SimGrid 101
Getting Started with SimGrid*

Da SimGrid Team

April 4, 2012

“SIMRD
)

* IATEX Sources: < scm gforge.inria.fr: /gitroot /simgrid /propaganda.git > /simgrid-101

Qutline

@ Installing SimGrid
Stable release
Unstable Version
The Bindings

@ Your First SimGrid Program
User Interface(s)
Master/Workers
Trace Replay

@ Further topics
Configuring your simulators
Surviving in C

Bindings Performance

@ Conclusion

Da SimGrid Team SimGrid 101

2/26

Installing a stable version (most advised for users)

On Debian, Ubuntu and similar

> sudo apt-get install simgrid

On Windows

> Get the installer (from page below), execute it and follow the instructions

From the sources
1. Get the archive: (see below for URL)
2. Open it: tar xfz simgrid-*.tar.gz
3. Configure it: cmake . or ccmake .
4. Install it: make install

Download page of the project:
> Direct access: https://gforge.inria.fr/frs/?group_id=12
> Idem + more info: http://simgrid.gforge.inria.fr/download.php

Details: http://simgrid.gforge.inria.fr/simgrid/<version>/doc/install.html

Da SimGrid Team SimGrid 101 Installing SimGrid 3/26

https://gforge.inria.fr/frs/?group_id=12
http://simgrid.gforge.inria.fr/download.php
http://simgrid.gforge.inria.fr/simgrid/<version>/
doc/install.html

Installing an unstable version (developers only!)

Is unstable for you?
» Simple Rule of Thumb:

» You plan to use SimGrid ~ nope, play safe with stable
» You plan to improve SimGrid ~ yes, use unstable

» The reason why we name it “unstable”: we didn’t test it on all platforms
> |t can be relatively usable at a given time, but we cannot promise.

> It may fail strangely on you, too. You're on your own here.

Actually installing unstable

> Get source from git:
git clone git://scm.gforge.inria.fr/simgrid/simgrid.git

» Configure and installing (see instructions for stable)

Build Dependencies

» Depending on what you're touching, you may need more softwares:
» If you change the XML parsers, you need both flexml and flex

Da SimGrid Team SimGrid 101 Installing SimGrid 4/26

The Bindings

Some people don't like coding in C

» That's reasonable since C is the modern assembly language:
It can reveal faster but rather verbose and really tedious to get right

» Using C is not enough for maximal performance: you need to really master it

Bindings available for: Java, lua and Ruby
» Why Java: Every potential intern knows it (I guess)
» Why Lua: As simple as script language, but as efficient as C
» Why Ruby: Our team counts very effective Ruby lobbyists

> “Will you add my favorite language?”

» We could, but it's rather time consuming (threading mess, at least)
» We probably won't do it ourselves (our time is limited); we welcome patches

Installing the Bindings

» lua is included in the main archive, the others are separated
» Grab their archives, open it, read the README, build it, install it
» You need to install the main SimGrid archive to get the bindings working

Da SimGrid Team SimGrid 101 Installing SimGrid 5/26

Qutline

@ Your First SimGrid Program
User Interface(s)
Master/Workers
Trace Replay

Da SimGrid Team SimGrid 101

Your First SimGrid Program

6/26

User-visible SimGrid Components

MSG GRAS AMOK SMPI
Simple application- Framework toolbox Library to run MPI

to develop applications on top of
distributed applications a virtual environment

XBT: Grounding features (logging, etc.), usual data structures (lists, sets, etc.) and portability layer

level simulator

SimGrid user APls
» SimDag: specify heuristics as DAG of (parallel) tasks
» MSG: specify heuristics as Concurrent Sequential Processes

(Java/Ruby/Lua bindings available)
GRAS: develop real applications, studied and debugged in simulator
SMPI: simulate MPI codes

Which API should | choose?

