Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
9248f79822f5b9d100af52f826ecb34b6b695f28
[simgrid.git] / src / kernel / routing / DragonflyZone.cpp
1 /* Copyright (c) 2014-2021. The SimGrid Team. All rights reserved.          */
2
3 /* This program is free software; you can redistribute it and/or modify it
4  * under the terms of the license (GNU LGPL) which comes with this package. */
5
6 #include "simgrid/kernel/routing/DragonflyZone.hpp"
7 #include "simgrid/kernel/routing/NetPoint.hpp"
8 #include "src/surf/network_interface.hpp"
9
10 #include <boost/algorithm/string/classification.hpp>
11 #include <boost/algorithm/string/split.hpp>
12 #include <numeric>
13 #include <string>
14
15 XBT_LOG_NEW_DEFAULT_SUBCATEGORY(surf_route_cluster_dragonfly, surf_route_cluster, "Dragonfly Routing part of surf");
16
17 namespace simgrid {
18 namespace kernel {
19 namespace routing {
20
21 DragonflyZone::DragonflyZone(const std::string& name) : ClusterBase(name) {}
22
23 DragonflyZone::Coords DragonflyZone::rankId_to_coords(int rankId) const
24 {
25   // coords : group, chassis, blade, node
26   Coords coords;
27   coords.group   = rankId / (num_chassis_per_group_ * num_blades_per_chassis_ * num_nodes_per_blade_);
28   rankId         = rankId % (num_chassis_per_group_ * num_blades_per_chassis_ * num_nodes_per_blade_);
29   coords.chassis = rankId / (num_blades_per_chassis_ * num_nodes_per_blade_);
30   rankId         = rankId % (num_blades_per_chassis_ * num_nodes_per_blade_);
31   coords.blade   = rankId / num_nodes_per_blade_;
32   coords.node    = rankId % num_nodes_per_blade_;
33   return coords;
34 }
35
36 void DragonflyZone::rankId_to_coords(int rankId, unsigned int coords[4]) const // XBT_ATTRIB_DEPRECATED_v330
37 {
38   const auto s_coords = rankId_to_coords(rankId);
39   coords[0]           = s_coords.group;
40   coords[1]           = s_coords.chassis;
41   coords[2]           = s_coords.blade;
42   coords[3]           = s_coords.node;
43 }
44
45 void DragonflyZone::set_link_characteristics(double bw, double lat, s4u::Link::SharingPolicy sharing_policy)
46 {
47   ClusterBase::set_link_characteristics(bw, lat, sharing_policy);
48   if (sharing_policy == s4u::Link::SharingPolicy::SPLITDUPLEX)
49     num_links_per_link_ = 2;
50 }
51
52 void DragonflyZone::set_topology(unsigned int n_groups, unsigned int groups_links, unsigned int n_chassis,
53                                  unsigned int chassis_links, unsigned int n_routers, unsigned int routers_links,
54                                  unsigned int nodes)
55 {
56   num_groups_     = n_groups;
57   num_links_blue_ = groups_links;
58
59   num_chassis_per_group_ = n_chassis;
60   num_links_black_       = chassis_links;
61
62   num_blades_per_chassis_ = n_routers;
63   num_links_green_        = routers_links;
64
65   num_nodes_per_blade_ = nodes;
66 }
67
68 s4u::DragonflyParams DragonflyZone::parse_topo_parameters(const std::string& topo_parameters)
69 {
70   std::vector<std::string> parameters;
71   std::vector<std::string> tmp;
72   boost::split(parameters, topo_parameters, boost::is_any_of(";"));
73
74   if (parameters.size() != 4)
75     xbt_die("Dragonfly are defined by the number of groups, chassis per groups, blades per chassis, nodes per blade");
76
77   // Blue network : number of groups, number of links between each group
78   boost::split(tmp, parameters[0], boost::is_any_of(","));
79   if (tmp.size() != 2)
80     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
81
82   unsigned int n_groups;
83   try {
84     n_groups = std::stoi(tmp[0]);
85   } catch (const std::invalid_argument&) {
86     throw std::invalid_argument(std::string("Invalid number of groups:") + tmp[0]);
87   }
88
89   unsigned int n_blue;
90   try {
91     n_blue = std::stoi(tmp[1]);
92   } catch (const std::invalid_argument&) {
93     throw std::invalid_argument(std::string("Invalid number of links for the blue level:") + tmp[1]);
94   }
95
96   // Black network : number of chassis/group, number of links between each router on the black network
97   boost::split(tmp, parameters[1], boost::is_any_of(","));
98   if (tmp.size() != 2)
99     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
100
101   unsigned int n_chassis;
102   try {
103     n_chassis = std::stoi(tmp[0]);
104   } catch (const std::invalid_argument&) {
