1 /* Copyright (c) 2008-2019. The SimGrid Team. All rights reserved. */
3 /* This program is free software; you can redistribute it and/or modify it
4 * under the terms of the license (GNU LGPL) which comes with this package. */
6 /** \file compare.cpp Memory snapshooting and comparison */
8 #include "src/mc/mc_config.hpp"
9 #include "src/mc/mc_private.hpp"
10 #include "src/mc/mc_smx.hpp"
11 #include "src/mc/sosp/Snapshot.hpp"
13 XBT_LOG_NEW_DEFAULT_SUBCATEGORY(mc_compare, xbt, "Logging specific to mc_compare in mc");
15 using simgrid::mc::remote;
20 /*********************************** Heap comparison ***********************************/
21 /***************************************************************************************/
28 HeapLocation() = default;
29 HeapLocation(int block, int fragment = 0) : block_(block), fragment_(fragment) {}
31 bool operator==(HeapLocation const& that) const
33 return block_ == that.block_ && fragment_ == that.fragment_;
35 bool operator<(HeapLocation const& that) const
37 return std::make_pair(block_, fragment_) < std::make_pair(that.block_, that.fragment_);
41 typedef std::array<HeapLocation, 2> HeapLocationPair;
42 typedef std::set<HeapLocationPair> HeapLocationPairs;
44 struct ProcessComparisonState;
45 struct StateComparator;
48 HeapLocationPair makeHeapLocationPair(int block1, int fragment1, int block2, int fragment2)
50 return HeapLocationPair{{HeapLocation(block1, fragment1), HeapLocation(block2, fragment2)}};
53 class HeapArea : public HeapLocation {
57 explicit HeapArea(int block) : valid_(true) { block_ = block; }
58 HeapArea(int block, int fragment) : valid_(true)
65 class ProcessComparisonState {
67 std::vector<simgrid::mc::IgnoredHeapRegion>* to_ignore = nullptr;
68 std::vector<HeapArea> equals_to;
69 std::vector<simgrid::mc::Type*> types;
70 std::size_t heapsize = 0;
72 void initHeapInformation(xbt_mheap_t heap, std::vector<simgrid::mc::IgnoredHeapRegion>* i);
75 static int compare_heap_area(StateComparator& state, const void* area1, const void* area2, Snapshot* snapshot1,
76 Snapshot* snapshot2, HeapLocationPairs* previous, Type* type, int pointer_level);
80 /** A hash which works with more stuff
82 * It can hash pairs: the standard hash currently doesn't include this.
84 template <class X> class hash : public std::hash<X> {
87 template <class X, class Y> class hash<std::pair<X, Y>> {
89 std::size_t operator()(std::pair<X,Y>const& x) const
93 return h1(x.first) ^ h2(x.second);
99 class StateComparator {
101 s_xbt_mheap_t std_heap_copy;
102 std::size_t heaplimit;
103 std::array<ProcessComparisonState, 2> processStates;
105 std::unordered_set<std::pair<void*, void*>, hash<std::pair<void*, void*>>> compared_pointers;
109 compared_pointers.clear();
112 int initHeapInformation(
113 xbt_mheap_t heap1, xbt_mheap_t heap2,
114 std::vector<simgrid::mc::IgnoredHeapRegion>* i1,
115 std::vector<simgrid::mc::IgnoredHeapRegion>* i2);
117 HeapArea& equals_to1_(std::size_t i, std::size_t j)
119 return processStates[0].equals_to[ MAX_FRAGMENT_PER_BLOCK * i + j];
121 HeapArea& equals_to2_(std::size_t i, std::size_t j)
123 return processStates[1].equals_to[ MAX_FRAGMENT_PER_BLOCK * i + j];
125 Type*& types1_(std::size_t i, std::size_t j)
127 return processStates[0].types[ MAX_FRAGMENT_PER_BLOCK * i + j];
129 Type*& types2_(std::size_t i, std::size_t j)
131 return processStates[1].types[ MAX_FRAGMENT_PER_BLOCK * i + j];
134 HeapArea const& equals_to1_(std::size_t i, std::size_t j) const
136 return processStates[0].equals_to[ MAX_FRAGMENT_PER_BLOCK * i + j];
138 HeapArea const& equals_to2_(std::size_t i, std::size_t j) const
140 return processStates[1].equals_to[ MAX_FRAGMENT_PER_BLOCK * i + j];
142 Type* const& types1_(std::size_t i, std::size_t j) const
144 return processStates[0].types[ MAX_FRAGMENT_PER_BLOCK * i + j];
146 Type* const& types2_(std::size_t i, std::size_t j) const
148 return processStates[1].types[ MAX_FRAGMENT_PER_BLOCK * i + j];
151 /** Check whether two blocks are known to be matching
153 * @param b1 Block of state 1
154 * @param b2 Block of state 2
155 * @return if the blocks are known to be matching
157 bool blocksEqual(int b1, int b2) const
159 return this->equals_to1_(b1, 0).block_ == b2 && this->equals_to2_(b2, 0).block_ == b1;
162 /** Check whether two fragments are known to be matching
164 * @param b1 Block of state 1
165 * @param f1 Fragment of state 1
166 * @param b2 Block of state 2
167 * @param f2 Fragment of state 2
168 * @return if the fragments are known to be matching
170 int fragmentsEqual(int b1, int f1, int b2, int f2) const
172 return this->equals_to1_(b1, f1).block_ == b2 && this->equals_to1_(b1, f1).fragment_ == f2 &&
173 this->equals_to2_(b2, f2).block_ == b1 && this->equals_to2_(b2, f2).fragment_ == f1;
176 void match_equals(HeapLocationPairs* list);
182 /************************************************************************************/
184 static ssize_t heap_comparison_ignore_size(
185 std::vector<simgrid::mc::IgnoredHeapRegion>* ignore_list,
189 int end = ignore_list->size() - 1;
191 while (start <= end) {
192 unsigned int cursor = (start + end) / 2;
193 simgrid::mc::IgnoredHeapRegion const& region = (*ignore_list)[cursor];
194 if (region.address == address)
196 if (region.address < address)
198 if (region.address > address)
205 static bool is_stack(const void *address)
207 for (auto const& stack : mc_model_checker->process().stack_areas())
208 if (address == stack.address)
213 // TODO, this should depend on the snapshot?
