X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/2137ac0e87390b19e5799794777a8a173039afa4..ddf68f4576a823d181a8f030a93162d63cdab4c6:/src/surf/plugins/energy.cpp diff --git a/src/surf/plugins/energy.cpp b/src/surf/plugins/energy.cpp index 1c60ba4233..45ba1866ae 100644 --- a/src/surf/plugins/energy.cpp +++ b/src/surf/plugins/energy.cpp @@ -1,17 +1,16 @@ -/* Copyright (c) 2010, 2012-2015. The SimGrid Team. - * All rights reserved. */ +/* Copyright (c) 2010, 2012-2016. The SimGrid Team. All rights reserved. */ /* This program is free software; you can redistribute it and/or modify it * under the terms of the license (GNU LGPL) which comes with this package. */ -#include - #include "simgrid/plugins/energy.h" #include "simgrid/simix.hpp" #include "src/surf/plugins/energy.hpp" #include "src/surf/cpu_interface.hpp" #include "src/surf/virtual_machine.hpp" +#include + /** @addtogroup SURF_plugin_energy @@ -70,16 +69,27 @@ void HostEnergy::update() double start_time = this->last_updated; double finish_time = surf_get_clock(); double cpu_load; - if (surf_host->cpu_->speed_.peak <= 0) + if (surf_host->cpu_->getPstateSpeedCurrent() <= 0) // Some users declare a pstate of speed 0 flops (e.g., to model boot time). // We consider that the machine is then fully loaded. That's arbitrary but it avoids a NaN cpu_load = 1; else - cpu_load = lmm_constraint_get_usage(surf_host->cpu_->getConstraint()) / surf_host->cpu_->speed_.peak; + cpu_load = lmm_constraint_get_usage(surf_host->cpu_->getConstraint()) / surf_host->cpu_->getPstateSpeedCurrent(); + + /** Divide by the number of cores here **/ + cpu_load /= surf_host->cpu_->getCoreCount(); - if (cpu_load > 1) // A machine with a load > 1 consumes as much as a fully loaded machine, not mores + if (cpu_load > 1) // A machine with a load > 1 consumes as much as a fully loaded machine, not more cpu_load = 1; + /* The problem with this model is that the load is always 0 or 1, never something less. + * Another possibility could be to model the total energy as + * + * X/(X+Y)*W_idle + Y/(X+Y)*W_burn + * + * where X is the amount of ideling cores, and Y the amount of computing cores. + */ + double previous_energy = this->total_energy; double instantaneous_consumption; @@ -118,13 +128,13 @@ HostEnergy::~HostEnergy()=default; double HostEnergy::getWattMinAt(int pstate) { xbt_assert(!power_range_watts_list.empty(), "No power range properties specified for host %s", host->name().c_str()); - return power_range_watts_list[pstate].first; + return power_range_watts_list[pstate].min; } double HostEnergy::getWattMaxAt(int pstate) { xbt_assert(!power_range_watts_list.empty(), "No power range properties specified for host %s", host->name().c_str()); - return power_range_watts_list[pstate].second; + return power_range_watts_list[pstate].max; } /** @brief Computes the power consumed by the host according to the current pstate and processor load */ @@ -134,11 +144,38 @@ double HostEnergy::getCurrentWattsValue(double cpu_load) /* min_power corresponds to the idle power (cpu load = 0) */ /* max_power is the power consumed at 100% cpu load */ - auto range = power_range_watts_list.at(host->pstate()); - double min_power = range.first; - double max_power = range.second; - double power_slope = max_power - min_power; - double current_power = min_power + cpu_load * power_slope; + auto range = power_range_watts_list.at(host->pstate()); + double current_power = 0; + double min_power = 0; + double max_power = 0; + double power_slope = 0; + + if (cpu_load > 0) { /* Something is going on, the machine is not idle */ + double min_power = range.min; + double max_power = range.max; + + /** + * The min_power states how much we consume when only one single + * core is working. This means that when cpu_load == 1/coreCount, then + * current_power == min_power. + * + * The maximum must be reached when all cores are working (but 1 core was + * already accounted for by min_power) + * i.e., we need min_power + (maxCpuLoad-1/coreCount)*power_slope == max_power + * (maxCpuLoad is by definition 1) + */ + double power_slope; + int coreCount = host->coresCount(); + if (coreCount > 1) + power_slope = (max_power - min_power) / (1 - 1 / coreCount); + else + power_slope = 0; // Should be 0, since max_power == min_power (in this case) + + current_power = min_power + (cpu_load - (1 / coreCount)) * power_slope; + } + else { /* Our machine is idle, take the dedicated value! */ + current_power = range.idle; + } XBT_DEBUG("[get_current_watts] min_power=%f, max_power=%f, slope=%f", min_power, max_power, power_slope); XBT_DEBUG("[get_current_watts] Current power (watts) = %f, load = %f", current_power, cpu_load); @@ -174,12 +211,15 @@ void HostEnergy::initWattsRangeList() /* min_power corresponds to the idle power (cpu load = 0) */ /* max_power is the power consumed at 100% cpu load */ + char *msg_idle = bprintf("Invalid idle value for pstate %d on host %s: %%s", i, host->name().c_str()); char *msg_min = bprintf("Invalid min value for pstate %d on host %s: %%s", i, host->name().c_str()); - char *msg_max = bprintf("Invalid min value for pstate %d on host %s: %%s", i, host->name().c_str()); - power_range_watts_list.push_back(power_range( - xbt_str_parse_double(xbt_dynar_get_as(current_power_values, 0, char*), msg_min), - xbt_str_parse_double(xbt_dynar_get_as(current_power_values, 1, char*), msg_max) - )); + char *msg_max = bprintf("Invalid max value for pstate %d on host %s: %%s", i, host->name().c_str()); + PowerRange range( + xbt_str_parse_double(xbt_dynar_get_as(current_power_values, 0, char*), msg_idle), + xbt_str_parse_double(xbt_dynar_get_as(current_power_values, 1, char*), msg_min), + xbt_str_parse_double(xbt_dynar_get_as(current_power_values, 2, char*), msg_max) + ); + power_range_watts_list.push_back(range); xbt_free(msg_min); xbt_free(msg_max);