105     throw std::invalid_argument(std::string("Invalid number of chassis:") + tmp[0]);
106   }
107
108   unsigned int n_black;
109   try {
110     n_black = std::stoi(tmp[1]);
111   } catch (const std::invalid_argument&) {
112     throw std::invalid_argument(std::string("Invalid number of links for the black level:") + tmp[1]);
113   }
114
115   // Green network : number of blades/chassis, number of links between each router on the green network
116   boost::split(tmp, parameters[2], boost::is_any_of(","));
117   if (tmp.size() != 2)
118     xbt_die("Dragonfly topologies are defined by 3 levels with 2 elements each, and one with one element");
119
120   unsigned int n_routers;
121   try {
122     n_routers = std::stoi(tmp[0]);
123   } catch (const std::invalid_argument&) {
124     throw std::invalid_argument(std::string("Invalid number of routers:") + tmp[0]);
125   }
126
127   unsigned int n_green;
128   try {
129     n_green = std::stoi(tmp[1]);
130   } catch (const std::invalid_argument&) {
131     throw std::invalid_argument(std::string("Invalid number of links for the green level:") + tmp[1]);
132   }
133
134   // The last part of topo_parameters should be the number of nodes per blade
135   unsigned int n_nodes;
136   try {
137     n_nodes = std::stoi(parameters[3]);
138   } catch (const std::invalid_argument&) {
139     throw std::invalid_argument(std::string("Last parameter is not the amount of nodes per blade:") + parameters[3]);
140   }
141   return s4u::DragonflyParams({n_groups, n_blue}, {n_chassis, n_black}, {n_routers, n_green}, n_nodes);
142 }
143
144 /* Generate the cluster once every node is created */
145 void DragonflyZone::build_upper_levels(const s4u::ClusterCallbacks& set_callbacks)
146 {
147   generate_routers(set_callbacks);
148   generate_links();
149 }
150
151 void DragonflyZone::generate_routers(const s4u::ClusterCallbacks& set_callbacks)
152 {
153   int id = 0;
154   /* get limiter for this router */
155   auto get_limiter = [this, &id, &set_callbacks](unsigned int i, unsigned int j,
156                                                  unsigned int k) -> resource::LinkImpl* {
157     kernel::resource::LinkImpl* limiter = nullptr;
158     if (set_callbacks.limiter) {
159       id--;
160       const auto* s4u_link =
161           set_callbacks.limiter(get_iface(), {i, j, k, std::numeric_limits<unsigned int>::max()}, id);
162       if (s4u_link) {
163         limiter = s4u_link->get_impl();
164       }
165     }
166     return limiter;
167   };
168
169   routers_.reserve(num_groups_ * num_chassis_per_group_ * num_blades_per_chassis_);
170   for (unsigned int i = 0; i < num_groups_; i++) {
171     for (unsigned int j = 0; j < num_chassis_per_group_; j++) {
172       for (unsigned int k = 0; k < num_blades_per_chassis_; k++) {
173         routers_.emplace_back(i, j, k, get_limiter(i, j, k));
174       }
175     }
176   }
177 }
178
179 void DragonflyZone::generate_link(const std::string& id, int numlinks, resource::LinkImpl** linkup,
180                                   resource::LinkImpl** linkdown)
181 {
182   XBT_DEBUG("Generating link %s", id.c_str());
183   *linkup   = nullptr;
184   *linkdown = nullptr;
185   if (get_link_sharing_policy() == s4u::Link::SharingPolicy::SPLITDUPLEX) {
186     *linkup = create_link(id + "_UP", std::vector<double>{get_link_bandwidth() * numlinks})
187                   ->set_latency(get_link_latency())
188                   ->seal()
189                   ->get_impl();
190     *linkdown = create_link(id + "_DOWN", std::vector<double>{get_link_bandwidth() * numlinks})
191                     ->set_latency(get_link_latency())
192                     ->seal()
193                     ->get_impl();
194   } else {
195     *linkup = create_link(id, std::vector<double>{get_link_bandwidth() * numlinks})
196                   ->set_latency(get_link_latency())
197                   ->seal()
198                   ->get_impl();
199     *linkdown = *linkup;
200   }
201 }
202
203 void DragonflyZone::generate_links()
204 {
205   static int uniqueId = 0;
206   resource::LinkImpl* linkup;
207   resource::LinkImpl* linkdown;
208
209   unsigned int numRouters = num_groups_ * num_chassis_per_group_ * num_blades_per_chassis_;
210
211   // Links from routers to their local nodes.