214 static bool is_block_stack(int block)
216 for (auto const& stack : mc_model_checker->process().stack_areas())
217 if (block == stack.block)
225 void StateComparator::match_equals(HeapLocationPairs* list)
227 for (auto const& pair : *list) {
228 if (pair[0].fragment_ != -1) {
229 this->equals_to1_(pair[0].block_, pair[0].fragment_) = simgrid::mc::HeapArea(pair[1].block_, pair[1].fragment_);
230 this->equals_to2_(pair[1].block_, pair[1].fragment_) = simgrid::mc::HeapArea(pair[0].block_, pair[0].fragment_);
232 this->equals_to1_(pair[0].block_, 0) = simgrid::mc::HeapArea(pair[1].block_, pair[1].fragment_);
233 this->equals_to2_(pair[1].block_, 0) = simgrid::mc::HeapArea(pair[0].block_, pair[0].fragment_);
238 void ProcessComparisonState::initHeapInformation(xbt_mheap_t heap,
239 std::vector<simgrid::mc::IgnoredHeapRegion>* i)
241 auto heaplimit = heap->heaplimit;
242 this->heapsize = heap->heapsize;
244 this->equals_to.assign(heaplimit * MAX_FRAGMENT_PER_BLOCK, HeapArea());
245 this->types.assign(heaplimit * MAX_FRAGMENT_PER_BLOCK, nullptr);
248 int StateComparator::initHeapInformation(xbt_mheap_t heap1, xbt_mheap_t heap2,
249 std::vector<simgrid::mc::IgnoredHeapRegion>* i1,
250 std::vector<simgrid::mc::IgnoredHeapRegion>* i2)
252 if ((heap1->heaplimit != heap2->heaplimit) || (heap1->heapsize != heap2->heapsize))
254 this->heaplimit = heap1->heaplimit;
255 this->std_heap_copy = *mc_model_checker->process().get_heap();
256 this->processStates[0].initHeapInformation(heap1, i1);
257 this->processStates[1].initHeapInformation(heap2, i2);
261 // TODO, have a robust way to find it in O(1)
262 static inline Region* MC_get_heap_region(Snapshot* snapshot)
264 for (auto const& region : snapshot->snapshot_regions_)
265 if (region->region_type() == simgrid::mc::RegionType::Heap)
267 xbt_die("No heap region");
270 static bool mmalloc_heap_equal(simgrid::mc::StateComparator& state, simgrid::mc::Snapshot* snapshot1,
271 simgrid::mc::Snapshot* snapshot2)
273 simgrid::mc::RemoteClient* process = &mc_model_checker->process();
275 /* Check busy blocks */
278 malloc_info heapinfo_temp1;
279 malloc_info heapinfo_temp2;
280 malloc_info heapinfo_temp2b;
282 simgrid::mc::Region* heap_region1 = MC_get_heap_region(snapshot1);
283 simgrid::mc::Region* heap_region2 = MC_get_heap_region(snapshot2);
285 // This is the address of std_heap->heapinfo in the application process:
286 void* heapinfo_address = &((xbt_mheap_t) process->heap_address)->heapinfo;
288 // This is in snapshot do not use them directly:
289 const malloc_info* heapinfos1 =
290 snapshot1->read<malloc_info*>(RemotePtr<malloc_info*>((std::uint64_t)heapinfo_address));
291 const malloc_info* heapinfos2 =
292 snapshot2->read<malloc_info*>(RemotePtr<malloc_info*>((std::uint64_t)heapinfo_address));
294 while (i1 < state.heaplimit) {
296 const malloc_info* heapinfo1 =
297 (const malloc_info*)heap_region1->read(&heapinfo_temp1, &heapinfos1[i1], sizeof(malloc_info));
298 const malloc_info* heapinfo2 =
299 (const malloc_info*)heap_region2->read(&heapinfo_temp2, &heapinfos2[i1], sizeof(malloc_info));
301 if (heapinfo1->type == MMALLOC_TYPE_FREE || heapinfo1->type == MMALLOC_TYPE_HEAPINFO) { /* Free block */
306 if (heapinfo1->type < 0) {
307 fprintf(stderr, "Unkown mmalloc block type.\n");
311 void* addr_block1 = ((void*)(((ADDR2UINT(i1)) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase));
313 if (heapinfo1->type == MMALLOC_TYPE_UNFRAGMENTED) { /* Large block */
315 if (is_stack(addr_block1)) {
316 for (size_t k = 0; k < heapinfo1->busy_block.size; k++)
317 state.equals_to1_(i1 + k, 0) = HeapArea(i1, -1);
318 for (size_t k = 0; k < heapinfo2->busy_block.size; k++)
319 state.equals_to2_(i1 + k, 0) = HeapArea(i1, -1);
320 i1 += heapinfo1->busy_block.size;
324 if (state.equals_to1_(i1, 0).valid_) {
332 /* Try first to associate to same block in the other heap */
333 if (heapinfo2->type == heapinfo1->type && state.equals_to2_(i1, 0).valid_ == 0) {
334 void* addr_block2 = (ADDR2UINT(i1) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
335 int res_compare = compare_heap_area(state, addr_block1, addr_block2, snapshot1, snapshot2, nullptr, nullptr, 0);
336 if (res_compare != 1) {
337 for (size_t k = 1; k < heapinfo2->busy_block.size; k++)
338 state.equals_to2_(i1 + k, 0) = HeapArea(i1, -1);
339 for (size_t k = 1; k < heapinfo1->busy_block.size; k++)
340 state.equals_to1_(i1 + k, 0) = HeapArea(i1, -1);
342 i1 += heapinfo1->busy_block.size;
346 while (i2 < state.heaplimit && not equal) {
348 void* addr_block2 = (ADDR2UINT(i2) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
355 const malloc_info* heapinfo2b =
356 (const malloc_info*)heap_region2->read(&heapinfo_temp2b, &heapinfos2[i2], sizeof(malloc_info));
358 if (heapinfo2b->type != MMALLOC_TYPE_UNFRAGMENTED) {
363 if (state.equals_to2_(i2, 0).valid_) {
368 int res_compare = compare_heap_area(state, addr_block1, addr_block2, snapshot1, snapshot2, nullptr, nullptr, 0);
370 if (res_compare != 1) {
371 for (size_t k = 1; k < heapinfo2b->busy_block.size; k++)
372 state.equals_to2_(i2 + k, 0) = HeapArea(i1, -1);
373 for (size_t k = 1; k < heapinfo1->busy_block.size; k++)
374 state.equals_to1_(i1 + k, 0) = HeapArea(i2, -1);
376 i1 += heapinfo1->busy_block.size;
383 XBT_DEBUG("Block %zu not found (size_used = %zu, addr = %p)", i1, heapinfo1->busy_block.busy_size, addr_block1);
387 } else { /* Fragmented block */
389 for (size_t j1 = 0; j1 < (size_t)(BLOCKSIZE >> heapinfo1->type); j1++) {
391 if (heapinfo1->busy_frag.frag_size[j1] == -1) /* Free fragment_ */
394 if (state.equals_to1_(i1, j1).valid_)
397 void* addr_frag1 = (void*)((char*)addr_block1 + (j1 << heapinfo1->type));
402 /* Try first to associate to same fragment_ in the other heap */
403 if (heapinfo2->type == heapinfo1->type && not state.equals_to2_(i1, j1).valid_) {
404 void* addr_block2 = (ADDR2UINT(i1) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
405 void* addr_frag2 = (void*)((char*)addr_block2 + (j1 << heapinfo2->type));
406 int res_compare = compare_heap_area(state, addr_frag1, addr_frag2, snapshot1, snapshot2, nullptr, nullptr, 0);
407 if (res_compare != 1)
411 while (i2 < state.heaplimit && not equal) {
413 const malloc_info* heapinfo2b =
414 (const malloc_info*)heap_region2->read(&heapinfo_temp2b, &heapinfos2[i2], sizeof(malloc_info));
416 if (heapinfo2b->type == MMALLOC_TYPE_FREE || heapinfo2b->type == MMALLOC_TYPE_HEAPINFO) {
421 // We currently do not match fragments with unfragmented blocks (maybe we should).
