->insert(src); + dst->inputs->insert(src); else dst->predecessors->insert(src); src->successors->insert(dst); } else { - if (dst->kind == SD_TASK_COMM_E2E|| dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) + if (dst->kind == SD_TASK_COMM_E2E || dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) src->outputs->insert(dst); else src->successors->insert(dst); @@ -574,15 +576,15 @@ void SD_task_dependency_add(const char *name, void *data, SD_task_t src, SD_task } /** - * \brief Indicates whether there is a dependency between two tasks. + * @brief Indicates whether there is a dependency between two tasks. * - * \param src a task - * \param dst a task depending on \a src + * @param src a task + * @param dst a task depending on @a src * * If src is nullptr, checks whether dst has any pre-dependency. * If dst is nullptr, checks whether src has any post-dependency. */ -int SD_task_dependency_exists(SD_task_t src, SD_task_t dst) +int SD_task_dependency_exists(const_SD_task_t src, SD_task_t dst) { xbt_assert(src != nullptr || dst != nullptr, "Invalid parameter: both src and dst are nullptr"); @@ -590,37 +592,37 @@ int SD_task_dependency_exists(SD_task_t src, SD_task_t dst) if (dst) { return (src->successors->find(dst) != src->successors->end() || src->outputs->find(dst) != src->outputs->end()); } else { - return src->successors->size() + src->outputs->size(); + return static_cast(src->successors->size() + src->outputs->size()); } } else { - return dst->predecessors->size() + dst->inputs->size(); + return static_cast(dst->predecessors->size() + dst->inputs->size()); } - return 0; } /** - * \brief Remove a dependency between two tasks + * @brief Remove a dependency between two tasks * - * \param src a task - * \param dst a task depending on \a src - * \see SD_task_dependency_add() + * @param src a task + * @param dst a task depending on @a src + * @see SD_task_dependency_add() */ void SD_task_dependency_remove(SD_task_t src, SD_task_t dst) { XBT_DEBUG("SD_task_dependency_remove: src = %s, dst = %s", SD_task_get_name(src), SD_task_get_name(dst)); if (src->successors->find(dst) == src->successors->end() && src->outputs->find(dst) == src->outputs->end()) - THROWF(arg_error, 0, "No dependency found between task '%s' and '%s': task '%s' is not a successor of task '%s'", - src->name, dst->name, dst->name, src->name); + throw std::invalid_argument(simgrid::xbt::string_printf( + "No dependency found between task '%s' and '%s': task '%s' is not a successor of task '%s'", src->name, + dst->name, dst->name, src->name)); - if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK){ + if (src->kind == SD_TASK_COMM_E2E || src->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) { if (dst->kind == SD_TASK_COMP_SEQ || dst->kind == SD_TASK_COMP_PAR_AMDAHL) dst->inputs->erase(src); else dst->predecessors->erase(src); src->successors->erase(dst); } else { - if (dst->kind == SD_TASK_COMM_E2E|| dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) + if (dst->kind == SD_TASK_COMM_E2E || dst->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) src->outputs->erase(dst); else src->successors->erase(dst); @@ -633,29 +635,29 @@ void SD_task_dependency_remove(SD_task_t src, SD_task_t dst) } /** - * \brief Adds a watch point to a task + * @brief Adds a watch point to a task * - * SD_simulate() will stop as soon as the \ref e_SD_task_state_t "state" of this task becomes the one given in argument. + * SD_simulate() will stop as soon as the @ref e_SD_task_state_t "state" of this task becomes the one given in argument. * The watch point is then automatically removed. * - * \param task a task - * \param state the \ref e_SD_task_state_t "state" you want to watch (cannot be #SD_NOT_SCHEDULED) - * \see SD_task_unwatch() + * @param task a task + * @param state the @ref e_SD_task_state_t "state" you want to watch (cannot be #SD_NOT_SCHEDULED) + * @see SD_task_unwatch() */ void SD_task_watch(SD_task_t task, e_SD_task_state_t state) { if (state & SD_NOT_SCHEDULED) - THROWF(arg_error, 0, "Cannot add a watch point for state SD_NOT_SCHEDULED"); + throw