212   for (unsigned int i = 0; i < numRouters; i++) {
213     // allocate structures
214     routers_[i].my_nodes_.resize(num_links_per_link_ * num_nodes_per_blade_);
215     routers_[i].green_links_.resize(num_blades_per_chassis_);
216     routers_[i].black_links_.resize(num_chassis_per_group_);
217
218     for (unsigned int j = 0; j < num_links_per_link_ * num_nodes_per_blade_; j += num_links_per_link_) {
219       std::string id = "local_link_from_router_" + std::to_string(i) + "_to_node_" +
220                        std::to_string(j / num_links_per_link_) + "_" + std::to_string(uniqueId);
221       generate_link(id, 1, &linkup, &linkdown);
222
223       routers_[i].my_nodes_[j] = linkup;
224       if (get_link_sharing_policy() == s4u::Link::SharingPolicy::SPLITDUPLEX)
225         routers_[i].my_nodes_[j + 1] = linkdown;
226
227       uniqueId++;
228     }
229   }
230
231   // Green links from routers to same chassis routers - alltoall
232   for (unsigned int i = 0; i < num_groups_ * num_chassis_per_group_; i++) {
233     for (unsigned int j = 0; j < num_blades_per_chassis_; j++) {
234       for (unsigned int k = j + 1; k < num_blades_per_chassis_; k++) {
235         std::string id = "green_link_in_chassis_" + std::to_string(i % num_chassis_per_group_) + "_between_routers_" +
236                          std::to_string(j) + "_and_" + std::to_string(k) + "_" + std::to_string(uniqueId);
237         generate_link(id, num_links_green_, &linkup, &linkdown);
238
239         routers_[i * num_blades_per_chassis_ + j].green_links_[k] = linkup;
240         routers_[i * num_blades_per_chassis_ + k].green_links_[j] = linkdown;
241         uniqueId++;
242       }
243     }
244   }
245
246   // Black links from routers to same group routers - alltoall
247   for (unsigned int i = 0; i < num_groups_; i++) {
248     for (unsigned int j = 0; j < num_chassis_per_group_; j++) {
249       for (unsigned int k = j + 1; k < num_chassis_per_group_; k++) {
250         for (unsigned int l = 0; l < num_blades_per_chassis_; l++) {
251           std::string id = "black_link_in_group_" + std::to_string(i) + "_between_chassis_" + std::to_string(j) +
252                            "_and_" + std::to_string(k) + "_blade_" + std::to_string(l) + "_" + std::to_string(uniqueId);
253           generate_link(id, num_links_black_, &linkup, &linkdown);
254
255           routers_[i * num_blades_per_chassis_ * num_chassis_per_group_ + j * num_blades_per_chassis_ + l]
256               .black_links_[k] = linkup;
257           routers_[i * num_blades_per_chassis_ * num_chassis_per_group_ + k * num_blades_per_chassis_ + l]
258               .black_links_[j] = linkdown;
259           uniqueId++;
260         }
261       }
262     }
263   }
264
265   // Blue links between groups - Not all routers involved, only one per group is linked to others. Let's say router n of
266   // each group is linked to group n.
267   // FIXME: in reality blue links may be attached to several different routers
268   for (unsigned int i = 0; i < num_groups_; i++) {
269     for (unsigned int j = i + 1; j < num_groups_; j++) {
270       unsigned int routernumi = i * num_blades_per_chassis_ * num_chassis_per_group_ + j;
271       unsigned int routernumj = j * num_blades_per_chassis_ * num_chassis_per_group_ + i;
272       std::string id = "blue_link_between_group_" + std::to_string(i) + "_and_" + std::to_string(j) + "_routers_" +
273                        std::to_string(routernumi) + "_and_" + std::to_string(routernumj) + "_" +
274                        std::to_string(uniqueId);
275       generate_link(id, num_links_blue_, &linkup, &linkdown);
276
277       routers_[routernumi].blue_link_ = linkup;
278       routers_[routernumj].blue_link_ = linkdown;
279       uniqueId++;
280     }
281   }
282 }
283
284 void DragonflyZone::get_local_route(const NetPoint* src, const NetPoint* dst, Route* route, double* latency)
285 {
286   // Minimal routing version.
