Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
model-checker : code refactoring for heap comparison algorithm
[simgrid.git] / src / xbt / mmalloc / mm_diff.c
1 /* mm_diff - Memory snapshooting and comparison                             */
2
3 /* Copyright (c) 2008-2012. The SimGrid Team. All rights reserved.          */
4
5 /* This program is free software; you can redistribute it and/or modify it
6  * under the terms of the license (GNU LGPL) which comes with this package. */
7
8 #include "xbt/ex_interface.h" /* internals of backtrace setup */
9 #include "xbt/str.h"
10 #include "mc/mc.h"
11 #include "xbt/mmalloc.h"
12
13 XBT_LOG_NEW_DEFAULT_SUBCATEGORY(mm_diff, xbt,
14                                 "Logging specific to mm_diff in mmalloc");
15
16 xbt_dynar_t mc_heap_comparison_ignore;
17 xbt_dynar_t stacks_areas;
18 void *maestro_stack_start, *maestro_stack_end;
19
20 static void heap_area_pair_free(heap_area_pair_t pair);
21 static void heap_area_pair_free_voidp(void *d);
22 static int add_heap_area_pair(xbt_dynar_t list, int block1, int fragment1, int block2, int fragment2);
23 static int is_new_heap_area_pair(xbt_dynar_t list, int block1, int fragment1, int block2, int fragment2);
24 static heap_area_t new_heap_area(int block, int fragment);
25
26 static size_t heap_comparison_ignore_size(xbt_dynar_t list, void *address);
27 static void add_heap_equality(xbt_dynar_t equals, void *a1, void *a2);
28 static void remove_heap_equality(xbt_dynar_t equals, int address, void *a);
29
30 static int is_stack(void *address);
31 static int is_block_stack(int block);
32 static int equal_blocks(int b1, int b2);
33 static int equal_fragments(int b1, int f1, int b2, int f2);
34
35 void mmalloc_backtrace_block_display(void* heapinfo, int block){
36
37   /* xbt_ex_t e; */
38
39   /* if (((malloc_info *)heapinfo)[block].busy_block.bt_size == 0) { */
40   /*   fprintf(stderr, "No backtrace available for that block, sorry.\n"); */
41   /*   return; */
42   /* } */
43
44   /* memcpy(&e.bt,&(((malloc_info *)heapinfo)[block].busy_block.bt),sizeof(void*)*XBT_BACKTRACE_SIZE); */
45   /* e.used = ((malloc_info *)heapinfo)[block].busy_block.bt_size; */
46
47   /* xbt_ex_setup_backtrace(&e); */
48   /* if (e.used == 0) { */
49   /*   fprintf(stderr, "(backtrace not set)\n"); */
50   /* } else if (e.bt_strings == NULL) { */
51   /*   fprintf(stderr, "(backtrace not ready to be computed. %s)\n",xbt_binary_name?"Dunno why":"xbt_binary_name not setup yet"); */
52   /* } else { */
53   /*   int i; */
54
55   /*   fprintf(stderr, "Backtrace of where the block %d was malloced (%d frames):\n", block ,e.used); */
56   /*   for (i = 0; i < e.used; i++)       /\* no need to display "xbt_backtrace_display" *\/{ */
57   /*     fprintf(stderr, "%d ---> %s\n",i, e.bt_strings[i] + 4); */
58   /*   } */
59   /* } */
60 }
61
62 void mmalloc_backtrace_fragment_display(void* heapinfo, int block, int frag){
63
64   /* xbt_ex_t e; */
65
66   /* memcpy(&e.bt,&(((malloc_info *)heapinfo)[block].busy_frag.bt[frag]),sizeof(void*)*XBT_BACKTRACE_SIZE); */
67   /* e.used = XBT_BACKTRACE_SIZE; */
68
69   /* xbt_ex_setup_backtrace(&e); */
70   /* if (e.used == 0) { */
71   /*   fprintf(stderr, "(backtrace not set)\n"); */
72   /* } else if (e.bt_strings == NULL) { */
73   /*   fprintf(stderr, "(backtrace not ready to be computed. %s)\n",xbt_binary_name?"Dunno why":"xbt_binary_name not setup yet"); */
74   /* } else { */
75   /*   int i; */
76
77   /*   fprintf(stderr, "Backtrace of where the fragment %d in block %d was malloced (%d frames):\n", frag, block ,e.used); */
78   /*   for (i = 0; i < e.used; i++)       /\* no need to display "xbt_backtrace_display" *\/{ */
79   /*     fprintf(stderr, "%d ---> %s\n",i, e.bt_strings[i] + 4); */
80   /*   } */
81   /* } */
82
83 }
84
85 void mmalloc_backtrace_display(void *addr){
86
87   /* size_t block, frag_nb; */
88   /* int type; */
89   
90   /* xbt_mheap_t heap = __mmalloc_current_heap ?: (xbt_mheap_t) mmalloc_preinit(); */
91
92   /* block = (((char*) (addr) - (char*) heap -> heapbase) / BLOCKSIZE + 1); */
93
94   /* type = heap->heapinfo[block].type; */
95
96   /* switch(type){ */
97   /* case -1 : /\* Free block *\/ */
98   /*   fprintf(stderr, "Asked to display the backtrace of a block that is free. I'm puzzled\n"); */
99   /*   xbt_abort(); */
100   /*   break;  */
101   /* case 0: /\* Large block *\/ */
102   /*   mmalloc_backtrace_block_display(heap->heapinfo, block); */
103   /*   break; */
104   /* default: /\* Fragmented block *\/ */
105   /*   frag_nb = RESIDUAL(addr, BLOCKSIZE) >> type; */
106   /*   if(heap->heapinfo[block].busy_frag.frag_size[frag_nb] == -1){ */
107   /*     fprintf(stderr , "Asked to display the backtrace of a fragment that is free. I'm puzzled\n"); */
108   /*     xbt_abort(); */
109   /*   } */
110   /*   mmalloc_backtrace_fragment_display(heap->heapinfo, block, frag_nb); */
111   /*   break; */
112   /* } */
113 }
114
115
116 void *s_heap = NULL, *heapbase1 = NULL, *heapbase2 = NULL;
117 malloc_info *heapinfo1 = NULL, *heapinfo2 = NULL;
118 size_t heaplimit = 0, heapsize1 = 0, heapsize2 = 0;
119 xbt_dynar_t to_ignore1 = NULL, to_ignore2 = NULL;
120
121 void init_heap_information(xbt_mheap_t heap1, xbt_mheap_t heap2, xbt_dynar_t i1, xbt_dynar_t i2){
122
