c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_solve c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c Performs line solves in Y direction by first factoring c the block-tridiagonal matrix into an upper triangular matrix, c and then performing back substitution to solve for the unknow c vectors of each line. c c Make sure we treat elements zero to cell_size in the direction c of the sweep. c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer > c, jstart, stage, > first, last, recv_id, error, r_status(MPI_STATUS_SIZE), > isize,jsize,ksize,send_id jstart = 0 c--------------------------------------------------------------------- c in our terminology stage is the number of the cell in the y-direction c i.e. stage = 1 means the start of the line stage=ncells means end c--------------------------------------------------------------------- do stage = 1,ncells c = slice(2,stage) isize = cell_size(1,c) - 1 jsize = cell_size(2,c) - 1 ksize = cell_size(3,c) - 1 c--------------------------------------------------------------------- c set last-cell flag c--------------------------------------------------------------------- if (stage .eq. ncells) then last = 1 else last = 0 endif if (stage .eq. 1) then c--------------------------------------------------------------------- c This is the first cell, so solve without receiving data c--------------------------------------------------------------------- first = 1 c call lhsy(c) call y_solve_cell(first,last,c) else c--------------------------------------------------------------------- c Not the first cell of this line, so receive info from c processor working on preceeding cell c--------------------------------------------------------------------- first = 0 call y_receive_solve_info(recv_id,c) c--------------------------------------------------------------------- c overlap computations and communications c--------------------------------------------------------------------- c call lhsy(c) c--------------------------------------------------------------------- c wait for completion c--------------------------------------------------------------------- call mpi_wait(send_id,r_status,error) call mpi_wait(recv_id,r_status,error) c--------------------------------------------------------------------- c install C'(jstart+1) and rhs'(jstart+1) to be used in this cell c--------------------------------------------------------------------- call y_unpack_solve_info(c) call y_solve_cell(first,last,c) endif if (last .eq. 0) call y_send_solve_info(send_id,c) enddo c--------------------------------------------------------------------- c now perform backsubstitution in reverse direction c--------------------------------------------------------------------- do stage = ncells, 1, -1 c = slice(2,stage) first = 0 last = 0 if (stage .eq. 1) first = 1 if (stage .eq. ncells) then last = 1 c--------------------------------------------------------------------- c last cell, so perform back substitute without waiting c--------------------------------------------------------------------- call y_backsubstitute(first, last,c) else call y_receive_backsub_info(recv_id,c) call mpi_wait(send_id,r_status,error) call mpi_wait(recv_id,r_status,error) call y_unpack_backsub_info(c) call y_backsubstitute(first,last,c) endif if (first .eq. 0) call