Logo AND Algorithmique Numérique Distribuée

Public GIT Repository
[CMAKE] Indentation in CMakeLists.txt
[simgrid.git] / doc / doxygen / options.doc
1 /*! \page options Configure SimGrid
2
3 A number of options can be given at runtime to change the default
4 SimGrid behavior. For a complete list of all configuration options
5 accepted by the SimGrid version used in your simulator, simply pass
6 the --help configuration flag to your program. If some of the options
7 are not documented on this page, this is a bug that you should please
8 report so that we can fix it. Note that some of the options presented
9 here may not be available in your simulators, depending on the
10 @ref install_src_config "compile-time options" that you used.
11
12 \tableofcontents
13
14 \section options_using Passing configuration options to the simulators
15
16 There is several way to pass configuration options to the simulators.
17 The most common way is to use the \c --cfg command line argument. For
18 example, to set the item \c Item to the value \c Value, simply
19 type the following: \verbatim
20 my_simulator --cfg=Item:Value (other arguments)
21 \endverbatim
22
23 Several \c `--cfg` command line arguments can naturally be used. If you
24 need to include spaces in the argument, don't forget to quote the
25 argument. You can even escape the included quotes (write \' for ' if
26 you have your argument between ').
27
28 Another solution is to use the \c \<config\> tag in the platform file. The
29 only restriction is that this tag must occure before the first
30 platform element (be it \c \<AS\>, \c \<cluster\>, \c \<peer\> or whatever).
31 The \c \<config\> tag takes an \c id attribute, but it is currently
32 ignored so you don't really need to pass it. The important par is that
33 within that tag, you can pass one or several \c \<prop\> tags to specify
34 the configuration to use. For example, setting \c Item to \c Value
35 can be done by adding the following to the beginning of your platform
36 file:
37 \verbatim
38 <config>
39   <prop id="Item" value="Value"/>
40 </config>
41 \endverbatim
42
43 A last solution is to pass your configuration directly using the C
44 interface. If you happen to use the MSG interface, this is very easy
45 with the MSG_config() function. If you do not use MSG, that's a bit
46 more complex, as you have to mess with the internal configuration set
47 directly as follows. Check the \ref XBT_config "relevant page" for
48 details on all the functions you can use in this context, \c
49 _sg_cfg_set being the only configuration set currently used in
50 SimGrid.
51
52 @code
53 #include <xbt/config.h>
54
55 extern xbt_cfg_t _sg_cfg_set;
56
57 int main(int argc, char *argv[]) {
58      SD_init(&argc, argv);
59
60      /* Prefer MSG_config() if you use MSG!! */
61      xbt_cfg_set_parse(_sg_cfg_set,"Item:Value");
62
63      // Rest of your code
64 }
65 @endcode
66
67 \section options_model Configuring the platform models
68
69 \anchor options_storage_model
70 \anchor options_vm_model
71 \subsection options_model_select Selecting the platform models
72
73 SimGrid comes with several network, CPU and storage models built in, and you
74 can change the used model at runtime by changing the passed
75 configuration. The three main configuration items are given below.
76 For each of these items, passing the special \c help value gives
77 you a short description of all possible values. Also, \c --help-models
78 should provide information about all models for all existing resources.
79    - \b network/model: specify the used network model
80    - \b cpu/model: specify the used CPU model
81    - \b host/model: specify the used host model
82    - \b storage/model: specify the used storage model (there is currently only one such model - this option is hence only useful for future releases)
83    - \b vm/model: specify the model for virtual machines (there is currently only one such model - this option is hence only useful for future releases)
84
85 %As of writing, the following network models are accepted. Over
86 the time new models can be added, and some experimental models can be
87 removed; check the values on your simulators for an uptodate
88 information. Note that the CM02 model is described in the research report
89 <a href="ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR2002/RR2002-40.ps.gz">A
90 Network Model for Simulation of Grid Application</a> while LV08 is
91 described in
92 <a href="http://mescal.imag.fr/membres/arnaud.legrand/articles/simutools09.pdf">Accuracy Study and Improvement of Network Simulation in the SimGrid Framework</a>.
93
94   - \b LV08 (default one): Realistic network analytic model
95     (slow-start modeled by multiplying latency by 10.4, bandwidth by
96     .92; bottleneck sharing uses a payload of S=8775 for evaluating RTT)
97   - \anchor options_model_select_network_constant \b Constant: Simplistic network model where all communication
98     take a constant time (one second). This model provides the lowest
99     realism, but is (marginally) faster.