123   heaplimit = ((struct mdesc *)heap1)->heaplimit;
124
125   s_heap = (char *)mmalloc_get_current_heap() - STD_HEAP_SIZE - getpagesize();
126
127   heapbase1 = (char *)heap1 + BLOCKSIZE;
128   heapbase2 = (char *)heap2 + BLOCKSIZE;
129
130   heapinfo1 = (malloc_info *)((char *)heap1 + ((uintptr_t)((char *)((struct mdesc *)heap1)->heapinfo - (char *)s_heap)));
131   heapinfo2 = (malloc_info *)((char *)heap2 + ((uintptr_t)((char *)((struct mdesc *)heap2)->heapinfo - (char *)s_heap)));
132
133   heapsize1 = heap1->heapsize;
134   heapsize2 = heap2->heapsize;
135
136   to_ignore1 = i1;
137   to_ignore2 = i2;
138
139   if(MC_is_active()){
140     MC_ignore_data_bss(&heaplimit, sizeof(heaplimit));
141     MC_ignore_data_bss(&s_heap, sizeof(s_heap));
142     MC_ignore_data_bss(&heapbase1, sizeof(heapbase1));
143     MC_ignore_data_bss(&heapbase2, sizeof(heapbase2));
144     MC_ignore_data_bss(&heapinfo1, sizeof(heapinfo1));
145     MC_ignore_data_bss(&heapinfo2, sizeof(heapinfo2));
146     MC_ignore_data_bss(&heapsize1, sizeof(heapsize1));
147     MC_ignore_data_bss(&heapsize2, sizeof(heapsize2));
148     MC_ignore_data_bss(&to_ignore1, sizeof(to_ignore1));
149     MC_ignore_data_bss(&to_ignore2, sizeof(to_ignore2));
150   }
151 }
152
153 int mmalloc_compare_heap(xbt_mheap_t heap1, xbt_mheap_t heap2){
154
155   if(heap1 == NULL && heap1 == NULL){
156     XBT_DEBUG("Malloc descriptors null");
157     return 0;
158   }
159
160   if(heap1->heaplimit != heap2->heaplimit){
161     XBT_DEBUG("Different limit of valid info table indices");
162     return 1;
163   }
164
165   /* Start comparison */
166   size_t i1, i2, j1, j2, k;
167   size_t current_block = -1;    /* avoid "maybe uninitialized" warning */
168   size_t current_fragment;
169   void *addr_block1, *addr_block2, *addr_frag1, *addr_frag2;
170   int nb_diff1 = 0, nb_diff2 = 0;
171
172   xbt_dynar_t previous = xbt_dynar_new(sizeof(heap_area_pair_t), heap_area_pair_free_voidp);
173
174   int equal, res_compare = 0;
175
176   /* Check busy blocks*/
177
178   i1 = 1;
179
180   while(i1 <= heaplimit){
181
182     current_block = i1;
183
184     if(heapinfo1[i1].type == -1){ /* Free block */
185       i1++;
186       continue;
187     }
188
189     addr_block1 = ((void*) (((ADDR2UINT(i1)) - 1) * BLOCKSIZE + (char*)((xbt_mheap_t)s_heap)->heapbase));
190
191     if(heapinfo1[i1].type == 0){  /* Large block */
192       
193       if(is_stack(addr_block1)){
194         for(k=0; k < heapinfo1[i1].busy_block.size; k++)
195           heapinfo1[i1+k].busy_block.equal_to = new_heap_area(i1, -1);
196         for(k=0; k < heapinfo2[i1].busy_block.size; k++)
197           heapinfo2[i1+k].busy_block.equal_to = new_heap_area(i1, -1);
198         i1 = i1 + heapinfo1[current_block].busy_block.size;
199         continue;
200       }
201
202       if(heapinfo1[i1].busy_block.equal_to != NULL){
203         i1++;
204         continue;
205       }
206     
207       i2 = 1;
208       equal = 0;
209       res_compare = 0;
210   
211       /* Try first to associate to same block in the other heap */
212       if(heapinfo2[current_block].type == heapinfo1[current_block].type){
213
214         if(heapinfo2[current_block].busy_block.equal_to == NULL){  
215         
216           addr_block2 = ((void*) (((ADDR2UINT(current_block)) - 1) * BLOCKSIZE + (char*)((xbt_mheap_t)s_heap)->heapbase));
217         
218           res_compare = compare_area(addr_block1, addr_block2, previous);
219         
220           if(res_compare == 0){
221             for(k=1; k < heapinfo2[current_block].busy_block.size; k++)
222               heapinfo2[current_block+k].busy_block.equal_to = new_heap_area(i1, -1);
223             for(k=1; k < heapinfo1[current_block].busy_block.size; k++)
224               heapinfo1[current_block+k].busy_block.equal_to = new_heap_area(i1, -1);
225             equal = 1;
226             match_equals(previous);
227             i1 = i1 + heapinfo1[current_block].busy_block.size;
228           }
229         
230           xbt_dynar_reset(previous);
231         
232         }
233         
234       }
235
236       while(i2 <= heaplimit && !equal){
237
238         addr_block2 = ((void*) (((ADDR2UINT(i2)) - 1) * BLOCKSIZE + (char*)((xbt_mheap_t)s_heap)->heapbase));        
239            
240         if(i2 == current_block){
241           i2++;
242           continue;
243         }
244
245         if(heapinfo2[i2].type != 0){
246           i2++;
247           continue;
248         }
249
250         if(heapinfo2[i2].busy_block.equal_to != NULL){         
251           i2++;
252           continue;
253         }
254         
255         res_compare = compare_area(addr_block1, addr_block2, previous);
256         
257         if(res_compare == 0){
258           for(k=1; k < heapinfo2[i2].busy_block.size; k++)
259             heapinfo2[i2+k].busy_block.equal_to = new_heap_area(i1, -1);
260           for(k=1; k < heapinfo1[i1].busy_block.size; k++)
261             heapinfo1[i1+k].busy_block.equal_to = new_heap_area(i2, -1);
262           equal = 1;
263           match_equals(previous);
264           i1 = i1 + heapinfo1[i1].busy_block.size;
265         }
266
267         xbt_dynar_reset(previous);
268
269         i2++;
270
271       }
272
273       if(!equal){