std::invalid_argument("Cannot add a watch point for state SD_NOT_SCHEDULED"); task->watch_points = task->watch_points | state; } /** - * \brief Removes a watch point from a task + * @brief Removes a watch point from a task * - * \param task a task - * \param state the \ref e_SD_task_state_t "state" you no longer want to watch - * \see SD_task_watch() + * @param task a task + * @param state the @ref e_SD_task_state_t "state" you no longer want to watch + * @see SD_task_watch() */ void SD_task_unwatch(SD_task_t task, e_SD_task_state_t state) { @@ -664,20 +666,19 @@ void SD_task_unwatch(SD_task_t task, e_SD_task_state_t state) } /** - * \brief Returns an approximative estimation of the execution time of a task. + * @brief Returns an approximative estimation of the execution time of a task. * * The estimation is very approximative because the value returned is the time the task would take if it was executed * now and if it was the only task. * - * \param task the task to evaluate - * \param host_count number of hosts on which the task would be executed - * \param host_list the hosts on which the task would be executed - * \param flops_amount computation amount for each host(i.e., an array of host_count doubles) - * \param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) - * \see SD_schedule() + * @param host_count number of hosts on which the task would be executed + * @param host_list the hosts on which the task would be executed + * @param flops_amount computation amount for each host(i.e., an array of host_count doubles) + * @param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) + * @see SD_schedule() */ -double SD_task_get_execution_time(SD_task_t task, int host_count, const sg_host_t *host_list, - const double *flops_amount, const double *bytes_amount) +double SD_task_get_execution_time(const_SD_task_t /*task*/, int host_count, const sg_host_t* host_list, + const double* flops_amount, const double* bytes_amount) { xbt_assert(host_count > 0, "Invalid parameter"); double max_time = 0.0; @@ -686,13 +687,13 @@ double SD_task_get_execution_time(SD_task_t task, int host_count, const sg_host_ for (int i = 0; i < host_count; i++) { double time = 0.0; if (flops_amount != nullptr) - time = flops_amount[i] / host_list[i]->getSpeed(); + time = flops_amount[i] / host_list[i]->get_speed(); if (bytes_amount != nullptr) for (int j = 0; j < host_count; j++) if (bytes_amount[i * host_count + j] != 0) - time += (sg_host_route_latency(host_list[i], host_list[j]) + - bytes_amount[i * host_count + j] / sg_host_route_bandwidth(host_list[i], host_list[j])); + time += (sg_host_get_route_latency(host_list[i], host_list[j]) + + bytes_amount[i * host_count + j] / sg_host_get_route_bandwidth(host_list[i], host_list[j])); if (time > max_time) max_time = time; @@ -703,7 +704,8 @@ double SD_task_get_execution_time(SD_task_t task, int host_count, const sg_host_ static inline void SD_task_do_schedule(SD_task_t task) { if (SD_task_get_state(task) > SD_SCHEDULABLE) - THROWF(arg_error, 0, "Task '%s' has already been scheduled", SD_task_get_name(task)); + throw std::invalid_argument( + simgrid::xbt::string_printf("Task '%s' has already been scheduled", SD_task_get_name(task))); if (task->predecessors->empty() && task->inputs->empty()) SD_task_set_state(task, SD_RUNNABLE); @@ -712,21 +714,21 @@ static inline void SD_task_do_schedule(SD_task_t task) } /** - * \brief Schedules a task + * @brief Schedules a task * * The task state must be #SD_NOT_SCHEDULED. - * Once scheduled, a task is executed as soon as possible in \see SD_simulate, i.e. when its dependencies are satisfied. + * Once scheduled, a task is executed as soon as possible in @see SD_simulate, i.e. when its dependencies are satisfied. * - * \param task the task you want to schedule - * \param host_count number of hosts on which the task will be executed - * \param host_list the hosts on which the task will be executed - * \param flops_amount computation amount for each hosts (i.e., an array of host_count doubles) - * \param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) - * \param rate task execution speed