100   - \b SMPI: Realistic network model specifically tailored for HPC
101     settings (accurate modeling of slow start with correction factors on
102     three intervals: < 1KiB, < 64 KiB, >= 64 KiB). See also \ref
103     options_model_network_coefs "this section" for more info.
104   - \b IB: Realistic network model specifically tailored for HPC
105     settings with InfiniBand networks (accurate modeling contention
106     behavior, based on the model explained in
107     http://mescal.imag.fr/membres/jean-marc.vincent/index.html/PhD/Vienne.pdf).
108     See also \ref options_model_network_coefs "this section" for more info.
109   - \b CM02: Legacy network analytic model (Very similar to LV08, but
110     without corrective factors. The timings of small messages are thus
111     poorly modeled)
112   - \b Reno: Model from Steven H. Low using lagrange_solve instead of
113     lmm_solve (experts only; check the code for more info).
114   - \b Reno2: Model from Steven H. Low using lagrange_solve instead of
115     lmm_solve (experts only; check the code for more info).
116   - \b Vegas: Model from Steven H. Low using lagrange_solve instead of
117     lmm_solve (experts only; check the code for more info).
118
119 If you compiled SimGrid accordingly, you can use packet-level network
120 simulators as network models (see \ref pls_ns3). In that case, you have
121 two extra models, described below, and some \ref options_pls "specific
122 additional configuration flags".
123   - \b NS3: Network pseudo-model using the NS3 tcp model
124
125 Concerning the CPU, we have only one model for now:
126   - \b Cas01: Simplistic CPU model (time=size/power)
127
128 The host concept is the aggregation of a CPU with a network
129 card. Three models exists, but actually, only 2 of them are
130 interesting. The "compound" one is simply due to the way our internal
131 code is organized, and can easily be ignored. So at the end, you have
132 two host models: The default one allows to aggregate an
133 existing CPU model with an existing network model, but does not allow
134 parallel tasks because these beasts need some collaboration between
135 the network and CPU model. That is why, ptask_07 is used by default
136 when using SimDag.
137   - \b default: Default host model. Currently, CPU:Cas01 and
138     network:LV08 (with cross traffic enabled)
139   - \b compound: Host model that is automatically chosen if
140     you change the network and CPU models
141   - \b ptask_L07: Host model somehow similar to Cas01+CM02 but
142     allowing "parallel tasks", that are intended to model the moldable
143     tasks of the grid scheduling literature.
144
145 \subsection options_generic_plugin Plugins
146
147 SimGrid supports the use of plugins; currently, no known plugins
148 can be activated but there are use-cases where you may want to write
149 your own plugin (for instance, for logging).
150
151 Plugins can for instance define own classes that inherit from
152 existing classes (for instance, a class "CpuEnergy" inherits from
153 "Cpu" to assess energy consumption).
154
155 The plugin connects to the code by registering callbacks using
156 ``signal.connect(callback)`` (see file ``src/surf/plugins/energy.cpp`` for
157 details).
158
159 \verbatim
160     --cfg=plugin:Energy
161 \endverbatim
162
163 \note
164     This option is case-sensitive: Energy and energy are not the same!
165
166 \subsection options_model_optim Optimization level of the platform models
167
168 The network and CPU models that are based on lmm_solve (that
169 is, all our analytical models) accept specific optimization
170 configurations.
171   - items \b network/optim and \b CPU/optim (both default to 'Lazy'):
172     - \b Lazy: Lazy action management (partial invalidation in lmm +
173       heap in action remaining).
174     - \b TI: Trace integration. Highly optimized mode when using
175       availability traces (only available for the Cas01 CPU model for
176       now).
177     - \b Full: Full update of remaining and variables. Slow but may be
178       useful when debugging.
179   - items \b network/maxmin-selective-update and
180     \b cpu/maxmin-selective-update: configure whether the underlying
181     should be lazily updated or not. It should have no impact on the
182     computed timings, but should speed up the computation.
183
184 It is still possible to disable the \c maxmin-selective-update feature
185 because it can reveal counter-productive in very specific scenarios
186 where the interaction level is high. In particular, if all your
187 communication share a given backbone link, you should disable it:
188 without \c maxmin-selective-update, every communications are updated
189 at each step through a simple loop over them. With that feature
190 enabled, every communications will still get updated in this case
191 (because of the dependency induced by the backbone), but through a
192 complicated pattern aiming at following the actual dependencies.