274         XBT_DEBUG("Block %zu not found (size_used = %zu, addr = %p)", i1, heapinfo1[i1].busy_block.busy_size, addr_block1);
275         i1 = heaplimit + 1;
276         nb_diff1++;
277       }
278       
279     }else{ /* Fragmented block */
280
281       for(j1=0; j1 < (size_t) (BLOCKSIZE >> heapinfo1[i1].type); j1++){
282
283         current_fragment = j1;
284
285         if(heapinfo1[i1].busy_frag.frag_size[j1] == -1) /* Free fragment */
286           continue;
287
288         if(heapinfo1[i1].busy_frag.equal_to[j1] != NULL)
289           continue;
290
291         addr_frag1 = (void*) ((char *)addr_block1 + (j1 << heapinfo1[i1].type));
292
293         i2 = 1;
294         equal = 0;
295         
296         /* Try first to associate to same fragment in the other heap */
297         if(heapinfo2[current_block].type == heapinfo1[current_block].type){
298
299           if(heapinfo2[current_block].busy_frag.equal_to[current_fragment] == NULL){  
300           
301             addr_block2 = ((void*) (((ADDR2UINT(current_block)) - 1) * BLOCKSIZE + (char*)((xbt_mheap_t)s_heap)->heapbase));
302             addr_frag2 = (void*) ((char *)addr_block2 + (current_fragment << ((xbt_mheap_t)s_heap)->heapinfo[current_block].type));
303
304             res_compare = compare_area(addr_frag1, addr_frag2, previous);
305
306             if(res_compare == 0){
307               equal = 1;
308               match_equals(previous);
309             }
310         
311             xbt_dynar_reset(previous);
312
313             }
314         }
315
316         while(i2 <= heaplimit && !equal){
317
318           
319           if(heapinfo2[i2].type <= 0){
320             i2++;
321             continue;
322           }
323
324           for(j2=0; j2 < (size_t) (BLOCKSIZE >> heapinfo2[i2].type); j2++){
325
326             if(heapinfo2[i2].type == heapinfo1[i1].type && i2 == current_block && j2 == current_fragment)
327               continue;
328
329             if(heapinfo2[i2].busy_frag.equal_to[j2] != NULL)                
330               continue;            
331                           
332             addr_block2 = ((void*) (((ADDR2UINT(i2)) - 1) * BLOCKSIZE + (char*)((xbt_mheap_t)s_heap)->heapbase));
333             addr_frag2 = (void*) ((char *)addr_block2 + (j2 << ((xbt_mheap_t)s_heap)->heapinfo[i2].type));
334
335             res_compare = compare_area(addr_frag1, addr_frag2, previous);
336             
337             if(res_compare == 0){
338               equal = 1;
339               match_equals(previous);
340               xbt_dynar_reset(previous);
341               break;
342             }
343
344             xbt_dynar_reset(previous);
345
346           }
347
348           i2++;
349
350         }
351
352         if(heapinfo1[i1].busy_frag.equal_to[j1] == NULL){
353           XBT_DEBUG("Block %zu, fragment %zu not found (size_used = %zd, address = %p, ignore %d)", i1, j1, heapinfo1[i1].busy_frag.frag_size[j1], addr_frag1, heapinfo1[i1].busy_frag.ignore[j1]);
354           i2 = heaplimit + 1;
355           i1 = heaplimit + 1;
356           nb_diff1++;
357           break;
358         }
359
360       }
361
362       i1++;
363       
364     }
365
366   }
367
368   /* All blocks/fragments are equal to another block/fragment ? */
369   size_t i = 1, j = 0;
370   void *real_addr_frag1 = NULL, *real_addr_block1 = NULL, *real_addr_block2 = NULL, *real_addr_frag2 = NULL;
371  
372   while(i<=heaplimit){
373     if(heapinfo1[i].type == 0){
374       if(current_block == heaplimit){
375         if(heapinfo1[i].busy_block.busy_size > 0){
376           if(heapinfo1[i].busy_block.equal_to == NULL){
377             if(XBT_LOG_ISENABLED(mm_diff, xbt_log_priority_debug)){
378               addr_block1 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase1));
379               XBT_DEBUG("Block %zu (%p) not found (size used = %zu)", i, addr_block1, heapinfo1[i].busy_block.busy_size);
380               //mmalloc_backtrace_block_display((void*)heapinfo1, i);
381             }
382             nb_diff1++;
383           }
384         }
385       }
386     }
387     if(heapinfo1[i].type > 0){
388       addr_block1 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase1));
389       real_addr_block1 =  ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)((struct mdesc *)s_heap)->heapbase));
390       for(j=0; j < (size_t) (BLOCKSIZE >> heapinfo1[i].type); j++){
391         if(current_block == heaplimit){
392           if(heapinfo1[i].busy_frag.frag_size[j] > 0){
393             if(heapinfo1[i].busy_frag.equal_to[j] == NULL){
394               if(XBT_LOG_ISENABLED(mm_diff, xbt_log_priority_debug)){
395                 addr_frag1 = (void*) ((char *)addr_block1 + (j << heapinfo1[i].type));
396                 real_addr_frag1 = (void*) ((char *)real_addr_block1 + (j << ((struct mdesc *)s_heap)->heapinfo[i].type));
397                 XBT_DEBUG("Block %zu, Fragment %zu (%p - %p) not found (size used = %zd)", i, j, addr_frag1, real_addr_frag1, heapinfo1[i].busy_frag.frag_size[j]);
398                 //mmalloc_backtrace_fragment_display((void*)heapinfo1, i, j);
399               }
400               nb_diff1++;
401             }
402           }
403         }
404       }
405     }
406     i++; 
407   }
408
409   if(current_block == heaplimit)