422 if (heapinfo2b->type == MMALLOC_TYPE_UNFRAGMENTED) {
427 if (heapinfo2b->type < 0) {
428 fprintf(stderr, "Unknown mmalloc block type.\n");
432 for (size_t j2 = 0; j2 < (size_t)(BLOCKSIZE >> heapinfo2b->type); j2++) {
434 if (i2 == i1 && j2 == j1)
437 if (state.equals_to2_(i2, j2).valid_)
440 void* addr_block2 = (ADDR2UINT(i2) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
441 void* addr_frag2 = (void*)((char*)addr_block2 + (j2 << heapinfo2b->type));
444 compare_heap_area(state, addr_frag1, addr_frag2, snapshot1, snapshot2, nullptr, nullptr, 0);
445 if (res_compare != 1) {
455 XBT_DEBUG("Block %zu, fragment_ %zu not found (size_used = %zd, address = %p)\n", i1, j1,
456 heapinfo1->busy_frag.frag_size[j1], addr_frag1);
465 /* All blocks/fragments are equal to another block/fragment_ ? */
466 for (size_t i = 1; i < state.heaplimit; i++) {
467 const malloc_info* heapinfo1 =
468 (const malloc_info*)heap_region1->read(&heapinfo_temp1, &heapinfos1[i], sizeof(malloc_info));
470 if (heapinfo1->type == MMALLOC_TYPE_UNFRAGMENTED && i1 == state.heaplimit && heapinfo1->busy_block.busy_size > 0 &&
471 not state.equals_to1_(i, 0).valid_) {
472 XBT_DEBUG("Block %zu not found (size used = %zu)", i, heapinfo1->busy_block.busy_size);
476 if (heapinfo1->type <= 0)
478 for (size_t j = 0; j < (size_t)(BLOCKSIZE >> heapinfo1->type); j++)
479 if (i1 == state.heaplimit && heapinfo1->busy_frag.frag_size[j] > 0 && not state.equals_to1_(i, j).valid_) {
480 XBT_DEBUG("Block %zu, Fragment %zu not found (size used = %zd)", i, j, heapinfo1->busy_frag.frag_size[j]);
485 for (size_t i = 1; i < state.heaplimit; i++) {
486 const malloc_info* heapinfo2 =
487 (const malloc_info*)heap_region2->read(&heapinfo_temp2, &heapinfos2[i], sizeof(malloc_info));
488 if (heapinfo2->type == MMALLOC_TYPE_UNFRAGMENTED && i1 == state.heaplimit && heapinfo2->busy_block.busy_size > 0 &&
489 not state.equals_to2_(i, 0).valid_) {
490 XBT_DEBUG("Block %zu not found (size used = %zu)", i,
491 heapinfo2->busy_block.busy_size);
495 if (heapinfo2->type <= 0)
498 for (size_t j = 0; j < (size_t)(BLOCKSIZE >> heapinfo2->type); j++)
499 if (i1 == state.heaplimit && heapinfo2->busy_frag.frag_size[j] > 0 && not state.equals_to2_(i, j).valid_) {
500 XBT_DEBUG("Block %zu, Fragment %zu not found (size used = %zd)",
501 i, j, heapinfo2->busy_frag.frag_size[j]);
512 * @param real_area1 Process address for state 1
513 * @param real_area2 Process address for state 2
514 * @param snapshot1 Snapshot of state 1
515 * @param snapshot2 Snapshot of state 2
518 * @param check_ignore
520 static bool heap_area_equal_without_type(simgrid::mc::StateComparator& state, const void* real_area1,
521 const void* real_area2, simgrid::mc::Snapshot* snapshot1,
522 simgrid::mc::Snapshot* snapshot2, HeapLocationPairs* previous, int size,
525 simgrid::mc::RemoteClient* process = &mc_model_checker->process();
526 simgrid::mc::Region* heap_region1 = MC_get_heap_region(snapshot1);
527 simgrid::mc::Region* heap_region2 = MC_get_heap_region(snapshot2);
529 for (int i = 0; i < size; ) {
531 if (check_ignore > 0) {
532 ssize_t ignore1 = heap_comparison_ignore_size(state.processStates[0].to_ignore, (char*)real_area1 + i);
534 ssize_t ignore2 = heap_comparison_ignore_size(state.processStates[1].to_ignore, (char*)real_area2 + i);
535 if (ignore2 == ignore1) {
548 if (MC_snapshot_region_memcmp(((char *) real_area1) + i, heap_region1, ((char *) real_area2) + i, heap_region2, 1) != 0) {
550 int pointer_align = (i / sizeof(void *)) * sizeof(void *);
551 const void* addr_pointed1 = snapshot1->read(remote((void**)((char*)real_area1 + pointer_align)));
552 const void* addr_pointed2 = snapshot2->read(remote((void**)((char*)real_area2 + pointer_align)));
554 if (process->in_maestro_stack(remote(addr_pointed1))
555 && process->in_maestro_stack(remote(addr_pointed2))) {
556 i = pointer_align + sizeof(void *);
560 if (addr_pointed1 > state.std_heap_copy.heapbase
561 && addr_pointed1 < mc_snapshot_get_heap_end(snapshot1)
562 && addr_pointed2 > state.std_heap_copy.heapbase
563 && addr_pointed2 < mc_snapshot_get_heap_end(snapshot2)) {
564 // Both addresses are in the heap:
566 compare_heap_area(state, addr_pointed1, addr_pointed2, snapshot1, snapshot2, previous, nullptr, 0);
567 if (res_compare == 1)
569 i = pointer_align + sizeof(void *);
585 * @param real_area1 Process address for state 1
586 * @param real_area2 Process address for state 2
587 * @param snapshot1 Snapshot of state 1
588 * @param snapshot2 Snapshot of state 2
591 * @param area_size either a byte_size or an elements_count (?)