193
194 \subsection options_model_precision Numerical precision of the platform models
195
196 The analytical models handle a lot of floating point values. It is
197 possible to change the epsilon used to update and compare them through
198 the \b maxmin/precision item (default value: 0.00001). Changing it
199 may speedup the simulation by discarding very small actions, at the
200 price of a reduced numerical precision.
201
202 \subsection options_concurrency_limit Concurrency limit
203
204 The maximum number of variables in a system can be tuned through
205 the \b maxmin/concurrency_limit item (default value: 100). Setting a higher value can lift some limitations, such as the number of concurrent processes running on a single host.
206
207 \subsection options_model_network Configuring the Network model
208
209 \subsubsection options_model_network_gamma Maximal TCP window size
210
211 The analytical models need to know the maximal TCP window size to take
212 the TCP congestion mechanism into account. This is set to 20000 by
213 default, but can be changed using the \b network/TCP-gamma item.
214
215 On linux, this value can be retrieved using the following
216 commands. Both give a set of values, and you should use the last one,
217 which is the maximal size.\verbatim
218 cat /proc/sys/net/ipv4/tcp_rmem # gives the sender window
219 cat /proc/sys/net/ipv4/tcp_wmem # gives the receiver window
220 \endverbatim
221
222 \subsubsection options_model_network_coefs Correcting important network parameters
223
224 SimGrid can take network irregularities such as a slow startup or
225 changing behavior depending on the message size into account.
226 You should not change these values unless you really know what you're doing.
227
228 The corresponding values were computed through data fitting one the
229 timings of packet-level simulators.
230
231 See
232 <a href="http://mescal.imag.fr/membres/arnaud.legrand/articles/simutools09.pdf">Accuracy Study and Improvement of Network Simulation in the SimGrid Framework</a>
233 for more information about these parameters.
234
235 If you are using the SMPI model, these correction coefficients are
236 themselves corrected by constant values depending on the size of the
237 exchange. Again, only hardcore experts should bother about this fact.
238
239 InfiniBand network behavior can be modeled through 3 parameters, as explained in
240 <a href="http://mescal.imag.fr/membres/jean-marc.vincent/index.html/PhD/Vienne.pdf">this PhD thesis</a>.
241 These factors can be changed through the following option:
242
243 \verbatim
244 smpi/IB-penalty-factors:"βe;βs;γs"
245 \endverbatim
246
247 By default SMPI uses factors computed on the Stampede Supercomputer at TACC, with optimal
248 deployment of processes on nodes.
249
250 \subsubsection options_model_network_crosstraffic Simulating cross-traffic
251
252 %As of SimGrid v3.7, cross-traffic effects can be taken into account in
253 analytical simulations. It means that ongoing and incoming
254 communication flows are treated independently. In addition, the LV08
255 model adds 0.05 of usage on the opposite direction for each new
256 created flow. This can be useful to simulate some important TCP
257 phenomena such as ack compression.
258
259 For that to work, your platform must have two links for each
260 pair of interconnected hosts. An example of usable platform is
261 available in <tt>examples/platforms/crosstraffic.xml</tt>.
262
263 This is activated through the \b network/crosstraffic item, that
264 can be set to 0 (disable this feature) or 1 (enable it).
265
266 Note that with the default host model this option is activated by default.
267
268 \subsubsection options_model_network_coord Coordinated-based network models
269
270 When you want to use network coordinates, as it happens when you use
271 an \<AS\> in your platform file with \c Vivaldi as a routing (see also
272 Section \ref pf_routing_model_vivaldi "Vivaldi Routing Model"), you must
273 set the \b network/coordinates to \c yes so that all mandatory
274 initialization are done in the simulator.
275
276 \subsubsection options_model_network_sendergap Simulating sender gap
277
278 (this configuration item is experimental and may change or disapear)
279
280 It is possible to specify a timing gap between consecutive emission on
281 the same network card through the \b network/sender-gap item. This
282 is still under investigation as of writting, and the default value is
283 to wait 10 microseconds (1e-5 seconds) between emissions.
284
285 \subsubsection options_model_network_asyncsend Simulating asyncronous send
286
287 (this configuration item is experimental and may change or disapear)
288
289 It is possible to specify that messages below a certain size will be sent
290 as soon as the call to MPI_Send is issued, without waiting for the
291 correspondant receive. This threshold can be configured through the
292 \b smpi/async-small-thresh item. The default value is 0. This behavior can also be
293 manually set for MSG mailboxes, by setting the receiving mode of the mailbox
294 with a call to \ref MSG_mailbox_set_async . For MSG, all messages sent to this
295 mailbox will have this behavior, so consider using two mailboxes if needed.