410     XBT_DEBUG("Number of blocks/fragments not found in heap1 : %d", nb_diff1);
411
412   i = 1;
413
414   while(i<=heaplimit){
415     if(heapinfo2[i].type == 0){
416       if(current_block == heaplimit){
417         if(heapinfo2[i].busy_block.busy_size > 0){
418           if(heapinfo2[i].busy_block.equal_to == NULL){
419             if(XBT_LOG_ISENABLED(mm_diff, xbt_log_priority_debug)){
420               addr_block2 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase2));
421               XBT_DEBUG("Block %zu (%p) not found (size used = %zu)", i, addr_block2, heapinfo2[i].busy_block.busy_size);
422               //mmalloc_backtrace_block_display((void*)heapinfo2, i);
423             }
424             nb_diff2++;
425           }
426         }
427       }
428     }
429     if(heapinfo2[i].type > 0){
430       addr_block2 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase2));
431       real_addr_block2 =  ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)((struct mdesc *)s_heap)->heapbase));
432       for(j=0; j < (size_t) (BLOCKSIZE >> heapinfo2[i].type); j++){
433         if(current_block == heaplimit){
434           if(heapinfo2[i].busy_frag.frag_size[j] > 0){
435             if(heapinfo2[i].busy_frag.equal_to[j] == NULL){
436               if(XBT_LOG_ISENABLED(mm_diff, xbt_log_priority_debug)){
437                 addr_frag2 = (void*) ((char *)addr_block2 + (j << heapinfo2[i].type));
438                 real_addr_frag2 = (void*) ((char *)real_addr_block2 + (j << ((struct mdesc *)s_heap)->heapinfo[i].type));
439                 XBT_DEBUG( "Block %zu, Fragment %zu (%p - %p) not found (size used = %zd)", i, j, addr_frag2, real_addr_frag2, heapinfo2[i].busy_frag.frag_size[j]);
440                 //mmalloc_backtrace_fragment_display((void*)heapinfo2, i, j);
441               }
442               nb_diff2++;
443             }
444           }
445         }
446       }
447     }
448     i++; 
449   }
450
451   if(current_block == heaplimit)
452     XBT_DEBUG("Number of blocks/fragments not found in heap2 : %d", nb_diff2);
453
454   xbt_dynar_free(&previous);
455   real_addr_frag1 = NULL, real_addr_block1 = NULL, real_addr_block2 = NULL, real_addr_frag2 = NULL;
456
457   return ((nb_diff1 > 0) || (nb_diff2 > 0));
458 }
459
460 void reset_heap_information(){
461
462   size_t i = 0, j;
463
464   while(i<=heaplimit){
465     if(heapinfo1[i].type == 0){
466       xbt_free(heapinfo1[i].busy_block.equal_to);
467       heapinfo1[i].busy_block.equal_to = NULL;
468     }
469     if(heapinfo1[i].type > 0){
470       for(j=0; j < (size_t) (BLOCKSIZE >> heapinfo1[i].type); j++){
471         xbt_free(heapinfo1[i].busy_frag.equal_to[j]);
472         heapinfo1[i].busy_frag.equal_to[j] = NULL;
473       }
474     }
475     i++; 
476   }
477
478   i = 0;
479
480   while(i<=heaplimit){
481     if(heapinfo2[i].type == 0){
482       xbt_free(heapinfo2[i].busy_block.equal_to);
483       heapinfo2[i].busy_block.equal_to = NULL;
484     }
485     if(heapinfo2[i].type > 0){
486       for(j=0; j < (size_t) (BLOCKSIZE >> heapinfo2[i].type); j++){
487         xbt_free(heapinfo2[i].busy_frag.equal_to[j]);
488         heapinfo2[i].busy_frag.equal_to[j] = NULL;
489       }
490     }
491     i++; 
492   }
493
494   s_heap = NULL, heapbase1 = NULL, heapbase2 = NULL;
495   heapinfo1 = NULL, heapinfo2 = NULL;
496   heaplimit = 0, heapsize1 = 0, heapsize2 = 0;
497   to_ignore1 = NULL, to_ignore2 = NULL;
498
499 }
500
501 static heap_area_t new_heap_area(int block, int fragment){
502   heap_area_t area = NULL;
503   area = xbt_new0(s_heap_area_t, 1);
504   area->block = block;
505   area->fragment = fragment;
506   return area;
507 }
508
509
510 static size_t heap_comparison_ignore_size(xbt_dynar_t ignore_list, void *address){
511
512   unsigned int cursor = 0;
513   int start = 0;
514   int end = xbt_dynar_length(ignore_list) - 1;
515   mc_heap_ignore_region_t region;
516
517   while(start <= end){
518     cursor = (start + end) / 2;
519     region = (mc_heap_ignore_region_t)xbt_dynar_get_as(ignore_list, cursor, mc_heap_ignore_region_t);
520     if(region->address == address)
521       return region->size;
522     if(region->address < address)
523       start = cursor + 1;
524     if(region->address > address)
525       end = cursor - 1;   
526   }
527
528   return 0;
529 }
530
531
532 int compare_area(void *area1, void* area2, xbt_dynar_t previous){ /* Return code : 0 = equal, 1 = same size but different bytes, 2 = different size used */
533
534   size_t i = 0, pointer_align = 0, ignore1 = 0, ignore2 = 0;
535   void *addr_pointed1, *addr_pointed2;
536   int res_compare;
537   size_t block1, frag1, block2, frag2;
538   ssize_t size;
539   int check_ignore = 0;
540   int j;
541
542   void *addr_block1, *addr_block2, *addr_frag1, *addr_frag2;
543   void *area1_to_compare, *area2_to_compare;
544
545   int match_pairs = 0;
546
547   if(previous == NULL){
548     previous = xbt_dynar_new(sizeof(heap_area_pair_t), heap_area_pair_free_voidp);
549     match_pairs = 1;
550   }
551
552   block1 = ((char*)area1 - (char*)((xbt_mheap_t)s_heap)->heapbase) / BLOCKSIZE + 1;
553   block2 = ((char*)area2 - (char*)((xbt_mheap_t)s_heap)->heapbase) / BLOCKSIZE + 1;
554
555   if(is_block_stack((int)block1) && is_block_stack((int)block2)){