Your application is a DAG ~ SimDag
» You have a MPI code ~ SMPI
» You study concurrent processes, or distributed applications

> You need graphs about several heuristics for a paper ~ MSG
> You develop a real application (or want experiments on real platform) ~ GRAS

» Most popular API: MSG (by far)

vy

v

Da SimGrid Team SimGrid 101 Your First SimGrid Program 7/26

The MSG User Interface
Main MSG abstractions

» Agent: some code, some private data, running on a given host

» Task: amount of work to do and of data to exchange

» Host: location on which agents execute

» Mailbox: Rendez-vous points between agents (think of MPI tags)
» You send stuff to a mailbox; you receive stuff from a mailbox
» Network location of sender & receiver have no impact on rendez-vous;
Communication timings of course take these locations into account
» Mailboxes' identifiers are strings, making user code ways easier
(either host:port, yellow page mechanism or whatever you want)

More information

> examples/msg in archive; Reference doc: doc/group__MSG__API.html

> Interface extended, never modified since 2002 (if using MSG_USE_DEPRECATED)

Da SimGrid Team SimGrid 101 Your First SimGrid Program 8/26

host:port
doc/group__MSG__API.html

The MSG User Interface
Main MSG abstractions

» Agent: some code, some private data, running on a given host
one function + arguments coming from deployment XML file
» Task: amount of work to do and of data to exchange
> MSG_task_create(name, compute duration, message_size, void *data)

» Communication: MSG_task_{send,recv}, MSG_task_Iprobe
» Execution: MSG_task_execute

MSG_process_sleep, MSG_process_{suspend,resume}

» Host: location on which agents execute
» Mailbox: Rendez-vous points between agents (think of MPI tags)

» You send stuff to a mailbox; you receive stuff from a mailbox

» Network location of sender & receiver have no impact on rendez-vous;
Communication timings of course take these locations into account

» Mailboxes' identifiers are strings, making user code ways easier
(either host:port, yellow page mechanism or whatever you want)

More information

> examples/msg in archive; Reference doc: doc/group__MSG__API.html

> Interface extended, never modified since 2002 (if using MSG_USE_DEPRECATED)

Da SimGrid Team SimGrid 101 Your First SimGrid Program 8/26

host:port
doc/group__MSG__API.html

Executive Summary (detailed below)

1. Write the Code of your Agents

int master(int argc, char *xargv) {

for (i = 0; i < number_of_tasks; i++) {

t=MSG_task_create(name,comp_size,comm_size,data);
sprintf (mailbox, "worker-%d",i % workers_count);

MSG_task_send(t, mailbox);}

int worker(int ,char*x*){

sprintf (my_mailbox, "worker-%d",my_id) ;
while(1) {
MSG_task_receive(&task, my_mailbox);
MSG_task_execute (task) ;
MSG_task_destroy(task);}

2. Describe your Experiment

XML Platform File

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM
"http://simgrid.gforge.inria.fr/simgrid.dtc
<platform version="3">
<AS routing="Full">
<host name="host1"
<host name="host2"

power="1E8"/>
power="1E8"/>
bandwidth="1E6"
. latency="1E-2"
<route src="hostl" dst="host2">
<link_ctn id="1link1"/>
</route>
</AS>
</platform>

<link name="link1"

/>

V.

gluing tsbnkrlgﬁltogether,

3. Write a main
Da SimGrid Team

XML Deployment File

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM

v

"http://simgrid.gforge.inria.fr/simgrid.dtd"
<platform version="3">
<!-- The master process —->
<process host="hostl" function="master">
<argument value="10"/></--argu[1]:#tasks-->
<argument value="1"/></--arguv[2] : #workers-->
</process>
<!-- The workers —-->
<process host="host2" function="worker">
<argument value="0"/></process>
</platform>
v
link and run

Your First SimGrid Program 9/26

Master/Workers: Describing the Agents (1/2)

The master has a large number of tasks to dispatch to its workers for execution

int master(int argc, char *argv[1) {

int number_of_tasks = atoi(argv[1]); double task_comp_size = atof (argv[2]);
double task_comm_size = atof(argv[3]); int workers_count = atoi(argv[4]);
char mailbox[80]; char buff[64];

int i;