296
297 This value needs to be smaller than or equals to the threshold set at
298 \ref options_model_smpi_detached , because asynchronous messages are
299 meant to be detached as well.
300
301 \subsubsection options_pls Configuring packet-level pseudo-models
302
303 When using the packet-level pseudo-models, several specific
304 configuration flags are provided to configure the associated tools.
305 There is by far not enough such SimGrid flags to cover every aspects
306 of the associated tools, since we only added the items that we
307 needed ourselves. Feel free to request more items (or even better:
308 provide patches adding more items).
309
310 When using NS3, the only existing item is \b ns3/TcpModel,
311 corresponding to the ns3::TcpL4Protocol::SocketType configuration item
312 in NS3. The only valid values (enforced on the SimGrid side) are
313 'NewReno' or 'Reno' or 'Tahoe'.
314
315 \subsection options_model_storage Configuring the Storage model
316
317 \subsubsection option_model_storage_maxfd Maximum amount of file descriptors per host
318
319 Each host maintains a fixed-size array of its file descriptors. You
320 can change its size (1024 by default) through the \b
321 storage/max_file_descriptors item to either enlarge it if your
322 application requires it or to reduce it to save memory space.
323
324 \section options_modelchecking Configuring the Model-Checking
325
326 To enable the SimGrid model-checking support the program should
327 be executed using the simgrid-mc wrapper:
328 \verbatim
329 simgrid-mc ./my_program
330 \endverbatim
331
332 Safety properties are expressed as assertions using the function
333 \verbatim
334 void MC_assert(int prop);
335 \endverbatim
336
337 \subsection options_modelchecking_liveness Specifying a liveness property
338
339 If you want to specify liveness properties (beware, that's
340 experimental), you have to pass them on the command line, specifying
341 the name of the file containing the property, as formatted by the
342 ltl2ba program.
343
344 \verbatim
345 --cfg=model-check/property:<filename>
346 \endverbatim
347
348 \subsection options_modelchecking_steps Going for stateful verification
349
350 By default, the system is backtracked to its initial state to explore
351 another path instead of backtracking to the exact step before the fork
352 that we want to explore (this is called stateless verification). This
353 is done this way because saving intermediate states can rapidly
354 exhaust the available memory. If you want, you can change the value of
355 the <tt>model-check/checkpoint</tt> variable. For example, the
356 following configuration will ask to take a checkpoint every step.
357 Beware, this will certainly explode your memory. Larger values are
358 probably better, make sure to experiment a bit to find the right
359 setting for your specific system.
360
361 \verbatim
362 --cfg=model-check/checkpoint:1
363 \endverbatim
364
365 \subsection options_modelchecking_reduction Specifying the kind of reduction
366
367 The main issue when using the model-checking is the state space
368 explosion. To counter that problem, several exploration reduction
369 techniques can be used. There is unfortunately no silver bullet here,
370 and the most efficient reduction techniques cannot be applied to any
371 properties. In particular, the DPOR method cannot be applied on
372 liveness properties since it may break some cycles in the exploration
373 that are important to the property validity.
374
375 \verbatim
376 --cfg=model-check/reduction:<technique>
377 \endverbatim
378
379 For now, this configuration variable can take 2 values:
380  * none: Do not apply any kind of reduction (mandatory for now for
381    liveness properties)
382  * dpor: Apply Dynamic Partial Ordering Reduction. Only valid if you
383    verify local safety properties.
384
385 \subsection options_modelchecking_visited model-check/visited, Cycle detection
386
387 In order to detect cycles, the model-checker needs to check if a new explored
388 state is in fact the same state than a previous one. In order to do this,
389 the model-checker can take a snapshot of each visited state: this snapshot is
390 then used to compare it with subsequent states in the exploration graph.
391
392 The \b model-check/visited is the maximum number of states which are stored in
393 memory. If the maximum number of snapshotted state is reached some states will
394 be removed from the memory and some cycles might be missed.
395
396 By default, no state is snapshotted and cycles cannot be detected.
397
398 \subsection options_modelchecking_termination model-check/termination, Non termination detection
399
400 The \b model-check/termination configuration item can be used to report if a
401 non-termination execution path has been found. This is a path with a cycle
402 which means that the program might never terminate.