556     add_heap_area_pair(previous, block1, -1, block2, -1);
557     if(match_pairs){
558       match_equals(previous);
559       xbt_dynar_free(&previous);
560     }
561     return 0;
562   }
563
564   if(((char *)area1 < (char*)((xbt_mheap_t)s_heap)->heapbase)  || (block1 > heapsize1) || (block1 < 1) || ((char *)area2 < (char*)((xbt_mheap_t)s_heap)->heapbase) || (block2 > heapsize2) || (block2 < 1)){
565     if(match_pairs){
566       xbt_dynar_free(&previous);
567     }
568     return 1;
569   }
570
571   addr_block1 = ((void*) (((ADDR2UINT(block1)) - 1) * BLOCKSIZE + (char*)heapbase1));
572   addr_block2 = ((void*) (((ADDR2UINT(block2)) - 1) * BLOCKSIZE + (char*)heapbase2));
573   
574   if(heapinfo1[block1].type == heapinfo2[block2].type){
575     
576     if(heapinfo1[block1].type == -1){
577       if(match_pairs){
578         match_equals(previous);
579         xbt_dynar_free(&previous);
580       }
581       return 0;
582     }else if(heapinfo1[block1].type == 0){
583
584       if(heapinfo1[block1].busy_block.equal_to != NULL || heapinfo2[block2].busy_block.equal_to != NULL){
585         if(equal_blocks(block1, block2)){
586           if(match_pairs){
587             match_equals(previous);
588             xbt_dynar_free(&previous);
589           }
590           return 0;
591         }else{
592           if(match_pairs){
593             xbt_dynar_free(&previous);
594           }
595           return 1;
596         }
597       }
598       if(heapinfo1[block1].busy_block.size != heapinfo2[block2].busy_block.size){
599         if(match_pairs){
600           xbt_dynar_free(&previous);
601         }
602         return 1;
603       }
604       if(heapinfo1[block1].busy_block.busy_size != heapinfo2[block2].busy_block.busy_size){
605         if(match_pairs){
606           xbt_dynar_free(&previous);
607         }
608         return 2;
609       }
610       if(!add_heap_area_pair(previous, block1, -1, block2, -1)){
611         if(match_pairs){
612           match_equals(previous);
613           xbt_dynar_free(&previous);
614         }
615         return 0;
616       }
617  
618       size = heapinfo1[block1].busy_block.busy_size;
619       frag1 = -1;
620       frag2 = -1;
621
622       area1_to_compare = addr_block1;
623       area2_to_compare = addr_block2;
624
625       if(heapinfo1[block1].busy_block.ignore == 1 || heapinfo2[block2].busy_block.ignore == 1)
626         check_ignore = 1;
627       
628     }else{
629       frag1 = ((uintptr_t) (ADDR2UINT (area1) % (BLOCKSIZE))) >> heapinfo1[block1].type;
630       frag2 = ((uintptr_t) (ADDR2UINT (area2) % (BLOCKSIZE))) >> heapinfo2[block2].type;
631       
632       addr_frag1 = (void*) ((char *)addr_block1 + (frag1 << heapinfo1[block1].type));
633       addr_frag2 = (void*) ((char *)addr_block2 + (frag2 << heapinfo2[block2].type));
634       
635       area1_to_compare = addr_frag1;
636       area2_to_compare = addr_frag2;
637
638       if(heapinfo1[block1].busy_frag.equal_to[frag1] != NULL || heapinfo2[block2].busy_frag.equal_to[frag2] != NULL){
639         if(equal_fragments(block1, frag1, block2, frag2)){
640           if(match_pairs){
641             match_equals(previous);
642             xbt_dynar_free(&previous);
643           }
644           return 0;
645         }else{
646           if(match_pairs){
647             xbt_dynar_free(&previous);
648           }
649           return 1;
650         }
651       }
652
653       if(heapinfo1[block1].busy_frag.frag_size[frag1] != heapinfo2[block2].busy_frag.frag_size[frag2]){
654         if(match_pairs){
655           xbt_dynar_free(&previous);
656         }
657         return 2;  
658       }
659       
660       if(!add_heap_area_pair(previous, block1, frag1, block2, frag2)){
661         if(match_pairs){
662           match_equals(previous);
663           xbt_dynar_free(&previous);
664         }
665         return 0;
666       }
667
668       size = heapinfo1[block1].busy_frag.frag_size[frag1];
669
670       if(size == -1){
671         if(match_pairs){
672           match_equals(previous);
673           xbt_dynar_free(&previous);
674         }
675         return 0;
676       }
677       
678       if(heapinfo1[block1].busy_frag.ignore[frag1] == 1 || heapinfo2[block2].busy_frag.ignore[frag2] == 1)
679         check_ignore = 1;
680       
681     }
682   }else if((heapinfo1[block1].type > 0) && (heapinfo2[block2].type > 0)){
683
684     frag1 = ((uintptr_t) (ADDR2UINT (area1) % (BLOCKSIZE))) >> heapinfo1[block1].type;
685     frag2 = ((uintptr_t) (ADDR2UINT (area2) % (BLOCKSIZE))) >> heapinfo2[block2].type;
686
687     if(heapinfo1[block1].busy_frag.equal_to[frag1] != NULL || heapinfo2[block2].busy_frag.equal_to[frag2] != NULL){
688       if(equal_fragments(block1, frag1, block2, frag2)){
689         if(match_pairs){
690           match_equals(previous);
691           xbt_dynar_free(&previous);
692         }
693         return 0;
694       }else{
695         if(match_pairs){
696           xbt_dynar_free(&previous);
697         }
698         return 1;
699       }
700     }
701
702     if(heapinfo1[block1].busy_frag.frag_size[frag1] != heapinfo2[block2].busy_frag.frag_size[frag2]){
703       if(match_pairs){
704         xbt_dynar_free(&previous);
705       }
706       return 2;
707     }
708     