/* Dispatching (dumb round-robin algorithm) */

for (i = 0; i < number_of_tasks; i++) {
sprintf (buff, "Task_%d", i);
task = MSG_task_create(buff, task_comp_size, task_comm_size, NULL);
sprintf (mailbox, "worker-%d",i % workers_count);
XBT_INFO("Sending %s” to mailbox %s¥, task->name, mailbox);
MSG_task_send(task, mailbox);

¥

/* Send finalization message to workers */
XBT_INFO("All tasks dispatched. Let’s stop workers");
for (i = 0; i < workers_count; i++) {
sprintf (mailbox, "worker-%1d",i % workers_count);
MSG_task_send (MSG_task_create("finalize", 0, 0, 0), mailbox);
¥

XBT_INFO("Goodbye now!"); return O;
}

Da SimGrid Team SimGrid 101 Your First SimGrid Program

10/26

Master/Workers: Describing the Agents (2/2)

int worker (int argc, char *argv[1) {

m_task_t task; int errcode;
int id = atoi(argv[i]);
char mailbox[80];

sprintf (mailbox, "worker-%d",id) ;

while(1) {
errcode = MSG_task_receive(&task, mailbox);
xbt_assert (errcode == MSG_OK, "MSG_task_get failed");

if (!strcmp(MSG_task_get_name(task),"finalize")) {
MSG_task_destroy(task);
break;

}

XBT_INFO("Processing ’%s’", MSG_task_get_name(task));
MSG_task_execute (task) ;
XBT_INFO("’%s’ done", MSG_task_get_name(task));
MSG_task_destroy(task) ;

}

XBT_INFO("I’m done. See you!");
return 0;

}

Da SimGrid Team SimGrid 101 Your First SimGrid Program 11/26

Master/Workers: gluing things together

int main(int argc, char *argv[1) {
MSG_global_init (&argc,argv) ;

/* Declare all existing agent, binding their name to their function */
MSG_function_register("master", &master);
MSG_function_register("worker", &worker);

/* Load a platform instance */
MSG_create_environment ("my_platform.xml") ;
/* Load a deployment file */
MSG_launch_application("my_deployment.xml") ;

/* Launch the simulation (until its end) */
MSG_main();

XBT_INFO("Simulation took %g seconds",MSG_get_clock());

Compiling and Executing the result

$ gcc *.c -lsimgrid -o my_simulator
$./my_simulator platform.xml deployment.xml
[verbose output removed]

Da SimGrid Team SimGrid 101 Your First SimGrid Program 12/26

Master/Workers: deployment file

Specifying which agent must be run on which host, and with which arguments

XML deployment file

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">

<!-- The master process (with some arguments) -->
<process host="Tremblay" function="master">
<argument value="6"/> <!-- Number of tasks -->
<argument value="50000000"/> </-- Computation size of tasks -->
<argument value="1000000"/> <!/-- Communication size of tasks -->
<argument value="3"/> <!-- Number of workers —-->
</process>
<!-- The worker process (argument: mailboxz number to use) -->

<process host="Jupiter" function="worker"><argument value="0"/></process>
<process host="Fafard" function="worker"><argument value="1"/></process>
<process host="Ginette" function="worker"><argument value="2"/></process>

</platform>

Thanks to mailboxes, the master doesn't have to know where the workers are
(nor the contrary)

Da SimGrid Team SimGrid 101 Your First SimGrid Program 13/26

Master/Worker in Java (1/2)

import simgrid.msg.*;
public class BasicTask extends simgrid.msg.Task {
public BasicTask(String name, double computeDuration, double messageSize) {
super (name, computeDuration, messageSize) ;