287   // TODO : non-minimal random one, and adaptive ?
288
289   if (dst->is_router() || src->is_router())
290     return;
291
292   XBT_VERB("dragonfly getLocalRoute from '%s'[%u] to '%s'[%u]", src->get_cname(), src->id(), dst->get_cname(),
293            dst->id());
294
295   if ((src->id() == dst->id()) && has_loopback()) {
296     resource::LinkImpl* uplink = get_uplink_from(node_pos(src->id()));
297
298     route->link_list_.push_back(uplink);
299     if (latency)
300       *latency += uplink->get_latency();
301     return;
302   }
303
304   const auto myCoords     = rankId_to_coords(src->id());
305   const auto targetCoords = rankId_to_coords(dst->id());
306   XBT_DEBUG("src : %u group, %u chassis, %u blade, %u node", myCoords.group, myCoords.chassis, myCoords.blade,
307             myCoords.node);
308   XBT_DEBUG("dst : %u group, %u chassis, %u blade, %u node", targetCoords.group, targetCoords.chassis,
309             targetCoords.blade, targetCoords.node);
310
311   DragonflyRouter* myRouter      = &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
312                                         myCoords.chassis * num_blades_per_chassis_ + myCoords.blade];
313   DragonflyRouter* targetRouter  = &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
314                                             targetCoords.chassis * num_blades_per_chassis_ + targetCoords.blade];
315   DragonflyRouter* currentRouter = myRouter;
316
317   if (has_limiter()) { // limiter for sender
318     route->link_list_.push_back(get_uplink_from(node_pos_with_loopback(src->id())));
319   }
320
321   // node->router local link
322   route->link_list_.push_back(myRouter->my_nodes_[myCoords.node * num_links_per_link_]);
323   if (latency)
324     *latency += myRouter->my_nodes_[myCoords.node * num_links_per_link_]->get_latency();
325
326   if (targetRouter != myRouter) {
327     // are we on a different group ?
328     if (targetRouter->group_ != currentRouter->group_) {
329       // go to the router of our group connected to this one.
330       if (currentRouter->blade_ != targetCoords.group) {
331         if (currentRouter->limiter_)
332           route->link_list_.push_back(currentRouter->limiter_);
333         // go to the nth router in our chassis
334         route->link_list_.push_back(currentRouter->green_links_[targetCoords.group]);
335         if (latency)
336           *latency += currentRouter->green_links_[targetCoords.group]->get_latency();
337         currentRouter = &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) +
338                                   myCoords.chassis * num_blades_per_chassis_ + targetCoords.group];
339       }
340
341       if (currentRouter->chassis_ != 0) {
342         // go to the first chassis of our group
343         if (currentRouter->limiter_)
344           route->link_list_.push_back(currentRouter->limiter_);
345         route->link_list_.push_back(currentRouter->black_links_[0]);
346         if (latency)
347           *latency += currentRouter->black_links_[0]->get_latency();
348         currentRouter =
349             &routers_[myCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + targetCoords.group];
350       }
351
352       // go to destination group - the only optical hop
353       route->link_list_.push_back(currentRouter->blue_link_);
354       if (currentRouter->limiter_)
355         route->link_list_.push_back(currentRouter->limiter_);
356       if (latency)
357         *latency += currentRouter->blue_link_->get_latency();
358       currentRouter =
359           &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + myCoords.group];
360     }
361
362     // same group, but same blade ?
363     if (targetRouter->blade_ != currentRouter->blade_) {
364       if (currentRouter->limiter_)
365         route->link_list_.push_back(currentRouter->limiter_);
366       route->link_list_.push_back(currentRouter->green_links_[targetCoords.blade]);
367       if (latency)
368         *latency += currentRouter->green_links_[targetCoords.blade]->get_latency();
369       currentRouter =
370           &routers_[targetCoords.group * (num_chassis_per_group_ * num_blades_per_chassis_) + targetCoords.blade];
371     }
372
373     // same blade, but same chassis ?