709     if(!add_heap_area_pair(previous, block1, frag1, block2, frag2)){
710       if(match_pairs){
711         match_equals(previous);
712         xbt_dynar_free(&previous);
713       }
714       return 0;
715     }
716
717     addr_frag1 = (void*) ((char *)addr_block1 + (frag1 << heapinfo1[block1].type));
718     addr_frag2 = (void*) ((char *)addr_block2 + (frag2 << heapinfo2[block2].type));
719
720     area1_to_compare = addr_frag1;
721     area2_to_compare = addr_frag2;
722       
723     size = heapinfo1[block1].busy_frag.frag_size[frag1];
724
725     if(size == -1){
726       if(match_pairs){
727         xbt_dynar_free(&previous);
728       }
729       return 0;
730     }
731
732     if(heapinfo1[block1].busy_frag.ignore[frag1] == 1 || heapinfo2[block2].busy_frag.ignore[frag2] == 1)
733       check_ignore = 1;   
734     
735   }else{
736     if(match_pairs){
737       xbt_dynar_free(&previous);
738     }
739     return 1;
740   }
741   
742   while(i<size){
743
744     if(check_ignore){
745       if((ignore1 = heap_comparison_ignore_size(to_ignore1, (char *)area1 + i)) > 0){
746         if((ignore2 = heap_comparison_ignore_size(to_ignore2, (char *)area2 + i))  == ignore1){
747           i = i + ignore2;
748           continue;
749         }
750       }
751     }
752
753     pointer_align = (i / sizeof(void*)) * sizeof(void*);
754     addr_pointed1 = *((void **)((char *)area1_to_compare + pointer_align));
755     addr_pointed2 = *((void **)((char *)area2_to_compare + pointer_align));
756
757     if(addr_pointed1 > maestro_stack_start && addr_pointed1 < maestro_stack_end && addr_pointed2 > maestro_stack_start && addr_pointed2 < maestro_stack_end){
758       i = pointer_align + sizeof(void *);
759       continue;
760     }else if((addr_pointed1 > s_heap) && ((char *)addr_pointed1 < (char *)s_heap + STD_HEAP_SIZE) 
761            && (addr_pointed2 > s_heap) && ((char *)addr_pointed2 < (char *)s_heap + STD_HEAP_SIZE)){
762       res_compare = compare_area(addr_pointed1, addr_pointed2, previous);
763       if(res_compare != 0)
764         return res_compare;
765     }else{
766       j=0;
767       while(j<sizeof(void*) && (i + j) < size){
768         if(memcmp(((char *)area1_to_compare) + i + j, ((char *)area2_to_compare) + i + j , 1) != 0)
769           return 1;
770         j++;
771       }
772     }
773
774     i = pointer_align + sizeof(void *);
775   }
776
777   if(match_pairs){
778     match_equals(previous);
779   }
780
781   return 0;
782   
783
784 }
785
786 static void heap_area_pair_free(heap_area_pair_t pair){
787   xbt_free(pair);
788   pair = NULL;
789 }
790
791 static void heap_area_pair_free_voidp(void *d)
792 {
793   heap_area_pair_free((heap_area_pair_t) * (void **) d);
794 }
795
796 static int add_heap_area_pair(xbt_dynar_t list, int block1, int fragment1, int block2, int fragment2){
797
798   if(is_new_heap_area_pair(list, block1, fragment1, block2, fragment2)){
799     heap_area_pair_t pair = NULL;
800     pair = xbt_new0(s_heap_area_pair_t, 1);
801     pair->block1 = block1;
802     pair->fragment1 = fragment1;
803     pair->block2 = block2;
804     pair->fragment2 = fragment2;
805     
806     xbt_dynar_push(list, &pair); 
807
808     return 1;
809   }
810
811   return 0;
812 }
813  
814 static int is_new_heap_area_pair(xbt_dynar_t list, int block1, int fragment1, int block2, int fragment2){
815   
816   unsigned int cursor = 0;
817   heap_area_pair_t current_pair;
818
819   xbt_dynar_foreach(list, cursor, current_pair){
820     if(current_pair->block1 == block1 && current_pair->block2 == block2 && current_pair->fragment1 == fragment1 && current_pair->fragment2 == fragment2)
821       return 0; 
822   }
823   
824   return 1;
825 }
826
827
828 void match_equals(xbt_dynar_t list){
829
830   unsigned int cursor = 0;
831   heap_area_pair_t current_pair;
832   heap_area_t previous_area;
833
834   xbt_dynar_foreach(list, cursor, current_pair){
835
836     if(current_pair->fragment1 != -1){
837       
838       if(heapinfo1[current_pair->block1].busy_frag.equal_to[current_pair->fragment1] != NULL){    
839         previous_area = heapinfo1[current_pair->block1].busy_frag.equal_to[current_pair->fragment1];
840         xbt_free(heapinfo2[previous_area->block].busy_frag.equal_to[previous_area->fragment]);
841         heapinfo2[previous_area->block].busy_frag.equal_to[previous_area->fragment] = NULL;
842         xbt_free(previous_area); 
843       }
844       if(heapinfo2[current_pair->block2].busy_frag.equal_to[current_pair->fragment2] != NULL){        
845         previous_area = heapinfo2[current_pair->block2].busy_frag.equal_to[current_pair->fragment2];
846         xbt_free(heapinfo1[previous_area->block].busy_frag.equal_to[previous_area->fragment]);
847         heapinfo1[previous_area->block].busy_frag.equal_to[previous_area->fragment] = NULL;
848         xbt_free(previous_area);
849       }
850
851       heapinfo1[current_pair->block1].busy_frag.equal_to[current_pair->fragment1] = new_heap_area(current_pair->block2, current_pair->fragment2);
852       heapinfo2[current_pair->block2].busy_frag.equal_to[current_pair->fragment2] = new_heap_area(current_pair->block1, current_pair->fragment1);
853
854     }else{
855
856       if(heapinfo1[current_pair->block1].busy_block.equal_to != NULL){