rate - * \see SD_task_unschedule() + * @param task the task you want to schedule + * @param host_count number of hosts on which the task will be executed + * @param host_list the hosts on which the task will be executed + * @param flops_amount computation amount for each hosts (i.e., an array of host_count doubles) + * @param bytes_amount communication amount between each pair of hosts (i.e., a matrix of host_count*host_count doubles) + * @param rate task execution speed rate + * @see SD_task_unschedule() */ -void SD_task_schedule(SD_task_t task, int host_count, const sg_host_t * host_list, - const double *flops_amount, const double *bytes_amount, double rate) +void SD_task_schedule(SD_task_t task, int host_count, const sg_host_t* host_list, const double* flops_amount, + const double* bytes_amount, double rate) { xbt_assert(host_count > 0, "host_count must be positive"); @@ -749,32 +751,34 @@ void SD_task_schedule(SD_task_t task, int host_count, const sg_host_t * host_lis task->bytes_amount = nullptr; } - for(int i =0; iallocation->push_back(host_list[i]); SD_task_do_schedule(task); } /** - * \brief Unschedules a task + * @brief Unschedules a task * * The task state must be #SD_SCHEDULED, #SD_RUNNABLE, #SD_RUNNING or #SD_FAILED. * If you call this function, the task state becomes #SD_NOT_SCHEDULED. * Call SD_task_schedule() to schedule it again. * - * \param task the task you want to unschedule - * \see SD_task_schedule() + * @param task the task you want to unschedule + * @see SD_task_schedule() */ void SD_task_unschedule(SD_task_t task) { if (task->state == SD_NOT_SCHEDULED || task->state == SD_SCHEDULABLE) - THROWF(arg_error, 0, "Task %s: the state must be SD_SCHEDULED, SD_RUNNABLE, SD_RUNNING or SD_FAILED", task->name); + throw std::invalid_argument(simgrid::xbt::string_printf( + "Task %s: the state must be SD_SCHEDULED, SD_RUNNABLE, SD_RUNNING or SD_FAILED", task->name)); - if ((task->state == SD_SCHEDULED || task->state == SD_RUNNABLE) /* if the task is scheduled or runnable */ - && ((task->kind == SD_TASK_COMP_PAR_AMDAHL) || (task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK))) { - /* Don't free scheduling data for typed tasks */ - __SD_task_destroy_scheduling_data(task); + if (task->state == SD_SCHEDULED || task->state == SD_RUNNABLE) /* if the task is scheduled or runnable */ { task->allocation->clear(); + if (task->kind == SD_TASK_COMP_PAR_AMDAHL || task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK) { + /* Don't free scheduling data for typed tasks */ + __SD_task_destroy_scheduling_data(task); + } } if (SD_task_get_state(task) == SD_RUNNING) @@ -792,98 +796,93 @@ void SD_task_unschedule(SD_task_t task) /* Runs a task. */ void SD_task_run(SD_task_t task) { - xbt_assert(task->state == SD_RUNNABLE, "Task '%s' is not runnable! Task state: %d", task->name, (int) task->state); + xbt_assert(task->state == SD_RUNNABLE, "Task '%s' is not runnable! Task state: %d", task->name, (int)task->state); xbt_assert(task->allocation != nullptr, "Task '%s': host_list is nullptr!", task->name); XBT_VERB("Executing task '%s'", task->name); - /* Copy the elements of the task into the action */ - int host_nb = task->allocation->size(); - sg_host_t* hosts = new sg_host_t[host_nb]; - std::copy_n(task->allocation->begin(), host_nb, hosts); - - double* flops_amount = new double[host_nb](); - double* bytes_amount = new double[host_nb * host_nb](); + /* Beware! The scheduling data are now used by the surf action directly! no copy was done */ + auto host_model = (*task->allocation).front()->get_netpoint()->get_englobing_zone()->get_host_model(); + task->surf_action = + host_model->execute_parallel(*task->allocation, task->flops_amount, task->bytes_amount, task->rate); - if(task->flops_amount) - std::copy_n(task->flops_amount, host_nb, flops_amount); - if(task->bytes_amount) - std::copy_n(task->bytes_amount, host_nb * host_nb, bytes_amount); - - task->surf_action = surf_host_model->executeParallelTask(host_nb, hosts, flops_amount, bytes_amount, task->rate); - - task->surf_action->setData(task); + task->surf_action->set_data(task); XBT_DEBUG("surf_action = %p", task->surf_action); - __SD_task_destroy_scheduling_data(task); /* now the scheduling data are not useful anymore */ SD_task_set_state(task, SD_RUNNING); - sd_global->return_set->insert(task); + sd_global->return_set.insert(task); } /** - * \brief Returns the start time of a task + * @brief Returns the start time of a task * * The task state must be SD_RUNNING, SD_DONE or SD_FAILED. * - * \param task: a task - * \return the start time of this task + * @param task: a task + * @return the start time of this task */ -double SD_task_get_start_time(SD_task_t task) +double SD_task_get_start_time(const_SD_task_t task) { if (task->surf_action) - return task->surf_action->getStartTime(); + return task->surf_action->get_start_time(); else return task->start_time; } /** - * \brief Returns the finish time of a task + * @brief Returns the finish time of a task * * The task state must be SD_RUNNING, SD_DONE or SD_FAILED. * If the state is not completed yet, the returned value is an estimation of the task finish time. This value can * vary until the task is completed. * - * \param task: a task - * \return the start time of this task + * @param task: a task + * @return the start time of this task */ -double SD_task_get_finish_time(SD_task_t task) +double SD_task_get_finish_time(const_SD_task_t task) { - if (task->surf_action) /* should never happen as actions are destroyed right after their completion */ - return task->surf_action->getFinishTime(); + if (task->surf_action) /* should never happen as actions are destroyed right after their completion */ + return task->surf_action->get_finish_time(); else return task->finish_time; } void SD_task_distribute_comp_amdahl(SD_task_t task, int count) { - xbt_assert(task->kind == SD_TASK_COMP_PAR_AMDAHL, "Task %s is not a SD_TASK_COMP_PAR_AMDAHL typed task." - "Cannot use this function.", task->name); + xbt_assert(task->kind == SD_TASK_COMP_PAR_AMDAHL, + "Task %s is not a SD_TASK_COMP_PAR_AMDAHL typed task." + "Cannot use this function.", + task->name); task->flops_amount = xbt_new0(double, count); - task->bytes_amount = xbt_new0(double, count * count); + task->bytes_amount = xbt_new0(double, count* count); - for (int i=0; iflops_amount[i] = (task->alpha + (1 - task->alpha)/count) * task->amount; + for (int i = 0; i < count; i++) { + task->flops_amount[i] = (task->alpha + (1 - task->alpha) / count) * task->amount; } } -void SD_task_build_MxN_1D_block_matrix(SD_task_t task, int src_nb, int dst_nb){ - xbt_assert(task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK, "Task %s is not a SD_TASK_COMM_PAR_MXN_1D_BLOCK typed task." - "Cannot use this function.", task->name); +void SD_task_build_MxN_1D_block_matrix(SD_task_t task, int src_nb, int dst_nb) +{ + xbt_assert(task->kind == SD_TASK_COMM_PAR_MXN_1D_BLOCK, + "Task %s is not a SD_TASK_COMM_PAR_MXN_1D_BLOCK typed task." + "Cannot use this function.", + task->name); xbt_free(task->bytes_amount); - task->bytes_amount = xbt_new0(double,task->allocation->size() * task->allocation->size()); - - for (int i=0; iamount/src_nb; - double src_end = src_start + task->amount/src_nb; - for (int j=0; jamount/dst_nb; - double dst_end = dst_start + task->amount/dst_nb; + task->bytes_amount = xbt_new0(double, task->allocation->size() * task->allocation->size()); + + for (int i = 0; i < src_nb; i++) { + double src_start = i * task->amount / src_nb; + double src_end = src_start + task->amount / src_nb; + for (int j = 0; j < dst_nb; j++) { + double dst_start = j * task->amount / dst_nb; + double dst_end = dst_start + task->amount / dst_nb; XBT_VERB("(%d->%d): (%.2f, %.2f)-> (%.2f, %.2f)", i, j, src_start, src_end, dst_start, dst_end); - task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j]=0.0; + task->bytes_amount[i * (src_nb + dst_nb) + src_nb + j] = 0.0; if ((src_end > dst_start) && (dst_end > src_start)) { /* There is something to send */ - task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j] = MIN(src_end, dst_end)- MAX(src_start, dst_start); - XBT_VERB("==> %.2f", task->bytes_amount[i*(src_nb+dst_nb)+src_nb+j]); + task->bytes_amount[i * (src_nb + dst_nb) + src_nb + j] = + std::min(src_end, dst_end) - std::max(src_start, dst_start); + XBT_VERB("==> %.2f", task->bytes_amount[i * (src_nb + dst_nb) + src_nb + j]); } } } @@ -891,25 +890,25 @@ void SD_task_build_MxN_1D_block_matrix(SD_task_t task, int src_nb, int dst_nb){ /** @brief Auto-schedules a task. * - * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows to specify the task costs at + * Auto-scheduling mean that the task can be used with SD_task_schedulev(). This allows one to specify the task costs at * creation, and decouple them from the scheduling process where you just specify which resource should deliver the * mandatory power. * * To be auto-schedulable, a task must be a typed computation SD_TASK_COMP_SEQ or SD_TASK_COMP_PAR_AMDAHL. */ -void SD_task_schedulev(SD_task_t task, int count, const sg_host_t * list) +void SD_task_schedulev(SD_task_t task, int count, const sg_host_t* list) { xbt_assert(task->kind == SD_TASK_COMP_SEQ || task->kind == SD_TASK_COMP_PAR_AMDAHL, - "Task %s is not typed. Cannot automatically schedule it.", SD_task_get_name(task)); + "Task %s is not typed. Cannot automatically schedule it.", SD_task_get_name(task)); - for(int i =0; iallocation->push_back(list[i]); XBT_VERB("Schedule computation task %s on %zu host(s)", task->name, task->allocation->size()); if (task->kind == SD_TASK_COMP_SEQ) { if (not task->flops_amount) { /*This task has failed and is rescheduled. Reset the flops_amount*/ - task->flops_amount = xbt_new0(double, 1); + task->flops_amount = xbt_new0(double, 1); task->flops_amount[0] = task->amount; } XBT_VERB("It costs %.f flops", task->flops_amount[0]); @@ -924,40 +923,40 @@ void SD_task_schedulev(SD_task_t task, int count, const sg_host_t * list) /* Iterate over all inputs and outputs to say where I am located (and start them if runnable) */ for (auto const& input : *task->inputs) { - int src_nb = input->allocation->size(); + int src_nb = static_cast(input->allocation->size()); int dst_nb = count; if (input->allocation->empty()) XBT_VERB("Sender side of '%s' not scheduled. Set receiver side to '%s''s allocation", input->name, task->name); - for (int i=0; iallocation->push_back(task->allocation->at(i)); - if (input->allocation->size () > task->allocation->size()) { + if (input->allocation->size() > task->allocation->size()) { if (task->kind == SD_TASK_COMP_PAR_AMDAHL) SD_task_build_MxN_1D_block_matrix(input, src_nb, dst_nb); SD_task_do_schedule(input); - XBT_VERB ("Auto-Schedule Communication task '%s'. Send %.f bytes from %d hosts to %d hosts.", - input->name,input->amount, src_nb, dst_nb); + XBT_VERB("Auto-Schedule Communication task '%s'. Send %.f bytes from %d hosts to %d hosts.", input->name, + input->amount, src_nb, dst_nb); } } for (auto const& output : *task->outputs) { int src_nb = count; - int dst_nb = output->allocation->size(); + int dst_nb = static_cast(output->allocation->size()); if (output->allocation->empty()) XBT_VERB("Receiver side of '%s' not scheduled. Set sender side to '%s''s allocation", output->name, task->name); - for (int i=0; iallocation->insert(output->allocation->begin()+i, task->allocation->at(i)); + for (int i = 0; i < count; i++) + output->allocation->insert(output->allocation->begin() + i, task->allocation->at(i)); - if (output->allocation->size () > task->allocation->size()) { + if (output->allocation->size() > task->allocation->size()) { if (task->kind == SD_TASK_COMP_PAR_AMDAHL) SD_task_build_MxN_1D_block_matrix(output, src_nb, dst_nb); SD_task_do_schedule(output); - XBT_VERB ("Auto-Schedule Communication task %s. Send %.f bytes from %d hosts to %d hosts.", - output->name, output->amount, src_nb, dst_nb); + XBT_VERB("Auto-Schedule Communication task %s. Send %.f bytes from %d hosts to %d hosts.", output->name, + output->amount, src_nb, dst_nb); } } } @@ -970,12 +969,11 @@ void SD_task_schedulev(SD_task_t task, int count, const sg_host_t * list) void SD_task_schedulel(SD_task_t task, int count, ...) { va_list ap; - sg_host_t* list = new sg_host_t[count]; + std::vector list(count); va_start(ap, count); - for (int i=0; i