Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
now, kernel::actor::simcall_blocking can return a value
[simgrid.git] / include / simgrid / simix.hpp
index f28dbb2..9539451 100644 (file)
@@ -16,8 +16,8 @@
 #include <string>
 #include <unordered_map>
 
-XBT_PUBLIC void simcall_run_kernel(std::function<void()> const& code);
-XBT_PUBLIC void simcall_run_blocking(std::function<void()> const& code);
+XBT_PUBLIC void simcall_run_kernel(std::function<void()> const& code, simgrid::mc::SimcallInspector* t);
+XBT_PUBLIC void simcall_run_blocking(std::function<void()> const& code, simgrid::mc::SimcallInspector* t);
 
 namespace simgrid {
 namespace kernel {
@@ -42,7 +42,7 @@ namespace actor {
  * you may need to wait for that mutex to be unlocked by its current owner.
  * Potentially blocking simcall must be issued using simcall_blocking(), right below in this file.
  */
-template <class F> typename std::result_of<F()>::type simcall(F&& code)
+template <class F> typename std::result_of<F()>::type simcall(F&& code, mc::SimcallInspector* t = nullptr)
 {
   // If we are in the maestro, we take the fast path and execute the
   // code directly without simcall mashalling/unmarshalling/dispatch:
@@ -54,7 +54,7 @@ template <class F> typename std::result_of<F()>::type simcall(F&& code)
   // conveniently handles the success/failure value for us.
   typedef typename std::result_of<F()>::type R;
   simgrid::xbt::Result<R> result;
-  simcall_run_kernel([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward<F>(code)); });
+  simcall_run_kernel([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward<F>(code)); }, t);
   return result.get();
 }
 
@@ -63,6 +63,9 @@ template <class F> typename std::result_of<F()>::type simcall(F&& code)
  * This is very similar to simcall() right above, but the calling actor will not get rescheduled until
  * actor->simcall_answer() is called explicitely.
  *
+ * Since the return value does not come from the lambda directly, its type cannot be guessed automatically and must
+ * be provided as template parameter.
+ *
  * This is meant for blocking actions. For example, locking a mutex is a blocking simcall.
  * First it's a simcall because that's obviously a modification of the world. Then, that's a blocking simcall because if
  * the mutex happens not to be free, the actor is added to a queue of actors in the mutex. Every mutex->unlock() takes
@@ -72,7 +75,7 @@ template <class F> typename std::result_of<F()>::type simcall(F&& code)
  *
  * If your code never calls actor->simcall_answer() itself, the actor will never return from its simcall.
  */
-template <class F> typename std::result_of<F()>::type simcall_blocking(F&& code)
+template <class R, class F> R simcall_blocking(F&& code, mc::SimcallInspector* t = nullptr)
 {
   // If we are in the maestro, we take the fast path and execute the
   // code directly without simcall mashalling/unmarshalling/dispatch:
@@ -82,9 +85,8 @@ template <class F> typename std::result_of<F()>::type simcall_blocking(F&& code)
   // If we are in the application, pass the code to the maestro which
   // executes it for us and reports the result. We use a std::future which
   // conveniently handles the success/failure value for us.
-  typedef typename std::result_of<F()>::type R;
   simgrid::xbt::Result<R> result;
-  simcall_run_blocking([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward<F>(code)); });
+  simcall_run_blocking([&result, &code] { simgrid::xbt::fulfill_promise(result, std::forward<F>(code)); }, t);
   return result.get();
 }
 } // namespace actor