857         previous_area = heapinfo1[current_pair->block1].busy_block.equal_to;
858         xbt_free(heapinfo2[previous_area->block].busy_block.equal_to);
859         heapinfo2[previous_area->block].busy_block.equal_to = NULL; 
860         xbt_free(previous_area);
861       }
862       if(heapinfo2[current_pair->block2].busy_block.equal_to != NULL){
863         previous_area = heapinfo2[current_pair->block2].busy_block.equal_to;
864         xbt_free(heapinfo1[previous_area->block].busy_block.equal_to);
865         heapinfo1[previous_area->block].busy_block.equal_to = NULL;
866         xbt_free(previous_area);
867       }
868
869       heapinfo1[current_pair->block1].busy_block.equal_to = new_heap_area(current_pair->block2, current_pair->fragment2);
870       heapinfo2[current_pair->block2].busy_block.equal_to = new_heap_area(current_pair->block1, current_pair->fragment1);
871
872     }
873   }
874
875 }
876
877 #ifndef max
878 #define max( a, b ) ( ((a) > (b)) ? (a) : (b) )
879 #endif
880
881 int mmalloc_linear_compare_heap(xbt_mheap_t heap1, xbt_mheap_t heap2){
882
883   if(heap1 == NULL && heap1 == NULL){
884     XBT_DEBUG("Malloc descriptors null");
885     return 0;
886   }
887
888   if(heap1->heaplimit != heap2->heaplimit){
889     XBT_DEBUG("Different limit of valid info table indices");
890     return 1;
891   }
892
893   /* Heap information */
894   heaplimit = ((struct mdesc *)heap1)->heaplimit;
895
896   s_heap = (char *)mmalloc_get_current_heap() - STD_HEAP_SIZE - getpagesize();
897
898   heapbase1 = (char *)heap1 + BLOCKSIZE;
899   heapbase2 = (char *)heap2 + BLOCKSIZE;
900
901   heapinfo1 = (malloc_info *)((char *)heap1 + ((uintptr_t)((char *)heap1->heapinfo - (char *)s_heap)));
902   heapinfo2 = (malloc_info *)((char *)heap2 + ((uintptr_t)((char *)heap2->heapinfo - (char *)s_heap)));
903
904   heapsize1 = heap1->heapsize;
905   heapsize2 = heap2->heapsize;
906
907   /* Start comparison */
908   size_t i, j, k;
909   void *addr_block1, *addr_block2, *addr_frag1, *addr_frag2;
910
911   int distance = 0;
912
913   /* Check busy blocks*/
914
915   i = 1;
916
917   while(i <= heaplimit){
918
919     addr_block1 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase1));
920     addr_block2 = ((void*) (((ADDR2UINT(i)) - 1) * BLOCKSIZE + (char*)heapbase2));
921
922     if(heapinfo1[i].type != heapinfo2[i].type){
923   
924       distance += BLOCKSIZE;
925       XBT_DEBUG("Different type of blocks (%zu) : %d - %d -> distance = %d", i, heapinfo1[i].type, heapinfo2[i].type, distance);
926       i++;
927     
928     }else{
929
930       if(heapinfo1[i].type == -1){ /* Free block */
931         i++;
932         continue;
933       }
934
935       if(heapinfo1[i].type == 0){ /* Large block */
936        
937         if(heapinfo1[i].busy_block.size != heapinfo2[i].busy_block.size){
938           distance += BLOCKSIZE * max(heapinfo1[i].busy_block.size, heapinfo2[i].busy_block.size);
939           i += max(heapinfo1[i].busy_block.size, heapinfo2[i].busy_block.size);
940           XBT_DEBUG("Different larger of cluster at block %zu : %zu - %zu -> distance = %d", i, heapinfo1[i].busy_block.size, heapinfo2[i].busy_block.size, distance);
941           continue;
942         }
943
944         /*if(heapinfo1[i].busy_block.busy_size != heapinfo2[i].busy_block.busy_size){
945           distance += max(heapinfo1[i].busy_block.busy_size, heapinfo2[i].busy_block.busy_size);
946           i += max(heapinfo1[i].busy_block.size, heapinfo2[i].busy_block.size);
947           XBT_DEBUG("Different size used oin large cluster at block %zu : %zu - %zu -> distance = %d", i, heapinfo1[i].busy_block.busy_size, heapinfo2[i].busy_block.busy_size, distance);
948           continue;
949           }*/
950
951         k = 0;
952
953         //while(k < (heapinfo1[i].busy_block.busy_size)){
954         while(k < heapinfo1[i].busy_block.size * BLOCKSIZE){
955           if(memcmp((char *)addr_block1 + k, (char *)addr_block2 + k, 1) != 0){
956             distance ++;
957           }
958           k++;
959         } 
960
961         i++;
962
963       }else { /* Fragmented block */
964
965         for(j=0; j < (size_t) (BLOCKSIZE >> heapinfo1[i].type); j++){
966
967           addr_frag1 = (void*) ((char *)addr_block1 + (j << heapinfo1[i].type));
968           addr_frag2 = (void*) ((char *)addr_block2 + (j << heapinfo2[i].type));
969
970           if(heapinfo1[i].busy_frag.frag_size[j] == 0 && heapinfo2[i].busy_frag.frag_size[j] == 0){
971             continue;
972           }
973           
974           
975           /*if(heapinfo1[i].busy_frag.frag_size[j] != heapinfo2[i].busy_frag.frag_size[j]){
976             distance += max(heapinfo1[i].busy_frag.frag_size[j], heapinfo2[i].busy_frag.frag_size[j]);
977             XBT_DEBUG("Different size used in fragment %zu in block %zu : %d - %d -> distance = %d", j, i, heapinfo1[i].busy_frag.frag_size[j], heapinfo2[i].busy_frag.frag_size[j], distance); 
978             continue;
979             }*/
980    
981           k=0;
982
983           //while(k < max(heapinfo1[i].busy_frag.frag_size[j], heapinfo2[i].busy_frag.frag_size[j])){
984           while(k < (BLOCKSIZE / (BLOCKSIZE >> heapinfo1[i].type))){
985             if(memcmp((char *)addr_frag1 + k, (char *)addr_frag2 + k, 1) != 0){