}
}

public class FinalizeTask extends simgrid.msg.Task {
public FinalizeTask() {
super ("finalize",0,0);
}
}

public class Worker extends simgrid.msg.Process {
public void main(String[] args)
throws TransferFailureException, HostFailureException,
TimeoutException, TaskCancelledException {
String id = args[0];

while (true) {
Task t = Task.receive("worker-" + id);
if (t instanceof FinalizeTask)

break;
BasicTask task = (BasicTask)t;
Msg.info("Processing ’" + task.getName() + "’");
task.execute();
Msg.info("’" + task.getName() + "’ done ");
}
Msg.info("Received Finalize. I’m done. See you!");

o}

v

Da SimGrid Team SimGrid 101 Your First SimGrid Program 14/26

Master/Workers in Java (2/2)

import simgrid.msg.*;
public class Master extends simgrid.msg.Process {
public void main(String[] args) throws MsgException {
int numberOfTasks = Integer.valueOf (args[0]).intValue();
double taskComputeSize = Double.valueOf (args[1]).doubleValue();
double taskCommunicateSize = Double.valueOf (args[2]).doubleValue();
int workerCount = Integer.valueOf (args[3]).intValue();

Msg.info("Got "+ workerCount + " workers and " + numberOfTasks + " tasks.");

for (int i = 0; i < numberOfTasks; i++) {
BasicTask task = new BasicTask("Task_" + i ,taskComputeSize,taskCommunicateSize);
task.send("worker-" + (i % workerCount));

Msg.info("Send completed for the task " + task.getName() +
" on the mailbox ’worker-" + (i % workerCount) + "’");
}
Msg.info("Goodbye now!");

The rest of the story
> No need to write the glue (thanks to Java introspection)
» The XML files are exactly the same (beware of capitalization for deployment)

» OQutput very similar too
Da SimGrid Team SimGrid 101 Your First SimGrid Program 15/26

Master/Workers in Lua (1/2)

function Master(...)
local nb_task, comp_size, comm_size, slave_count = unpack(arg)

-- Dispatch the tasks
for i = 1, nb_task do

local tk = simgrid.task.new("Task " .. i, comp_size, comm_size)

local alias = "worker " .. (i % worker_count)

simgrid.info("Sending °’" .. tk:get_name() .."’ to ’" .. alias .."’")

tk:send(alias)

simgrid.info("Done sending ’".. tk:get_name() .."’ to ’" .. alias .."’")
end

-- Sending finalize message to others

for i = 0, worker_count - 1 do
local alias = "worker " .. i;
simgrid.info("Sending finalize to alias)
local finalize = simgrid.task.new("finalize", comp_size, comm_size)
finalize:send(alias)

end

end

Da SimGrid Team SimGrid 101 Your First SimGrid Program 16/26

Master /workers in Lua (2/2)

The worker

function Worker(...)
local my_mailbox="worker " .. arg[1]

while true do
local tk = simgrid.task.recv(my_mailbox)

if (tk:get_name() == "finalize") then
simgrid.info("Got finalize message")
break
end
tk:execute()
end
simgrid.info("Worker ’" ..my_mailbox.."’: I’m done. See you!")

end

Setting up your experiment

require "simgrid"
simgrid.platform("my_platform.xml")
simgrid.application("my_deployment.xml")
simgrid.run()

simgrid.info("Simulation’s over. See you.")

Da SimGrid Team SimGrid 101 Your First SimGrid Program

17/26

Master/Workers in Ruby (1/2)

Some mandatory headers

require ’simgrid’
include MSG

The master

class Master < MSG::Process
def main(args)

number0fTask = Integer (args[0])

taskComputeSize = Float(args[1])

taskCommunicationSize = Float(args[2])

workerCount = Integer (args[3])

for i in 0..numberOfTask-1
task = Task.new("Task_"+ i.to_s, taskComputeSize , taskCommunicationSize);
mailbox = "worker " + (i%workerCount).to_s
MSG::info("Master Sending "+ task.name + " to " + mailbox)
task.send(mailbox)
MSG: :info("Master Done Sending " + task.name + " to " + mailbox)

end

for i in O..workerCount-1
mailbox = "worker " + i.to_s
finalize_task = Task.new("finalize",0,0)
finalize_task.send(mailbox)

end

end
end

Da SimGrid Team SimGrid 101 Your First SimGrid Program 18/26

Master/Workers in Ruby (2/2)