592 * @param check_ignore
593 * @param pointer_level
594 * @return 0 (same), 1 (different), -1 (unknown)
596 static int compare_heap_area_with_type(simgrid::mc::StateComparator& state, const void* real_area1,
597 const void* real_area2, simgrid::mc::Snapshot* snapshot1,
598 simgrid::mc::Snapshot* snapshot2, HeapLocationPairs* previous,
599 simgrid::mc::Type* type, int area_size, int check_ignore, int pointer_level)
601 // HACK: This should not happen but in pratice, there are some
602 // DW_TAG_typedef without an associated DW_AT_type:
603 //<1><538832>: Abbrev Number: 111 (DW_TAG_typedef)
604 // <538833> DW_AT_name : (indirect string, offset: 0x2292f3): gregset_t
605 // <538837> DW_AT_decl_file : 98
606 // <538838> DW_AT_decl_line : 37
610 if (is_stack(real_area1) && is_stack(real_area2))
613 if (check_ignore > 0) {
614 ssize_t ignore1 = heap_comparison_ignore_size(state.processStates[0].to_ignore, real_area1);
615 if (ignore1 > 0 && heap_comparison_ignore_size(state.processStates[1].to_ignore, real_area2) == ignore1)
619 simgrid::mc::Type* subtype;
620 simgrid::mc::Type* subsubtype;
622 const void* addr_pointed1;
623 const void* addr_pointed2;
625 simgrid::mc::Region* heap_region1 = MC_get_heap_region(snapshot1);
626 simgrid::mc::Region* heap_region2 = MC_get_heap_region(snapshot2);
628 switch (type->type) {
629 case DW_TAG_unspecified_type:
632 case DW_TAG_base_type:
633 if (not type->name.empty() && type->name == "char") { /* String, hence random (arbitrary ?) size */
634 if (real_area1 == real_area2)
637 return MC_snapshot_region_memcmp(real_area1, heap_region1, real_area2, heap_region2, area_size) != 0;
639 if (area_size != -1 && type->byte_size != area_size)
642 return MC_snapshot_region_memcmp(real_area1, heap_region1, real_area2, heap_region2, type->byte_size) != 0;
645 case DW_TAG_enumeration_type:
646 if (area_size != -1 && type->byte_size != area_size)
648 return MC_snapshot_region_memcmp(real_area1, heap_region1, real_area2, heap_region2, type->byte_size) != 0;
651 case DW_TAG_const_type:
652 case DW_TAG_volatile_type:
653 return compare_heap_area_with_type(state, real_area1, real_area2, snapshot1, snapshot2, previous, type->subtype,
654 area_size, check_ignore, pointer_level);
656 case DW_TAG_array_type:
657 subtype = type->subtype;
658 switch (subtype->type) {
659 case DW_TAG_unspecified_type:
662 case DW_TAG_base_type:
663 case DW_TAG_enumeration_type:
664 case DW_TAG_pointer_type:
665 case DW_TAG_reference_type:
666 case DW_TAG_rvalue_reference_type:
667 case DW_TAG_structure_type:
668 case DW_TAG_class_type:
669 case DW_TAG_union_type:
670 if (subtype->full_type)
671 subtype = subtype->full_type;
672 elm_size = subtype->byte_size;
674 // TODO, just remove the type indirection?
675 case DW_TAG_const_type:
677 case DW_TAG_volatile_type:
678 subsubtype = subtype->subtype;
679 if (subsubtype->full_type)
680 subsubtype = subsubtype->full_type;
681 elm_size = subsubtype->byte_size;
686 for (int i = 0; i < type->element_count; i++) {
687 // TODO, add support for variable stride (DW_AT_byte_stride)
688 int res = compare_heap_area_with_type(state, (char*)real_area1 + (i * elm_size),
689 (char*)real_area2 + (i * elm_size), snapshot1, snapshot2, previous,
690 type->subtype, subtype->byte_size, check_ignore, pointer_level);
696 case DW_TAG_reference_type:
697 case DW_TAG_rvalue_reference_type:
698 case DW_TAG_pointer_type:
699 if (type->subtype && type->subtype->type == DW_TAG_subroutine_type) {
700 addr_pointed1 = snapshot1->read(remote((void**)real_area1));
701 addr_pointed2 = snapshot2->read(remote((void**)real_area2));
702 return (addr_pointed1 != addr_pointed2);
705 if (pointer_level <= 1) {
706 addr_pointed1 = snapshot1->read(remote((void**)real_area1));
707 addr_pointed2 = snapshot2->read(remote((void**)real_area2));
708 if (addr_pointed1 > state.std_heap_copy.heapbase && addr_pointed1 < mc_snapshot_get_heap_end(snapshot1) &&
709 addr_pointed2 > state.std_heap_copy.heapbase && addr_pointed2 < mc_snapshot_get_heap_end(snapshot2))
710 return compare_heap_area(state, addr_pointed1, addr_pointed2, snapshot1, snapshot2, previous, type->subtype,
713 return (addr_pointed1 != addr_pointed2);
715 for (size_t i = 0; i < (area_size / sizeof(void*)); i++) {
716 addr_pointed1 = snapshot1->read(remote((void**)((char*)real_area1 + i * sizeof(void*))));
717 addr_pointed2 = snapshot2->read(remote((void**)((char*)real_area2 + i * sizeof(void*))));
719 if (addr_pointed1 > state.std_heap_copy.heapbase && addr_pointed1 < mc_snapshot_get_heap_end(snapshot1) &&
720 addr_pointed2 > state.std_heap_copy.heapbase && addr_pointed2 < mc_snapshot_get_heap_end(snapshot2))
721 res = compare_heap_area(state, addr_pointed1, addr_pointed2, snapshot1, snapshot2, previous, type->subtype,
724 res = (addr_pointed1 != addr_pointed2);
730 case DW_TAG_structure_type:
731 case DW_TAG_class_type:
733 type = type->full_type;
734 if (area_size != -1 && type->byte_size != area_size) {
735 if (area_size <= type->byte_size || area_size % type->byte_size != 0)
737 for (size_t i = 0; i < (size_t)(area_size / type->byte_size); i++) {
738 int res = compare_heap_area_with_type(state, (char*)real_area1 + i * type->byte_size,
739 (char*)real_area2 + i * type->byte_size, snapshot1, snapshot2, previous,
740 type, -1, check_ignore, 0);
745 for (simgrid::mc::Member& member : type->members) {
746 // TODO, optimize this? (for the offset case)
748 simgrid::dwarf::resolve_member(real_area1, type, &member, (simgrid::mc::AddressSpace*)snapshot1);
750 simgrid::dwarf::resolve_member(real_area2, type, &member, (simgrid::mc::AddressSpace*)snapshot2);
751 int res = compare_heap_area_with_type(state, real_member1, real_member2, snapshot1, snapshot2, previous,