986               distance ++;
987             }
988             k++;
989           }
990
991         }
992
993         i++;
994
995       }
996       
997     }
998
999   }
1000
1001   return distance;
1002   
1003 }
1004
1005 static int is_stack(void *address){
1006   unsigned int cursor = 0;
1007   stack_region_t stack;
1008
1009   xbt_dynar_foreach(stacks_areas, cursor, stack){
1010     if(address == stack->address)
1011       return 1;
1012   }
1013
1014   return 0;
1015 }
1016
1017 static int is_block_stack(int block){
1018   unsigned int cursor = 0;
1019   stack_region_t stack;
1020
1021   xbt_dynar_foreach(stacks_areas, cursor, stack){
1022     if(block == stack->block)
1023       return 1;
1024   }
1025
1026   return 0;
1027 }
1028
1029 static void add_heap_equality(xbt_dynar_t equals, void *a1, void *a2){
1030   
1031   if(xbt_dynar_is_empty(equals)){
1032
1033     heap_equality_t he = xbt_new0(s_heap_equality_t, 1);
1034     he->address1 = a1;
1035     he->address2 = a2;
1036
1037     xbt_dynar_insert_at(equals, 0, &he);
1038   
1039   }else{
1040
1041     unsigned int cursor = 0;
1042     int start = 0;
1043     int end = xbt_dynar_length(equals) - 1;
1044     heap_equality_t current_equality = NULL;
1045
1046     while(start <= end){
1047       cursor = (start + end) / 2;
1048       current_equality = (heap_equality_t)xbt_dynar_get_as(equals, cursor, heap_equality_t);
1049       if(current_equality->address1 == a1){
1050         if(current_equality->address2 == a2)
1051           return;
1052         if(current_equality->address2 < a2)
1053           start = cursor + 1;
1054         if(current_equality->address2 > a2)
1055           end = cursor - 1;
1056       }
1057       if(current_equality->address1 < a1)
1058         start = cursor + 1;
1059       if(current_equality->address1 > a1)
1060         end = cursor - 1; 
1061     }
1062
1063     heap_equality_t he = xbt_new0(s_heap_equality_t, 1);
1064     he->address1 = a1;
1065     he->address2 = a2;
1066   
1067     if(current_equality->address1 < a1)
1068       xbt_dynar_insert_at(equals, cursor + 1 , &he);
1069     else
1070        xbt_dynar_insert_at(equals, cursor, &he); 
1071
1072   }
1073
1074 }
1075
1076 static void remove_heap_equality(xbt_dynar_t equals, int address, void *a){
1077   
1078   unsigned int cursor = 0;
1079   heap_equality_t current_equality;
1080   int found = 0;
1081
1082   if(address == 1){
1083
1084     int start = 0;
1085     int end = xbt_dynar_length(equals) - 1;
1086
1087
1088     while(start <= end && found == 0){
1089       cursor = (start + end) / 2;
1090       current_equality = (heap_equality_t)xbt_dynar_get_as(equals, cursor, heap_equality_t);
1091       if(current_equality->address1 == a)
1092         found = 1;
1093       if(current_equality->address1 < a)
1094         start = cursor + 1;
1095       if(current_equality->address1 > a)
1096         end = cursor - 1; 
1097     }
1098
1099     if(found == 1)
1100       xbt_dynar_remove_at(equals, cursor, NULL);
1101   
1102   }else{
1103
1104     xbt_dynar_foreach(equals, cursor, current_equality){
1105       if(current_equality->address2 == a){
1106         found = 1;
1107         break;
1108       }
1109     }
1110
1111     if(found == 1)
1112       xbt_dynar_remove_at(equals, cursor, NULL);
1113
1114   }
1115   
1116 }
1117
1118 int is_free_area(void *area, xbt_mheap_t heap){
1119
1120   void *sheap = (char *)mmalloc_get_current_heap() - STD_HEAP_SIZE - getpagesize();
1121   malloc_info *heapinfo = (malloc_info *)((char *)heap + ((uintptr_t)((char *)heap->heapinfo - (char *)sheap)));
1122   size_t heapsize = heap->heapsize;
1123
1124   /* Get block number */ 
1125   size_t block = ((char*)area - (char*)((xbt_mheap_t)sheap)->heapbase) / BLOCKSIZE + 1;
1126   size_t fragment;
1127
1128   /* Check if valid block number */
1129   if((char *)area < (char*)((xbt_mheap_t)sheap)->heapbase || block > heapsize || block < 1)
1130     return 0;
1131
1132   if(heapinfo[block].type < 0)
1133     return 1;
1134
1135   if(heapinfo[block].type == 0)
1136     return 0;
1137
1138   if(heapinfo[block].type > 0){
1139     fragment = ((uintptr_t) (ADDR2UINT(area) % (BLOCKSIZE))) >> heapinfo[block].type;
1140     if(heapinfo[block].busy_frag.frag_size[fragment] == 0)
1141       return 1;  
1142   }
1143
1144   return 0;
1145  
1146 }
1147
1148 static int equal_blocks(int b1, int b2){
1149   if(heapinfo1[b1].busy_block.equal_to != NULL){
1150     if(heapinfo2[b2].busy_block.equal_to != NULL){
1151       if(((heap_area_t)(heapinfo1[b1].busy_block.equal_to))->block == b2 && ((heap_area_t)(heapinfo2[b2].busy_block.equal_to))->block == b1)
1152         return 1;
1153     }
1154   }
1155   return 0;
1156 }
1157
1158 static int equal_fragments(int b1, int f1, int b2, int f2){
1159   if(heapinfo1[b1].busy_frag.equal_to[f1] != NULL){
1160     if(heapinfo2[b2].busy_frag.equal_to[f2] != NULL){
1161       if(((heap_area_t)(heapinfo1[b1].busy_frag.equal_to[f1]))->block == b2 && ((heap_area_t)(heapinfo2[b2].busy_frag.equal_to[f2]))->block == b1 && ((heap_area_t)(heapinfo1[b1].busy_frag.equal_to[f1]))->fragment == f2 && ((heap_area_t)(heapinfo2[b2].busy_frag.equal_to[f2]))->fragment == f1)
1162         return 1;
1163     }
1164   }
1165   return 0;
1166 }