The worker

class Worker < MSG::Process
def main(args)
mailbox = "worker " + args[0]
while true
task = Task.receive(mailbox)
if (task.name == "finalize")
break
end
task.execute
MSG: :debug("Worker ’" + mailbox + "’ done executing task "+ task.name + ".")
end
MSG: :info("I’m done, see you")
end
end

Setting up your experiment

MSG.createEnvironment ("platform.xml")
MSG.deployApplication("deploy.xml")

MSG.run

puts "Simulation time : " + MSG.getClock .to_s
MSG.exit

Some more polishing is needed

» Exceptions on timeout/host failure and so on?

Da SimGrid Team SimGrid 101 Your First SimGrid Program 19/26

Trace Replay: Separate your applicative workload

C code

static void action_blah(xbt_dynar_t parameters) { ... }
static void action_blih(xbt_dynar_t parameters) { ... }
static void action_bluh(xbt_dynar_t parameters) { ... }

int main(int argc, char *argv[]) {
MSG_global_init(&argc, argv);
MSG_create_environment (argv[1]);
MSG_launch_application(argv[2]);
/* No need to register functions as usual: actions started anyway */
MSG_action_register("blah", blah);
MSG_action_register("blih", blih);
MSG_action_register("bluh", bluh);

MSG_action_trace_run(argv[3]); // The trace file to run

Deployment

<?xml version=’1.0’7> Trace file
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.i
<platform version="3">
<process host="Tremblay" function="toto"/>
<process host="Jupiter" function="tutu"/>
<process host="Fafard" function="tata"/>

tutu blah toto 1el0
toto blih tutu
tutu bluh 12

toto blah 12

</platform>

Da SimGrid Team SimGrid 101 Your First SimGrid Program

20/26

Trace Replay (2/2)

Separating the trace of each process
> Because it's sometimes more convenient (for MPI, you'd have to merge them)
» Simply pass NULL to MSG_action_trace_run()

> Pass the trace file to use as argument to each process in deployment

<?xml version=’1.0’7>
<!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid.dtd">
<platform version="3">
<process host="Tremblay" function="toto">
<argument value="actions_toto.txt"/>
</process>
<process host="Jupiter" function="tutu">
<argument value="actions_tutu.txt"/>
</process>
</platform>

Action Semantic
» This mecanism is completely agnostic: attach the meaning you want to events
> In examples/actions/action.c, we have pre-written event functions for:

» Basics: send, recv, sleep, compute
» MPI-specific: isend, irecv, wait, barrier, reduce, bcast, allReduce
Da SimGrid Team SimGrid 101 Your First SimGrid Program 21/26

SimGrid is not a Simulator

Input ‘ 1 Simulator
Ly J tats)
Parameters | | pplication ,'4 stats

i 3 | :
. Applicative | ' | ; . C o
' Workload |~ Simulation Kernel j) :

ﬁ : 77777777777777777777777777]
L / 7777777 I 777777 \ 777777 | visu)
Platform J AvailibilityJ ApplicationJ

Topology Changes | Deployment

That’s a Generic Simulation Framework

Da SimGrid Team SimGrid 101 Your First SimGrid Program 22/26

Configuring your simulators

Every simulator using SimGrid accepts a set of options
- -help: get some help
- -help-models: long help on models
- -log: configure the verbosity
- -cfg: change some settings
Note: SMPI-specific settings, are only visible in SMPI simulators

The log argument
> It's similar to Log4J, but in C
> You can increase the amount of output for some specific parts of SimGrid
» Example: See everything by using —log=root.thres:debug
> List of all existing channels: doc/html/group__XBT__log__cats.html