752 member.type, -1, check_ignore, 0);
759 case DW_TAG_union_type:
760 return not heap_area_equal_without_type(state, real_area1, real_area2, snapshot1, snapshot2, previous,
761 type->byte_size, check_ignore);
766 /** Infer the type of a part of the block from the type of the block
768 * TODO, handle DW_TAG_array_type as well as arrays of the object ((*p)[5], p[5])
770 * TODO, handle subfields ((*p).bar.foo, (*p)[5].bar…)
772 * @param type DWARF type ID of the root address
774 * @return DWARF type ID for given offset
776 static simgrid::mc::Type* get_offset_type(void* real_base_address, simgrid::mc::Type* type, int offset, int area_size,
777 simgrid::mc::Snapshot* snapshot)
780 // Beginning of the block, the infered variable type if the type of the block:
784 switch (type->type) {
786 case DW_TAG_structure_type:
787 case DW_TAG_class_type:
789 type = type->full_type;
790 if (area_size != -1 && type->byte_size != area_size) {
791 if (area_size > type->byte_size && area_size % type->byte_size == 0)
797 for (simgrid::mc::Member& member : type->members) {
798 if (member.has_offset_location()) {
799 // We have the offset, use it directly (shortcut):
800 if (member.offset() == offset)
803 void* real_member = simgrid::dwarf::resolve_member(real_base_address, type, &member, snapshot);
804 if ((char*)real_member - (char*)real_base_address == offset)
811 /* FIXME: other cases ? */
819 * @param area1 Process address for state 1
820 * @param area2 Process address for state 2
821 * @param snapshot1 Snapshot of state 1
822 * @param snapshot2 Snapshot of state 2
823 * @param previous Pairs of blocks already compared on the current path (or nullptr)
824 * @param type_id Type of variable
825 * @param pointer_level
826 * @return 0 (same), 1 (different), -1
828 static int compare_heap_area(simgrid::mc::StateComparator& state, const void* area1, const void* area2,
829 simgrid::mc::Snapshot* snapshot1, simgrid::mc::Snapshot* snapshot2,
830 HeapLocationPairs* previous, simgrid::mc::Type* type, int pointer_level)
832 simgrid::mc::RemoteClient* process = &mc_model_checker->process();
837 int check_ignore = 0;
845 simgrid::mc::Type* new_type1 = nullptr;
846 simgrid::mc::Type* new_type2 = nullptr;
848 bool match_pairs = false;
850 // This is the address of std_heap->heapinfo in the application process:
851 void* heapinfo_address = &((xbt_mheap_t) process->heap_address)->heapinfo;
853 const malloc_info* heapinfos1 = snapshot1->read(remote((const malloc_info**)heapinfo_address));
854 const malloc_info* heapinfos2 = snapshot2->read(remote((const malloc_info**)heapinfo_address));
856 malloc_info heapinfo_temp1;
857 malloc_info heapinfo_temp2;
859 simgrid::mc::HeapLocationPairs current;
860 if (previous == nullptr) {
866 block1 = ((char*)area1 - (char*)state.std_heap_copy.heapbase) / BLOCKSIZE + 1;
867 block2 = ((char*)area2 - (char*)state.std_heap_copy.heapbase) / BLOCKSIZE + 1;
869 // If either block is a stack block:
870 if (is_block_stack((int) block1) && is_block_stack((int) block2)) {
871 previous->insert(simgrid::mc::makeHeapLocationPair(block1, -1, block2, -1));
873 state.match_equals(previous);
877 // If either block is not in the expected area of memory:
878 if (((char*)area1 < (char*)state.std_heap_copy.heapbase) || (block1 > (ssize_t)state.processStates[0].heapsize) ||
879 (block1 < 1) || ((char*)area2 < (char*)state.std_heap_copy.heapbase) ||
880 (block2 > (ssize_t)state.processStates[1].heapsize) || (block2 < 1)) {
884 // Process address of the block:
885 void* real_addr_block1 = (ADDR2UINT(block1) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
886 void* real_addr_block2 = (ADDR2UINT(block2) - 1) * BLOCKSIZE + (char*)state.std_heap_copy.heapbase;
890 type = type->full_type;
892 // This assume that for "boring" types (volatile ...) byte_size is absent:
893 while (type->byte_size == 0 && type->subtype != nullptr)
894 type = type->subtype;
897 if (type->type == DW_TAG_pointer_type ||
898 (type->type == DW_TAG_base_type && not type->name.empty() && type->name == "char"))
901 type_size = type->byte_size;
905 simgrid::mc::Region* heap_region1 = MC_get_heap_region(snapshot1);
906 simgrid::mc::Region* heap_region2 = MC_get_heap_region(snapshot2);
908 const malloc_info* heapinfo1 =
909 (const malloc_info*)heap_region1->read(&heapinfo_temp1, &heapinfos1[block1], sizeof(malloc_info));
910 const malloc_info* heapinfo2 =
911 (const malloc_info*)heap_region2->read(&heapinfo_temp2, &heapinfos2[block2], sizeof(malloc_info));
913 if ((heapinfo1->type == MMALLOC_TYPE_FREE || heapinfo1->type==MMALLOC_TYPE_HEAPINFO)
914 && (heapinfo2->type == MMALLOC_TYPE_FREE || heapinfo2->type ==MMALLOC_TYPE_HEAPINFO)) {
917 state.match_equals(previous);
921 if (heapinfo1->type == MMALLOC_TYPE_UNFRAGMENTED && heapinfo2->type == MMALLOC_TYPE_UNFRAGMENTED) {
924 // TODO, lookup variable type from block type as done for fragmented blocks
926 if (state.equals_to1_(block1, 0).valid_ && state.equals_to2_(block2, 0).valid_ &&
927 state.blocksEqual(block1, block2)) {
929 state.match_equals(previous);
933 if (type_size != -1 && type_size != (ssize_t)heapinfo1->busy_block.busy_size &&
934 type_size != (ssize_t)heapinfo2->busy_block.busy_size &&
935 (type->name.empty() || type->name == "struct s_smx_context")) {
937 state.match_equals(previous);
941 if (heapinfo1->busy_block.size != heapinfo2->busy_block.size)
943 if (heapinfo1->busy_block.busy_size != heapinfo2->busy_block.busy_size)
946 if (not previous->insert(simgrid::mc::makeHeapLocationPair(block1, -1, block2, -1)).second) {
948 state.match_equals(previous);
952 size = heapinfo1->busy_block.busy_size;
954 // Remember (basic) type inference.