y_send_backsub_info(send_id,c) enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_unpack_solve_info(c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c unpack C'(-1) and rhs'(-1) for c all i and k c--------------------------------------------------------------------- include 'header.h' integer i,k,m,n,ptr,c,jstart jstart = 0 ptr = 0 do k=0,KMAX-1 do i=0,IMAX-1 do m=1,BLOCK_SIZE do n=1,BLOCK_SIZE lhsc(m,n,i,jstart-1,k,c) = out_buffer(ptr+n) enddo ptr = ptr+BLOCK_SIZE enddo do n=1,BLOCK_SIZE rhs(n,i,jstart-1,k,c) = out_buffer(ptr+n) enddo ptr = ptr+BLOCK_SIZE enddo enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_send_solve_info(send_id,c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c pack up and send C'(jend) and rhs'(jend) for c all i and k c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer i,k,m,n,jsize,ptr,c,ip,kp integer error,send_id,buffer_size jsize = cell_size(2,c)-1 ip = cell_coord(1,c) - 1 kp = cell_coord(3,c) - 1 buffer_size=MAX_CELL_DIM*MAX_CELL_DIM* > (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE) c--------------------------------------------------------------------- c pack up buffer c--------------------------------------------------------------------- ptr = 0 do k=0,KMAX-1 do i=0,IMAX-1 do m=1,BLOCK_SIZE do n=1,BLOCK_SIZE in_buffer(ptr+n) = lhsc(m,n,i,jsize,k,c) enddo ptr = ptr+BLOCK_SIZE enddo do n=1,BLOCK_SIZE in_buffer(ptr+n) = rhs(n,i,jsize,k,c) enddo ptr = ptr+BLOCK_SIZE enddo enddo c--------------------------------------------------------------------- c send buffer c--------------------------------------------------------------------- call mpi_isend(in_buffer, buffer_size, > dp_type, successor(2), > SOUTH+ip+kp*NCELLS, comm_solve, > send_id,error) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_send_backsub_info(send_id,c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c pack up and send U(jstart) for all i and k c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer i,k,n,ptr,c,jstart,ip,kp integer error,send_id,buffer_size c--------------------------------------------------------------------- c Send element 0 to previous processor c--------------------------------------------------------------------- jstart = 0 ip = cell_coord(1,c)-1 kp = cell_coord(3,c)-1 buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE ptr = 0 do k=0,KMAX-1 do i=0,IMAX-1 do n=1,BLOCK_SIZE in_buffer(ptr+n) = rhs(n,i,jstart,k,c) enddo ptr = ptr+BLOCK_SIZE enddo enddo call mpi_isend(in_buffer, buffer_size, > dp_type, predecessor(2), > NORTH+ip+kp*NCELLS, comm_solve, > send_id,error) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_unpack_backsub_info(c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c unpack U(jsize) for all i and k c--------------------------------------------------------------------- include 'header.h' integer i,k,n,ptr,c ptr = 0 do k=0,KMAX-1 do i=0,IMAX-1 do n=1,BLOCK_SIZE backsub_info(n,i,k,c) = out_buffer(ptr+n) enddo ptr = ptr+BLOCK_SIZE enddo enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_receive_backsub_info(recv_id,c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c post mpi receives c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer error,recv_id,ip,kp,c,buffer_size ip = cell_coord(1,c) - 1 kp = cell_coord(3,c) - 1 buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE call mpi_irecv(out_buffer, buffer_size, > dp_type, successor(2), > NORTH+ip+kp*NCELLS, comm_solve, > recv_id, error) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_receive_solve_info(recv_id,c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c post mpi receives c--------------------------------------------------------------------- include 'header.h' include 'mpinpb.h' integer ip,kp,recv_id,error,c,buffer_size ip = cell_coord(1,c) - 1 kp = cell_coord(3,c) - 1 buffer_size=MAX_CELL_DIM*MAX_CELL_DIM* > (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE) call mpi_irecv(out_buffer, buffer_size, > dp_type, predecessor(2), > SOUTH+ip+kp*NCELLS, comm_solve, > recv_id, error) return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_backsubstitute(first, last, c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c back solve: if last cell, then generate U(jsize)=rhs(jsize) c else assume U(jsize) is loaded in un pack backsub_info c so just use it c after call u(jstart) will be sent to next cell c--------------------------------------------------------------------- include 'header.h' integer first, last, c, i, k integer m,n,j,jsize,isize,ksize,jstart jstart = 0 isize = cell_size(1,c)-end(1,c)-1 jsize = cell_size(2,c)-1 ksize = cell_size(3,c)-end(3,c)-1 if (last .eq. 0) then do k=start(3,c),ksize do i=start(1,c),isize c--------------------------------------------------------------------- c U(jsize) uses info from previous cell if not last cell c--------------------------------------------------------------------- do m=1,BLOCK_SIZE do n=1,BLOCK_SIZE rhs(m,i,jsize,k,c) = rhs(m,i,jsize,k,c) > - lhsc(m,n,i,jsize,k,c)* > backsub_info(n,i,k,c) enddo enddo enddo enddo endif do k=start(3,c),ksize do j=jsize-1,jstart,-1 do i=start(1,c),isize do m=1,BLOCK_SIZE do n=1,BLOCK_SIZE rhs(m,i,j,k,c) = rhs(m,i,j,k,c) > - lhsc(m,n,i,j,k,c)*rhs(n,i,j+1,k,c) enddo enddo enddo enddo enddo return end c--------------------------------------------------------------------- c--------------------------------------------------------------------- subroutine y_solve_cell(first,last,c) c--------------------------------------------------------------------- c--------------------------------------------------------------------- c--------------------------------------------------------------------- c performs guaussian elimination on this cell. c c assumes that unpacking routines for non-first cells c preload C' and rhs' from previous cell. c c assumed send happens outside this routine, but that c c'(JMAX) and rhs'(JMAX) will be sent to next cell c--------------------------------------------------------------------- include 'header.h' include 'work_lhs.h' integer first,last,c integer i,j,k,isize,ksize,jsize,jstart double precision utmp(6,-2:JMAX+1) jstart = 0 isize = cell_size(1,c)-end(1,c)-1 jsize = cell_size(2,c)-1 ksize = cell_size(3,c)-end(3,c)-1 call lhsabinit(lhsa, lhsb, jsize) do k=start(3,c),ksize do i=start(1,c),isize c--------------------------------------------------------------------- c This function computes the left hand side for the three y-factors c--------------------------------------------------------------------- c--------------------------------------------------------------------- c Compute the indices for storing the tri-diagonal matrix; c determine a (labeled