374     if (targetRouter->chassis_ != currentRouter->chassis_) {
375       if (currentRouter->limiter_)
376         route->link_list_.push_back(currentRouter->limiter_);
377       route->link_list_.push_back(currentRouter->black_links_[targetCoords.chassis]);
378       if (latency)
379         *latency += currentRouter->black_links_[targetCoords.chassis]->get_latency();
380     }
381   }
382
383   // router->node local link
384   if (targetRouter->limiter_)
385     route->link_list_.push_back(targetRouter->limiter_);
386   route->link_list_.push_back(
387       targetRouter->my_nodes_[targetCoords.node * num_links_per_link_ + num_links_per_link_ - 1]);
388
389   if (latency)
390     *latency +=
391         targetRouter->my_nodes_[targetCoords.node * num_links_per_link_ + num_links_per_link_ - 1]->get_latency();
392
393   if (has_limiter()) { // limiter for receiver
394     route->link_list_.push_back(get_downlink_to(node_pos_with_loopback(dst->id())));
395   }
396
397   // set gateways (if any)
398   route->gw_src_ = get_gateway(src->id());
399   route->gw_dst_ = get_gateway(dst->id());
400 }
401 } // namespace routing
402 } // namespace kernel
403
404 namespace s4u {
405 DragonflyParams::DragonflyParams(const std::pair<unsigned int, unsigned int>& groups,
406                                  const std::pair<unsigned int, unsigned int>& chassis,
407                                  const std::pair<unsigned int, unsigned int>& routers, unsigned int nodes)
408     : groups(groups), chassis(chassis), routers(routers), nodes(nodes)
409 {
410   if (groups.first == 0)
411     throw std::invalid_argument("Dragonfly: Invalid number of groups, must be > 0");
412   if (groups.second == 0)
413     throw std::invalid_argument("Dragonfly: Invalid number of blue (groups) links, must be > 0");
414   if (chassis.first == 0)
415     throw std::invalid_argument("Dragonfly: Invalid number of chassis, must be > 0");
416   if (chassis.second == 0)
417     throw std::invalid_argument("Dragonfly: Invalid number of black (chassis) links, must be > 0");
418   if (routers.first == 0)
419     throw std::invalid_argument("Dragonfly: Invalid number of routers, must be > 0");
420   if (routers.second == 0)
421     throw std::invalid_argument("Dragonfly: Invalid number of green (routers) links, must be > 0");
422   if (nodes == 0)
423     throw std::invalid_argument("Dragonfly: Invalid number of nodes, must be > 0");
424 }
425
426 NetZone* create_dragonfly_zone(const std::string& name, const NetZone* parent, const DragonflyParams& params,
427                                const ClusterCallbacks& set_callbacks, double bandwidth, double latency,
428                                Link::SharingPolicy sharing_policy)
429 {
430   /* initial checks */
431   if (bandwidth <= 0)
432     throw std::invalid_argument("DragonflyZone: incorrect bandwidth for internode communication, bw=" +
433                                 std::to_string(bandwidth));
434   if (latency < 0)
435     throw std::invalid_argument("DragonflyZone: incorrect latency for internode communication, lat=" +
436                                 std::to_string(latency));
437
438   /* creating zone */
439   auto* zone = new kernel::routing::DragonflyZone(name);
440   zone->set_topology(params.groups.first, params.groups.second, params.chassis.first, params.chassis.second,
441                      params.routers.first, params.routers.second, params.nodes);
442   if (parent)
443     zone->set_parent(parent->get_impl());
444   zone->set_link_characteristics(bandwidth, latency, sharing_policy);
445
446   /* populating it */
447   std::vector<unsigned int> dimensions = {params.groups.first, params.chassis.first, params.routers.first,
448                                           params.nodes};
449   int tot_elements                     = std::accumulate(dimensions.begin(), dimensions.end(), 1, std::multiplies<>());
450   for (int i = 0; i < tot_elements; i++) {
451     kernel::routing::NetPoint* netpoint;
452     Link* limiter;
453     Link* loopback;
454     zone->fill_leaf_from_cb(i, dimensions, set_callbacks, &netpoint, &loopback, &limiter);
455   }
456   zone->build_upper_levels(set_callbacks);
457
458   return zone->get_iface();
459 }
460 } // namespace s4u
461
462 } // namespace simgrid