955 // The current data structure only allows us to do this for the whole block.
956 if (type != nullptr && area1 == real_addr_block1)
957 state.types1_(block1, 0) = type;
958 if (type != nullptr && area2 == real_addr_block2)
959 state.types2_(block2, 0) = type;
963 state.match_equals(previous);
967 if (heapinfo1->busy_block.ignore > 0
968 && heapinfo2->busy_block.ignore == heapinfo1->busy_block.ignore)
969 check_ignore = heapinfo1->busy_block.ignore;
971 } else if ((heapinfo1->type > 0) && (heapinfo2->type > 0)) { /* Fragmented block */
974 ssize_t frag1 = ((uintptr_t)(ADDR2UINT(area1) % (BLOCKSIZE))) >> heapinfo1->type;
975 ssize_t frag2 = ((uintptr_t)(ADDR2UINT(area2) % (BLOCKSIZE))) >> heapinfo2->type;
977 // Process address of the fragment_:
978 void* real_addr_frag1 = (void*)((char*)real_addr_block1 + (frag1 << heapinfo1->type));
979 void* real_addr_frag2 = (void*)((char*)real_addr_block2 + (frag2 << heapinfo2->type));
981 // Check the size of the fragments against the size of the type:
982 if (type_size != -1) {
983 if (heapinfo1->busy_frag.frag_size[frag1] == -1 || heapinfo2->busy_frag.frag_size[frag2] == -1) {
985 state.match_equals(previous);
989 if (type_size != heapinfo1->busy_frag.frag_size[frag1]
990 || type_size != heapinfo2->busy_frag.frag_size[frag2]) {
992 state.match_equals(previous);
997 // Check if the blocks are already matched together:
998 if (state.equals_to1_(block1, frag1).valid_ && state.equals_to2_(block2, frag2).valid_ && offset1 == offset2 &&
999 state.fragmentsEqual(block1, frag1, block2, frag2)) {
1001 state.match_equals(previous);
1004 // Compare the size of both fragments:
1005 if (heapinfo1->busy_frag.frag_size[frag1] != heapinfo2->busy_frag.frag_size[frag2]) {
1006 if (type_size == -1) {
1008 state.match_equals(previous);
1014 // Size of the fragment_:
1015 size = heapinfo1->busy_frag.frag_size[frag1];
1017 // Remember (basic) type inference.
1018 // The current data structure only allows us to do this for the whole fragment_.
1019 if (type != nullptr && area1 == real_addr_frag1)
1020 state.types1_(block1, frag1) = type;
1021 if (type != nullptr && area2 == real_addr_frag2)
1022 state.types2_(block2, frag2) = type;
1024 // The type of the variable is already known:
1026 new_type1 = new_type2 = type;
1028 // Type inference from the block type.
1029 else if (state.types1_(block1, frag1) != nullptr || state.types2_(block2, frag2) != nullptr) {
1031 offset1 = (char*)area1 - (char*)real_addr_frag1;
1032 offset2 = (char*)area2 - (char*)real_addr_frag2;
1034 if (state.types1_(block1, frag1) != nullptr && state.types2_(block2, frag2) != nullptr) {
1035 new_type1 = get_offset_type(real_addr_frag1, state.types1_(block1, frag1), offset1, size, snapshot1);
1036 new_type2 = get_offset_type(real_addr_frag2, state.types2_(block2, frag2), offset1, size, snapshot2);
1037 } else if (state.types1_(block1, frag1) != nullptr) {
1038 new_type1 = get_offset_type(real_addr_frag1, state.types1_(block1, frag1), offset1, size, snapshot1);
1039 new_type2 = get_offset_type(real_addr_frag2, state.types1_(block1, frag1), offset2, size, snapshot2);
1040 } else if (state.types2_(block2, frag2) != nullptr) {
1041 new_type1 = get_offset_type(real_addr_frag1, state.types2_(block2, frag2), offset1, size, snapshot1);
1042 new_type2 = get_offset_type(real_addr_frag2, state.types2_(block2, frag2), offset2, size, snapshot2);
1045 state.match_equals(previous);
1049 if (new_type1 != nullptr && new_type2 != nullptr && new_type1 != new_type2) {
1052 while (type->byte_size == 0 && type->subtype != nullptr)
1053 type = type->subtype;
1054 new_size1 = type->byte_size;
1057 while (type->byte_size == 0 && type->subtype != nullptr)
1058 type = type->subtype;
1059 new_size2 = type->byte_size;
1063 state.match_equals(previous);
1068 if (new_size1 > 0 && new_size1 == new_size2) {
1073 if (offset1 == 0 && offset2 == 0 &&
1074 not previous->insert(simgrid::mc::makeHeapLocationPair(block1, frag1, block2, frag2)).second) {
1076 state.match_equals(previous);
1082 state.match_equals(previous);
1086 if ((heapinfo1->busy_frag.ignore[frag1] > 0) &&
1087 (heapinfo2->busy_frag.ignore[frag2] == heapinfo1->busy_frag.ignore[frag1]))
1088 check_ignore = heapinfo1->busy_frag.ignore[frag1];
1094 /* Start comparison */
1097 res_compare = compare_heap_area_with_type(state, area1, area2, snapshot1, snapshot2, previous, type, size,
1098 check_ignore, pointer_level);
1101 not heap_area_equal_without_type(state, area1, area2, snapshot1, snapshot2, previous, size, check_ignore);
1103 if (res_compare == 1)
1107 state.match_equals(previous);
1114 /************************** Snapshot comparison *******************************/
1115 /******************************************************************************/
1117 static int compare_areas_with_type(simgrid::mc::StateComparator& state, void* real_area1,
1118 simgrid::mc::Snapshot* snapshot1, simgrid::mc::Region* region1, void* real_area2,