f) and n jacobians for cell c c--------------------------------------------------------------------- do j = start(2,c)-1, cell_size(2,c)-end(2,c) utmp(1,j) = 1.0d0 / u(1,i,j,k,c) utmp(2,j) = u(2,i,j,k,c) utmp(3,j) = u(3,i,j,k,c) utmp(4,j) = u(4,i,j,k,c) utmp(5,j) = u(5,i,j,k,c) utmp(6,j) = qs(i,j,k,c) end do do j = start(2,c)-1, cell_size(2,c)-end(2,c) tmp1 = utmp(1,j) tmp2 = tmp1 * tmp1 tmp3 = tmp1 * tmp2 fjac(1,1,j) = 0.0d+00 fjac(1,2,j) = 0.0d+00 fjac(1,3,j) = 1.0d+00 fjac(1,4,j) = 0.0d+00 fjac(1,5,j) = 0.0d+00 fjac(2,1,j) = - ( utmp(2,j)*utmp(3,j) ) > * tmp2 fjac(2,2,j) = utmp(3,j) * tmp1 fjac(2,3,j) = utmp(2,j) * tmp1 fjac(2,4,j) = 0.0d+00 fjac(2,5,j) = 0.0d+00 fjac(3,1,j) = - ( utmp(3,j)*utmp(3,j)*tmp2) > + c2 * utmp(6,j) fjac(3,2,j) = - c2 * utmp(2,j) * tmp1 fjac(3,3,j) = ( 2.0d+00 - c2 ) > * utmp(3,j) * tmp1 fjac(3,4,j) = - c2 * utmp(4,j) * tmp1 fjac(3,5,j) = c2 fjac(4,1,j) = - ( utmp(3,j)*utmp(4,j) ) > * tmp2 fjac(4,2,j) = 0.0d+00 fjac(4,3,j) = utmp(4,j) * tmp1 fjac(4,4,j) = utmp(3,j) * tmp1 fjac(4,5,j) = 0.0d+00 fjac(5,1,j) = ( c2 * 2.0d0 * utmp(6,j) > - c1 * utmp(5,j) * tmp1 ) > * utmp(3,j) * tmp1 fjac(5,2,j) = - c2 * utmp(2,j)*utmp(3,j) > * tmp2 fjac(5,3,j) = c1 * utmp(5,j) * tmp1 > - c2 * ( utmp(6,j) > + utmp(3,j)*utmp(3,j) * tmp2 ) fjac(5,4,j) = - c2 * ( utmp(3,j)*utmp(4,j) ) > * tmp2 fjac(5,5,j) = c1 * utmp(3,j) * tmp1 njac(1,1,j) = 0.0d+00 njac(1,2,j) = 0.0d+00 njac(1,3,j) = 0.0d+00 njac(1,4,j) = 0.0d+00 njac(1,5,j) = 0.0d+00 njac(2,1,j) = - c3c4 * tmp2 * utmp(2,j) njac(2,2,j) = c3c4 * tmp1 njac(2,3,j) = 0.0d+00 njac(2,4,j) = 0.0d+00 njac(2,5,j) = 0.0d+00 njac(3,1,j) = - con43 * c3c4 * tmp2 * utmp(3,j) njac(3,2,j) = 0.0d+00 njac(3,3,j) = con43 * c3c4 * tmp1 njac(3,4,j) = 0.0d+00 njac(3,5,j) = 0.0d+00 njac(4,1,j) = - c3c4 * tmp2 * utmp(4,j) njac(4,2,j) = 0.0d+00 njac(4,3,j) = 0.0d+00 njac(4,4,j) = c3c4 * tmp1 njac(4,5,j) = 0.0d+00 njac(5,1,j) = - ( c3c4 > - c1345 ) * tmp3 * (utmp(2,j)**2) > - ( con43 * c3c4 > - c1345 ) * tmp3 * (utmp(3,j)**2) > - ( c3c4 - c1345 ) * tmp3 * (utmp(4,j)**2) > - c1345 * tmp2 * utmp(5,j) njac(5,2,j) = ( c3c4 - c1345 ) * tmp2 * utmp(2,j) njac(5,3,j) = ( con43 * c3c4 > - c1345 ) * tmp2 * utmp(3,j) njac(5,4,j) = ( c3c4 - c1345 ) * tmp2 * utmp(4,j) njac(5,5,j) = ( c1345 ) * tmp1 enddo c--------------------------------------------------------------------- c now joacobians set, so form left hand side in y direction c--------------------------------------------------------------------- do j = start(2,c), jsize-end(2,c) tmp1 = dt * ty1 tmp2 = dt * ty2 lhsa(1,1,j) = - tmp2 * fjac(1,1,j-1) > - tmp1 * njac(1,1,j-1) > - tmp1 * dy1 lhsa(1,2,j) = - tmp2 * fjac(1,2,j-1) > - tmp1 * njac(1,2,j-1) lhsa(1,3,j) = - tmp2 * fjac(1,3,j-1) > - tmp1 * njac(1,3,j-1) lhsa(1,4,j) = - tmp2 * fjac(1,4,j-1) > - tmp1 * njac(1,4,j-1) lhsa(1,5,j) = - tmp2 * fjac(1,5,j-1) > - tmp1 * njac(1,5,j-1) lhsa(2,1,j) = - tmp2 * fjac(2,1,j-1) > - tmp1 * njac(2,1,j-1) lhsa(2,2,j) = - tmp2 * fjac(2,2,j-1) > - tmp1 * njac(2,2,j-1) > - tmp1 * dy2 lhsa(2,3,j) = - tmp2 * fjac(2,3,j-1) > - tmp1 * njac(2,3,j-1) lhsa(2,4,j) = - tmp2 * fjac(2,4,j-1) > - tmp1 * njac(2,4,j-1) lhsa(2,5,j) = - tmp2 * fjac(2,5,j-1) > - tmp1 * njac(2,5,j-1) lhsa(3,1,j) = - tmp2 * fjac(3,1,j-1) > - tmp1 * njac(3,1,j-1) lhsa(3,2,j) = - tmp2 * fjac(3,2,j-1) > - tmp1 * njac(3,2,j-1) lhsa(3,3,j) = - tmp2 * fjac(3,3,j-1) > - tmp1 * njac(3,3,j-1) > - tmp1 * dy3 lhsa(3,4,j) = - tmp2 * fjac(3,4,j-1) > - tmp1 * njac(3,4,j-1) lhsa(3,5,j) = - tmp2 * fjac(3,5,j-1) > - tmp1 * njac(3,5,j-1) lhsa(4,1,j) = - tmp2 * fjac(4,1,j-1) > - tmp1 * njac(4,1,j-1) lhsa(4,2,j) = - tmp2 * fjac(4,2,j-1) > - tmp1 * njac(4,2,j-1) lhsa(4,3,j) = - tmp2 * fjac(4,3,j-1) > - tmp1 * njac(4,3,j-1) lhsa(4,4,j) = - tmp2 * fjac(4,4,j-1) > - tmp1 * njac(4,4,j-1) > - tmp1 * dy4 lhsa(4,5,j) = - tmp2 * fjac(4,5,j-1) > - tmp1 * njac(4,5,j-1) lhsa(5,1,j) = - tmp2 * fjac(5,1,j-1) > - tmp1 * njac(5,1,j-1) lhsa(5,2,j) = - tmp2 * fjac(5,2,j-1) > - tmp1 * njac(5,2,j-1) lhsa(5,3,j) = - tmp2 * fjac(5,3,j-1) > - tmp1 * njac(5,3,j-1) lhsa(5,4,j) = - tmp2 * fjac(5,4,j-1) > - tmp1 * njac(5,4,j-1) lhsa(5,5,j) = - tmp2 * fjac(5,5,j-1) > - tmp1 * njac(5,5,j-1) > - tmp1 * dy5 lhsb(1,1,j) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(1,1,j) > + tmp1 * 2.0d+00 * dy1 lhsb(1,2,j) = tmp1 * 2.0d+00 * njac(1,2,j) lhsb(1,3,j) = tmp1 * 2.0d+00 * njac(1,3,j) lhsb(1,4,j) = tmp1 * 2.0d+00 * njac(1,4,j) lhsb(1,5,j) = tmp1 * 2.0d+00 * njac(1,5,j) lhsb(2,1,j) = tmp1 * 2.0d+00 * njac(2,1,j) lhsb(2,2,j) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(2,2,j) > + tmp1 * 2.0d+00 * dy2 lhsb(2,3,j) = tmp1 * 2.0d+00 * njac(2,3,j) lhsb(2,4,j) = tmp1 * 2.0d+00 * njac(2,4,j) lhsb(2,5,j) = tmp1 * 2.0d+00 * njac(2,5,j) lhsb(3,1,j) = tmp1 * 2.0d+00 * njac(3,1,j) lhsb(3,2,j) = tmp1 * 2.0d+00 * njac(3,2,j) lhsb(3,3,j) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(3,3,j) > + tmp1 * 2.0d+00 * dy3 lhsb(3,4,j) = tmp1 * 2.0d+00 * njac(3,4,j) lhsb(3,5,j) = tmp1 * 2.0d+00 * njac(3,5,j) lhsb(4,1,j) = tmp1 * 2.0d+00 * njac(4,1,j) lhsb(4,2,j) = tmp1 * 2.0d+00 * njac(4,2,j) lhsb(4,3,j) = tmp1 * 2.0d+00 * njac(4,3,j) lhsb(4,4,j) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(4,4,j) > + tmp1 * 2.0d+00 * dy4 lhsb(4,5,j) = tmp1 * 2.0d+00 * njac(4,5,j) lhsb(5,1,j) = tmp1 * 2.0d+00 * njac(5,1,j) lhsb(5,2,j) = tmp1 * 2.0d+00 * njac(5,2,j) lhsb(5,3,j) = tmp1 * 2.0d+00 * njac(5,3,j) lhsb(5,4,j) = tmp1 * 2.0d+00 * njac(5,4,j) lhsb(5,5,j) = 1.0d+00 > + tmp1 * 2.0d+00 * njac(5,5,j) > + tmp1 * 2.0d+00 * dy5 lhsc(1,1,i,j,k,c) = tmp2 * fjac(1,1,j+1) > - tmp1 * njac(1,1,j+1) > - tmp1 * dy1 lhsc(1,2,i,j,k,c) = tmp2 * fjac(1,2,j+1) > - tmp1 * njac(1,2,j+1) lhsc(1,3,i,j,k,c) = tmp2 * fjac(1,3,j+1) > - tmp1 * njac(1,3,j+1) lhsc(1,4,i,j,k,c) = tmp2 * fjac(1,4,j+1) > - tmp1 * njac(1,4,j+1) lhsc(1,5,i,j,k,c) = tmp2 * fjac(1,5,j+1) > - tmp1 * njac(1,5,j+1) lhsc(2,1,i,j,k,c) = tmp2 * fjac(2,1,j+1) > - tmp1 * njac(2,1,j+1) lhsc(2,2,i,j,k,c) = tmp2 * fjac(2,2,j+1) > - tmp1 * njac(2,2,j+1) > - tmp1 * dy2 lhsc(2,3,i,j,k,c) = tmp2 * fjac(2,3,j+1) > - tmp1 * njac(2,3,j+1) lhsc(2,4,i,j,k,c) = tmp2 * fjac(2,4,j+1) > - tmp1 * njac(2,4,j+1) lhsc(2,5,i,j,k,c) = tmp2 * fjac(2,5,j+1) > - tmp1 * njac(2,5,j+1) lhsc(3,1,i,j,k,c) = tmp2 * fjac(3,1,j+1) > - tmp1 * njac(3,1,j+1) lhsc(3,2,i,j,k,c) = tmp2 * fjac(3,2,j+1) > - tmp1 * njac(3,2,j+1) lhsc(3,3,i,j,k,c) = tmp2 * fjac(3,3,j+1) > - tmp1 * njac(3,3,j+1) > - tmp1 * dy3 lhsc(3,4,i,j,k,c) = tmp2 * fjac(3,4,j+1) > - tmp1 * njac(3,4,j+1) lhsc(3,5,i,j,k,c) = tmp2 * fjac(3,5,j+1) > - tmp1 * njac(3,5,j+1) lhsc(4,1,i,j,k,c) = tmp2 * fjac(4,1,j+1) > - tmp1 * njac(4,1,j+1) lhsc(4,2,i,j,k,c) = tmp2 * fjac(4,2,j+1) > - tmp1 * njac(4,2,j+1) lhsc(4,3,i,j,k,c) = tmp2 * fjac(4,3,j+1) > - tmp1 * njac(4,3,j+1) lhsc(4,4,i,j,k,c) = tmp2 * fjac(4,4,j+1) > - tmp1 * njac(4,4,j+1) > - tmp1 * dy4 lhsc(4,5,i,j,k,c) = tmp2 * fjac(4,5,j+1) > - tmp1 * njac(4,5,j+1) lhsc(5,1,i,j,k,c) = tmp2 * fjac(5,1,j+1) > - tmp1 * njac(5,1,j+1) lhsc(5,2,i,j,k,c) = tmp2 * fjac(5,2,j+1) > - tmp1 * njac(5,2,j+1) lhsc(5,3,i,j,k,c) = tmp2 * fjac(5,3,j+1) > - tmp1 * njac(5,3,j+1) lhsc(5,4,i,j,k,c) = tmp2 * fjac(5,4,j+1) > - tmp1 * njac(5,4,j+1) lhsc(5,5,i,j,k,c) = tmp2 * fjac(5,5,j+1) > - tmp1 * njac(5,5,j+1) > - tmp1 * dy5 enddo c--------------------------------------------------------------------- c outer most do loops - sweeping in i direction c--------------------------------------------------------------------- if (first .eq. 1) then c--------------------------------------------------------------------- c multiply c(i,jstart,k) by b_inverse and copy back to c c multiply rhs(jstart) by b_inverse(jstart) and copy to rhs c--------------------------------------------------------------------- call binvcrhs( lhsb(1,1,jstart), > lhsc(1,1,i,jstart,k,c), > rhs(1,i,jstart,k,c) ) endif c--------------------------------------------------------------------- c begin inner most do loop c do all the elements of the cell unless last c--------------------------------------------------------------------- do j=jstart+first,jsize-last c--------------------------------------------------------------------- c subtract A*lhs_vector(j-1) from lhs_vector(j) c c rhs(j) = rhs(j) - A*rhs(j-1) c--------------------------------------------------------------------- call matvec_sub(lhsa(1,1,j), > rhs(1,i,j-1,k,c),rhs(1,i,j,k,c)) c--------------------------------------------------------------------- c B(j) = B(j) - C(j-1)*A(j) c--------------------------------------------------------------------- call matmul_sub(lhsa(1,1,j), > lhsc(1,1,i,j-1,k,c), > lhsb(1,1,j)) c--------------------------------------------------------------------- c multiply c(i,j,k) by b_inverse and copy back to c c multiply rhs(i,1,k) by b_inverse(i,1,k) and copy to rhs c--------------------------------------------------------------------- call binvcrhs( lhsb(1,1,j), > lhsc(1,1,i,j,k,c), > rhs(1,i,j,k,c) ) enddo c--------------------------------------------------------------------- c Now finish up special cases for last cell c--------------------------------------------------------------------- if (last .eq. 1) then c--------------------------------------------------------------------- c rhs(jsize) = rhs(jsize) - A*rhs(jsize-1) c--------------------------------------------------------------------- call matvec_sub(lhsa(1,1,jsize), > rhs(1,i,jsize-1,k,c),rhs(1,i,jsize,k,c)) c--------------------------------------------------------------------- c B(jsize) = B(jsize) - C(jsize-1)*A(jsize) c call matmul_sub(aa,i,jsize,k,c, c $ cc,i,jsize-1,k,c,bb,i,jsize,k,c) c--------------------------------------------------------------------- call matmul_sub(lhsa(1,1,jsize), > lhsc(1,1,i,jsize-1,k,c), > lhsb(1,1,jsize)) c--------------------------------------------------------------------- c multiply rhs(jsize) by b_inverse(jsize) and copy to rhs c--------------------------------------------------------------------- call binvrhs( lhsb(1,1,jsize), > rhs(1,i,jsize,k,c) ) endif enddo enddo return end