Da SimGrid Team SimGrid 101 Further topics 23/26

XBT from 10,000 feets

C is a basic language: we reinvented the wheel for you

—— Logging support: Log4C
XBT_LOG_NEW_DEFAULT_CATEGORY (test,
"my own little channel");
XBT_LOG_NEW_SUBCATEGORY (details, test,
"Another channel");

INFO1("Value: %d", variable);
CDEBUG3(details,"blah %d %f %d", x,y,2);

— Exception support
xbt_ex_t e;
TRY {
block
} CATCH(e) {
block /* DO NOT RETURN FROM THERE */
}

Debugging your code

» Ctrl-C once: see processes’ status
> Press it twice (in 5s): kill simulator

xbt_backtrace_display_current ()
Backtrace (displayed in thread 0x90961cO0):
---> In master() at masterslave_mailbox.c:35
---> 1In ?? ([0x4a69ba5])

Da SimGrid Team SimGrid 101

Advanced data structures
» Hash tables (Perl's ones)

» Dynamic arrays, FIFOs
» SWAG (don't use); Graphs

String functions
> bprintf: malloc()ing sprintf

» trim, split, subst, diff
» string buffers

Threading support

» Portable wrappers (Lin, Win, Mac, Sim)
» Synchro (mutex, conds, semaphores)

Other

Mallocators

Configuration support

Unit testing (check src/testall)
Integration tests (tesh: testing shell)

v

vyy

Further topics 24/26

Bindings Performance

What about performance loss for Java?

(Warning: these values are several years old)

» Small platforms: ok

» Larger ones: not quite. ..

workers | 109 500 | 1,000 | 5,000 | 10,000
tasks
1,000 | native 16 19 21 2| 074
java 41 59 9| 76 | 21
10,000 | native 3 52 54 83| 11
java | 16 1.9 238 | 13. 40.
100,000 native 3.7 3.8 4.0 4.4 4.5
java | 14, 13. 15. 29. 77.
1,000,000 | native | 36. 37. 38. 41 40.
java | 121, | 130. | 134. | 163. | 200.

What about the others?
> Very old preliminary results for Master/workers (10 workers; 200,000 tasks):

C (native) | 7s
Lua 10.5s
Ruby 45s
Java 47s

Da SimGrid Team

» That's improvable

> It's garbage-collected

> User stack is dynamic in lua&ruby(?)
= better scalability?

SimGrid 101

Further topics 25/26

Conclusion: Finding the documentation

Da SimGrid Team SimGrid 101 Conclusion 4 26/26 P

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

Da SimGrid Team SimGrid 101 Conclusion

26/26

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

lusers don't read the manual either
» Proof: that's why the RTFM expression were coined out

» Instead, they always ask same questions to lists, and get pointed to the FAQ

Da SimGrid Team SimGrid 101 Conclusion 26/26

Conclusion: Finding the documentation

User manuals are for wimps
> Real Men read some slides 'cause they are more concise
» They read the examples, pick one modify it to fit their needs
» They may read 2 or 5% of the reference guide to check the syntax

» In doubt, they just check the source code

lusers don't read the manual either
» Proof: that's why the RTFM expression were coined out

» Instead, they always ask same questions to lists, and get pointed to the FAQ

So, where is all SimGrid documentation?

» The SimGrid tutorial is a 200 slides presentation
(motivation, models, example of use, internals)

> Almost all features of UAPI are demoed in an example (coverage testing)
> The reference guide contains a lot in introduction sections (about XBT)
» The FAQ contains a lot too; The code is LGPL anyway

» (actually, our documentation is not that bad. is it?)
Da SimGrid Team SimGrid 101 Conclusion 26/26

	Installing SimGrid
	Stable release
	Unstable Version
	The Bindings

	Your First SimGrid Program
	User Interface(s)
	Master/Workers
	In C
	In Java
	In lua
	In Ruby

	Trace Replay

	Further topics
	Configuring your simulators
	Surviving in C
	Bindings Performance

	Conclusion