1119 simgrid::mc::Snapshot* snapshot2, simgrid::mc::Region* region2,
1120 simgrid::mc::Type* type, int pointer_level)
1122 simgrid::mc::RemoteClient* process = &mc_model_checker->process();
1124 simgrid::mc::Type* subtype;
1125 simgrid::mc::Type* subsubtype;
1130 xbt_assert(type != nullptr);
1131 switch (type->type) {
1132 case DW_TAG_unspecified_type:
1135 case DW_TAG_base_type:
1136 case DW_TAG_enumeration_type:
1137 case DW_TAG_union_type:
1138 return MC_snapshot_region_memcmp(real_area1, region1, real_area2, region2, type->byte_size) != 0;
1139 case DW_TAG_typedef:
1140 case DW_TAG_volatile_type:
1141 case DW_TAG_const_type:
1142 return compare_areas_with_type(state, real_area1, snapshot1, region1, real_area2, snapshot2, region2,
1143 type->subtype, pointer_level);
1144 case DW_TAG_array_type:
1145 subtype = type->subtype;
1146 switch (subtype->type) {
1147 case DW_TAG_unspecified_type:
1150 case DW_TAG_base_type:
1151 case DW_TAG_enumeration_type:
1152 case DW_TAG_pointer_type:
1153 case DW_TAG_reference_type:
1154 case DW_TAG_rvalue_reference_type:
1155 case DW_TAG_structure_type:
1156 case DW_TAG_class_type:
1157 case DW_TAG_union_type:
1158 if (subtype->full_type)
1159 subtype = subtype->full_type;
1160 elm_size = subtype->byte_size;
1162 case DW_TAG_const_type:
1163 case DW_TAG_typedef:
1164 case DW_TAG_volatile_type:
1165 subsubtype = subtype->subtype;
1166 if (subsubtype->full_type)
1167 subsubtype = subsubtype->full_type;
1168 elm_size = subsubtype->byte_size;
1173 for (i = 0; i < type->element_count; i++) {
1174 size_t off = i * elm_size;
1175 res = compare_areas_with_type(state, (char*)real_area1 + off, snapshot1, region1, (char*)real_area2 + off,
1176 snapshot2, region2, type->subtype, pointer_level);
1181 case DW_TAG_pointer_type:
1182 case DW_TAG_reference_type:
1183 case DW_TAG_rvalue_reference_type: {
1184 void* addr_pointed1 = MC_region_read_pointer(region1, real_area1);
1185 void* addr_pointed2 = MC_region_read_pointer(region2, real_area2);
1187 if (type->subtype && type->subtype->type == DW_TAG_subroutine_type)
1188 return (addr_pointed1 != addr_pointed2);
1189 if (addr_pointed1 == nullptr && addr_pointed2 == nullptr)
1191 if (addr_pointed1 == nullptr || addr_pointed2 == nullptr)
1193 if (not state.compared_pointers.insert(std::make_pair(addr_pointed1, addr_pointed2)).second)
1198 // Some cases are not handled here:
1199 // * the pointers lead to different areas (one to the heap, the other to the RW segment ...)
1200 // * a pointer leads to the read-only segment of the current object
1201 // * a pointer lead to a different ELF object
1203 if (addr_pointed1 > process->heap_address && addr_pointed1 < mc_snapshot_get_heap_end(snapshot1)) {
1204 if (not(addr_pointed2 > process->heap_address && addr_pointed2 < mc_snapshot_get_heap_end(snapshot2)))
1206 // The pointers are both in the heap:
1207 return simgrid::mc::compare_heap_area(state, addr_pointed1, addr_pointed2, snapshot1, snapshot2, nullptr,
1208 type->subtype, pointer_level);
1210 } else if (region1->contain(simgrid::mc::remote(addr_pointed1))) {
1211 // The pointers are both in the current object R/W segment:
1212 if (not region2->contain(simgrid::mc::remote(addr_pointed2)))
1214 if (not type->type_id)
1215 return (addr_pointed1 != addr_pointed2);
1217 return compare_areas_with_type(state, addr_pointed1, snapshot1, region1, addr_pointed2, snapshot2, region2,
1218 type->subtype, pointer_level);
1221 // TODO, We do not handle very well the case where
1222 // it belongs to a different (non-heap) region from the current one.
1224 return (addr_pointed1 != addr_pointed2);
1227 case DW_TAG_structure_type:
1228 case DW_TAG_class_type:
1229 for (simgrid::mc::Member& member : type->members) {
1230 void* member1 = simgrid::dwarf::resolve_member(real_area1, type, &member, snapshot1);
1231 void* member2 = simgrid::dwarf::resolve_member(real_area2, type, &member, snapshot2);
1232 simgrid::mc::Region* subregion1 = snapshot1->get_region(member1, region1); // region1 is hinted
1233 simgrid::mc::Region* subregion2 = snapshot2->get_region(member2, region2); // region2 is hinted
1234 res = compare_areas_with_type(state, member1, snapshot1, subregion1, member2, snapshot2, subregion2,
1235 member.type, pointer_level);
1240 case DW_TAG_subroutine_type:
1243 XBT_VERB("Unknown case: %d", type->type);
1250 static bool global_variables_equal(simgrid::mc::StateComparator& state, simgrid::mc::ObjectInformation* object_info,
1251 simgrid::mc::Region* r1, simgrid::mc::Region* r2, simgrid::mc::Snapshot* snapshot1,
1252 simgrid::mc::Snapshot* snapshot2)
1254 xbt_assert(r1 && r2, "Missing region.");
1256 std::vector<simgrid::mc::Variable>& variables = object_info->global_variables;
1258 for (simgrid::mc::Variable const& current_var : variables) {
1260 // If the variable is not in this object, skip it:
1261 // We do not expect to find a pointer to something which is not reachable
1262 // by the global variables.
