X-Git-Url: http://info.iut-bm.univ-fcomte.fr/pub/gitweb/simgrid.git/blobdiff_plain/0e891586dc32fa326d78275a74f644a83386bfe8..83f54f6317f4a731d5534216d9ffb51b69dd51c9:/src/kernel/lmm/lagrange.cpp diff --git a/src/kernel/lmm/lagrange.cpp b/src/kernel/lmm/lagrange.cpp index f0e33b4897..07c8fbb9ef 100644 --- a/src/kernel/lmm/lagrange.cpp +++ b/src/kernel/lmm/lagrange.cpp @@ -29,9 +29,9 @@ namespace simgrid { namespace kernel { namespace lmm { -double (*func_f_def)(const s_lmm_variable_t&, double); -double (*func_fp_def)(const s_lmm_variable_t&, double); -double (*func_fpi_def)(const s_lmm_variable_t&, double); +double (*func_f_def)(const Variable&, double); +double (*func_fp_def)(const Variable&, double); +double (*func_fpi_def)(const Variable&, double); /* * Local prototypes to implement the Lagrangian optimization with optimal step, also called dichotomy. @@ -63,7 +63,7 @@ static int __check_feasible(const CnstList& cnst_list, const VarList& var_list, XBT_DEBUG("Checking feasability for constraint (%p): sat = %f, lambda = %f ", &cnst, tmp - cnst.bound, cnst.lambda); } - for (s_lmm_variable_t const& var : var_list) { + for (Variable const& var : var_list) { if (not var.sharing_weight) break; if (var.bound < 0) @@ -79,7 +79,7 @@ static int __check_feasible(const CnstList& cnst_list, const VarList& var_list, return 1; } -static double new_value(const s_lmm_variable_t& var) +static double new_value(const Variable& var) { double tmp = 0; @@ -93,7 +93,7 @@ static double new_value(const s_lmm_variable_t& var) return var.func_fpi(var, tmp); } -static double new_mu(const s_lmm_variable_t& var) +static double new_mu(const Variable& var) { double mu_i = 0.0; double sigma_i = 0.0; @@ -112,7 +112,7 @@ static double dual_objective(const VarList& var_list, const CnstList& cnst_list) { double obj = 0.0; - for (s_lmm_variable_t const& var : var_list) { + for (Variable const& var : var_list) { double sigma_i = 0.0; if (not var.sharing_weight) @@ -171,7 +171,7 @@ void lagrange_solve(lmm_system_t sys) * Initialize the var_list variable with only the active variables. Initialize mu. */ auto& var_list = sys->variable_set; - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (not var.sharing_weight) var.value = 0.0; else { @@ -205,7 +205,7 @@ void lagrange_solve(lmm_system_t sys) XBT_DEBUG("-------------- Gradient Descent ----------"); /* Improve the value of mu_i */ - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (var.sharing_weight && var.bound >= 0) { XBT_DEBUG("Working on var (%p)", &var); var.new_mu = new_mu(var); @@ -235,7 +235,7 @@ void lagrange_solve(lmm_system_t sys) /* Now computes the values of each variable (\rho) based on the values of \lambda and \mu. */ XBT_DEBUG("-------------- Check convergence ----------"); overall_modification = 0; - for (s_lmm_variable_t& var : var_list) { + for (Variable& var : var_list) { if (var.sharing_weight <= 0) var.value = 0.0; else { @@ -389,7 +389,7 @@ static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst) XBT_CDEBUG(surf_lagrange_dichotomy, "Computing diff of cnst (%p)", &cnst); for (s_lmm_element_t const& elem : cnst.enabled_element_set) { - s_lmm_variable_t& var = *elem.variable; + Variable& var = *elem.variable; xbt_assert(var.sharing_weight > 0); XBT_CDEBUG(surf_lagrange_dichotomy, "Computing sigma_i for var (%p)", &var); // Initialize the summation variable @@ -424,9 +424,9 @@ static double partial_diff_lambda(double lambda, const s_lmm_constraint_t& cnst) * programming. * */ -void lmm_set_default_protocol_function(double (*func_f)(const s_lmm_variable_t& var, double x), - double (*func_fp)(const s_lmm_variable_t& var, double x), - double (*func_fpi)(const s_lmm_variable_t& var, double x)) +void lmm_set_default_protocol_function(double (*func_f)(const Variable& var, double x), + double (*func_fp)(const Variable& var, double x), + double (*func_fpi)(const Variable& var, double x)) { func_f_def = func_f; func_fp_def = func_fp; @@ -441,19 +441,19 @@ void lmm_set_default_protocol_function(double (*func_f)(const s_lmm_variable_t& * Therefore: $fp(x) = \frac{\alpha D_f}{x}$ * Therefore: $fpi(x) = \frac{\alpha D_f}{x}$ */ -double func_vegas_f(const s_lmm_variable_t& var, double x) +double func_vegas_f(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return VEGAS_SCALING * var.sharing_weight * log(x); } -double func_vegas_fp(const s_lmm_variable_t& var, double x) +double func_vegas_fp(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return VEGAS_SCALING * var.sharing_weight / x; } -double func_vegas_fpi(const s_lmm_variable_t& var, double x) +double func_vegas_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values! (%1.20f)", x); return var.sharing_weight / (x / VEGAS_SCALING); @@ -464,19 +464,19 @@ double func_vegas_fpi(const s_lmm_variable_t& var, double x) * Therefore: $fp(x) = \frac{3}{3 D_f^2 x^2+2}$ * Therefore: $fpi(x) = \sqrt{\frac{1}{{D_f}^2 x} - \frac{2}{3{D_f}^2}}$ */ -double func_reno_f(const s_lmm_variable_t& var, double x) +double func_reno_f(const Variable& var, double x) { xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); return RENO_SCALING * sqrt(3.0 / 2.0) / var.sharing_weight * atan(sqrt(3.0 / 2.0) * var.sharing_weight * x); } -double func_reno_fp(const s_lmm_variable_t& var, double x) +double func_reno_fp(const Variable& var, double x) { return RENO_SCALING * 3.0 / (3.0 * var.sharing_weight * var.sharing_weight * x * x + 2.0); } -double func_reno_fpi(const s_lmm_variable_t& var, double x) +double func_reno_fpi(const Variable& var, double x) { double res_fpi; @@ -495,19 +495,19 @@ double func_reno_fpi(const s_lmm_variable_t& var, double x) * Therefore: $fp(x) = 2/(Weight*x + 2) * Therefore: $fpi(x) = (2*Weight)/x - 4 */ -double func_reno2_f(const s_lmm_variable_t& var, double x) +double func_reno2_f(const Variable& var, double x) { xbt_assert(var.sharing_weight > 0.0, "Don't call me with stupid values!"); return RENO2_SCALING * (1.0 / var.sharing_weight) * log((x * var.sharing_weight) / (2.0 * x * var.sharing_weight + 3.0)); } -double func_reno2_fp(const s_lmm_variable_t& var, double x) +double func_reno2_fp(const Variable& var, double x) { return RENO2_SCALING * 3.0 / (var.sharing_weight * x * (2.0 * var.sharing_weight * x + 3.0)); } -double func_reno2_fpi(const s_lmm_variable_t& var, double x) +double func_reno2_fpi(const Variable& var, double x) { xbt_assert(x > 0.0, "Don't call me with stupid values!"); double tmp = x * var.sharing_weight * var.sharing_weight;