403
404 This only works in safety mode.
405
406 This options is disabled by default.
407
408 \subsection options_modelchecking_dot_output model-check/dot-output, Dot output
409
410 If set, the \b model-check/dot-output configuration item is the name of a file
411 in which to write a dot file of the path leading the found property (safety or
412 liveness violation) as well as the cycle for liveness properties. This dot file
413 can then fed to the graphviz dot tool to generate an corresponding graphical
414 representation.
415
416 \subsection options_modelchecking_max_depth model-check/max_depth, Depth limit
417
418 The \b model-checker/max-depth can set the maximum depth of the exploration
419 graph of the model-checker. If this limit is reached, a logging message is
420 sent and the results might not be exact.
421
422 By default, there is not depth limit.
423
424 \subsection options_modelchecking_timeout Handling of timeout
425
426 By default, the model-checker does not handle timeout conditions: the `wait`
427 operations never time out. With the \b model-check/timeout configuration item
428 set to \b yes, the model-checker will explore timeouts of `wait` operations.
429
430 \subsection options_modelchecking_comm_determinism Communication determinism
431
432 The \b model-check/communications-determinism and
433 \b model-check/send-determinism items can be used to select the communication
434 determinism mode of the model-checker which checks determinism properties of
435 the communications of an application.
436
437 \subsection options_modelchecking_sparse_checkpoint Per page checkpoints
438
439 When the model-checker is configured to take a snapshot of each explored state
440 (with the \b model-checker/visited item), the memory consumption can rapidly
441 reach GiB ou Tib of memory. However, for many workloads, the memory does not
442 change much between different snapshots and taking a complete copy of each
443 snapshot is a waste of memory.
444
445 The \b model-check/sparse-checkpoint option item can be set to \b yes in order
446 to avoid making a complete copy of each snapshot: instead, each snapshot will be
447 decomposed in blocks which will be stored separately.
448 If multiple snapshots share the same block (or if the same block
449 is used in the same snapshot), the same copy of the block will be shared leading
450 to a reduction of the memory footprint.
451
452 For many applications, this option considerably reduces the memory consumption.
453 In somes cases, the model-checker might be slightly slower because of the time
454 taken to manage the metadata about the blocks. In other cases however, this
455 snapshotting strategy will be much faster by reducing the cache consumption.
456 When the memory consumption is important, by avoiding to hit the swap or
457 reducing the swap usage, this option might be much faster than the basic
458 snapshotting strategy.
459
460 This option is currently disabled by default.
461
462 \subsection options_mc_perf Performance considerations for the model checker
463
464 The size of the stacks can have a huge impact on the memory
465 consumption when using model-checking. By default, each snapshot will
466 save a copy of the whole stacks and not only of the part which is
467 really meaningful: you should expect the contribution of the memory
468 consumption of the snapshots to be \f$ \mbox{number of processes}
469 \times \mbox{stack size} \times \mbox{number of states} \f$.
470
471 The \b model-check/sparse-checkpoint can be used to reduce the memory
472 consumption by trying to share memory between the different snapshots.
473
474 When compiled against the model checker, the stacks are not
475 protected with guards: if the stack size is too small for your
476 application, the stack will silently overflow on other parts of the
477 memory.
478
479 \subsection options_modelchecking_hash Hashing of the state (experimental)
480
481 Usually most of the time of the model-checker is spent comparing states. This
482 process is complicated and consumes a lot of bandwidth and cache.
483 In order to speedup the state comparison, the experimental \b model-checker/hash
484 configuration item enables the computation of a hash summarizing as much
485 information of the state as possible into a single value. This hash can be used
486 to avoid most of the comparisons: the costly comparison is then only used when
487 the hashes are identical.
488
489 Currently most of the state is not included in the hash because the
490 implementation was found to be buggy and this options is not as useful as
491 it could be. For this reason, it is currently disabled by default.
492
493 \subsection options_modelchecking_recordreplay Record/replay (experimental)
494
495 As the model-checker keeps jumping at different places in the execution graph,
496 it is difficult to understand what happens when trying to debug an application
497 under the model-checker. Event the output of the program is difficult to
498 interpret. Moreover, the model-checker does not behave nicely with advanced
499 debugging tools such as valgrind. For those reason, to identify a trajectory
500 in the execution graph with the model-checker and replay this trajcetory and
501 without the model-checker black-magic but with more standard tools
502 (such as a debugger, valgrind, etc.). For this reason, Simgrid implements an
503 experimental record/replay functionnality in order to record a trajectory with
504 the model-checker and replay it without the model-checker.