1263 if ((char *) current_var.address < (char *) object_info->start_rw
1264 || (char *) current_var.address > (char *) object_info->end_rw)
1267 simgrid::mc::Type* bvariable_type = current_var.type;
1268 int res = compare_areas_with_type(state, (char*)current_var.address, snapshot1, r1, (char*)current_var.address,
1269 snapshot2, r2, bvariable_type, 0);
1271 XBT_VERB("Global variable %s (%p) is different between snapshots",
1272 current_var.name.c_str(),
1273 (char *) current_var.address);
1281 static bool local_variables_equal(simgrid::mc::StateComparator& state, simgrid::mc::Snapshot* snapshot1,
1282 simgrid::mc::Snapshot* snapshot2, mc_snapshot_stack_t stack1,
1283 mc_snapshot_stack_t stack2)
1285 if (stack1->local_variables.size() != stack2->local_variables.size()) {
1286 XBT_VERB("Different number of local variables");
1290 for (unsigned int cursor = 0; cursor < stack1->local_variables.size(); cursor++) {
1291 local_variable_t current_var1 = &stack1->local_variables[cursor];
1292 local_variable_t current_var2 = &stack2->local_variables[cursor];
1293 if (current_var1->name != current_var2->name || current_var1->subprogram != current_var2->subprogram ||
1294 current_var1->ip != current_var2->ip) {
1295 // TODO, fix current_varX->subprogram->name to include name if DW_TAG_inlined_subprogram
1296 XBT_VERB("Different name of variable (%s - %s) "
1297 "or frame (%s - %s) or ip (%lu - %lu)",
1298 current_var1->name.c_str(), current_var2->name.c_str(), current_var1->subprogram->name.c_str(),
1299 current_var2->subprogram->name.c_str(), current_var1->ip, current_var2->ip);
1303 if (compare_areas_with_type(state, current_var1->address, snapshot1, snapshot1->get_region(current_var1->address),
1304 current_var2->address, snapshot2, snapshot2->get_region(current_var2->address),
1305 current_var1->type, 0) == 1) {
1306 XBT_VERB("Local variable %s (%p - %p) in frame %s "
1307 "is different between snapshots",
1308 current_var1->name.c_str(), current_var1->address, current_var2->address,
1309 current_var1->subprogram->name.c_str());
1319 static std::unique_ptr<simgrid::mc::StateComparator> state_comparator;
1321 bool snapshot_equal(Snapshot* s1, Snapshot* s2)
1323 // TODO, make this a field of ModelChecker or something similar
1324 if (state_comparator == nullptr)
1325 state_comparator.reset(new StateComparator());
1327 state_comparator->clear();
1329 RemoteClient* process = &mc_model_checker->process();
1331 if (s1->hash_ != s2->hash_) {
1332 XBT_VERB("(%d - %d) Different hash: 0x%" PRIx64 "--0x%" PRIx64, s1->num_state_, s2->num_state_, s1->hash_,
1336 XBT_VERB("(%d - %d) Same hash: 0x%" PRIx64, s1->num_state_, s2->num_state_, s1->hash_);
1338 /* Compare enabled processes */
1339 if (s1->enabled_processes_ != s2->enabled_processes_) {
1340 XBT_VERB("(%d - %d) Different amount of enabled processes", s1->num_state_, s2->num_state_);
1344 /* Compare size of stacks */
1345 for (unsigned long i = 0; i < s1->stacks_.size(); i++) {
1346 size_t size_used1 = s1->stack_sizes_[i];
1347 size_t size_used2 = s2->stack_sizes_[i];
1348 if (size_used1 != size_used2) {
1349 XBT_VERB("(%d - %d) Different size used in stacks: %zu - %zu", s1->num_state_, s2->num_state_, size_used1,
1355 /* Init heap information used in heap comparison algorithm */
1356 xbt_mheap_t heap1 = (xbt_mheap_t)s1->read_bytes(alloca(sizeof(struct mdesc)), sizeof(struct mdesc),
1357 remote(process->heap_address), simgrid::mc::ReadOptions::lazy());
1358 xbt_mheap_t heap2 = (xbt_mheap_t)s2->read_bytes(alloca(sizeof(struct mdesc)), sizeof(struct mdesc),
1359 remote(process->heap_address), simgrid::mc::ReadOptions::lazy());
1360 int res_init = state_comparator->initHeapInformation(heap1, heap2, &s1->to_ignore_, &s2->to_ignore_);
1362 if (res_init == -1) {
1363 XBT_VERB("(%d - %d) Different heap information", s1->num_state_, s2->num_state_);
1367 /* Stacks comparison */
1368 for (unsigned int cursor = 0; cursor < s1->stacks_.size(); cursor++) {
1369 mc_snapshot_stack_t stack1 = &s1->stacks_[cursor];
1370 mc_snapshot_stack_t stack2 = &s2->stacks_[cursor];
1372 if (not local_variables_equal(*state_comparator, s1, s2, stack1, stack2)) {
1373 XBT_VERB("(%d - %d) Different local variables between stacks %u", s1->num_state_, s2->num_state_, cursor + 1);
1378 size_t regions_count = s1->snapshot_regions_.size();
1379 if (regions_count != s2->snapshot_regions_.size())
1382 for (size_t k = 0; k != regions_count; ++k) {
1383 Region* region1 = s1->snapshot_regions_[k].get();
1384 Region* region2 = s2->snapshot_regions_[k].get();
1387 if (region1->region_type() != RegionType::Data)
1390 xbt_assert(region1->region_type() == region2->region_type());
1391 xbt_assert(region1->object_info() == region2->object_info());
1392 xbt_assert(region1->object_info());
1394 /* Compare global variables */
1395 if (not global_variables_equal(*state_comparator, region1->object_info(), region1, region2, s1, s2)) {
1396 std::string const& name = region1->object_info()->file_name;
1397 XBT_VERB("(%d - %d) Different global variables in %s", s1->num_state_, s2->num_state_, name.c_str());
1403 if (not mmalloc_heap_equal(*state_comparator, s1, s2)) {
1404 XBT_VERB("(%d - %d) Different heap (mmalloc_compare)", s1->num_state_, s2->num_state_);
1408 XBT_VERB("(%d - %d) No difference found", s1->num_state_, s2->num_state_);