505
506 When the model-checker finds an interesting path in the application execution
507 graph (where a safety or liveness property is violated), it can generate an
508 identifier for this path. In order to enable this behavious the
509 \b model-check/record must be set to \b yes. By default, this behaviour is not
510 enabled.
511
512 This is an example of output:
513
514 <pre>
515 [  0.000000] (0:@) Check a safety property
516 [  0.000000] (0:@) **************************
517 [  0.000000] (0:@) *** PROPERTY NOT VALID ***
518 [  0.000000] (0:@) **************************
519 [  0.000000] (0:@) Counter-example execution trace:
520 [  0.000000] (0:@) Path = 1/3;1/4
521 [  0.000000] (0:@) [(1)Tremblay (app)] MC_RANDOM(3)
522 [  0.000000] (0:@) [(1)Tremblay (app)] MC_RANDOM(4)
523 [  0.000000] (0:@) Expanded states = 27
524 [  0.000000] (0:@) Visited states = 68
525 [  0.000000] (0:@) Executed transitions = 46
526 </pre>
527
528 This path can then be replayed outside of the model-checker (and even in
529 non-MC build of simgrid) by setting the \b model-check/replay item to the given
530 path. The other options should be the same (but the model-checker should
531 be disabled).
532
533 The format and meaning of the path may change between different releases so
534 the same release of Simgrid should be used for the record phase and the replay
535 phase.
536
537 \section options_virt Configuring the User Process Virtualization
538
539 \subsection options_virt_factory Selecting the virtualization factory
540
541 In SimGrid, the user code is virtualized in a specific mechanism
542 that allows the simulation kernel to control its execution: when a user
543 process requires a blocking action (such as sending a message), it is
544 interrupted, and only gets released when the simulated clock reaches
545 the point where the blocking operation is done.
546
547 In SimGrid, the containers in which user processes are virtualized are
548 called contexts. Several context factory are provided, and you can
549 select the one you want to use with the \b contexts/factory
550 configuration item. Some of the following may not exist on your
551 machine because of portability issues. In any case, the default one
552 should be the most effcient one (please report bugs if the
553 auto-detection fails for you). They are sorted here from the slowest
554 to the most effient:
555  - \b thread: very slow factory using full featured threads (either
556    pthreads or windows native threads)
557  - \b ucontext: fast factory using System V contexts (or a portability
558    layer of our own on top of Windows fibers)
559  - \b raw: amazingly fast factory using a context switching mechanism
560    of our own, directly implemented in assembly (only available for x86
561    and amd64 platforms for now)
562  - \b boost: This uses the [context implementation](http://www.boost.org/doc/libs/1_59_0/libs/context/doc/html/index.html)
563              of the boost library; you must have this library installed before
564              you compile SimGrid. (On Debian GNU/Linux based systems, this is
565              provided by the libboost-contexts-dev package.)
566
567 The only reason to change this setting is when the debugging tools get
568 fooled by the optimized context factories. Threads are the most
569 debugging-friendly contextes, as they allow to set breakpoints anywhere with gdb
570  and visualize backtraces for all processes, in order to debug concurrency issues.
571 Valgrind is also more comfortable with threads, but it should be usable with all factories.
572
573 \subsection options_virt_stacksize Adapting the used stack size
574
575 Each virtualized used process is executed using a specific system
576 stack. The size of this stack has a huge impact on the simulation
577 scalability, but its default value is rather large. This is because
578 the error messages that you get when the stack size is too small are
579 rather disturbing: this leads to stack overflow (overwriting other
580 stacks), leading to segfaults with corrupted stack traces.
581
582 If you want to push the scalability limits of your code, you might
583 want to reduce the \b contexts/stack-size item. Its default value
584 is 8192 (in KiB), while our Chord simulation works with stacks as small
585 as 16 KiB, for example. For the thread factory, the default value
586 is the one of the system, if it is too large/small, it has to be set
587 with this parameter.
588
589 The operating system should only allocate memory for the pages of the
590 stack which are actually used and you might not need to use this in
591 most cases. However, this setting is very important when using the
592 model checker (see \ref options_mc_perf).
593
594 In some cases, no stack guard page is used and the stack will silently
595 overflow on other parts of the memory if the stack size is too small
596 for your application. This happens :
597
598 - on Windows systems;
599 - when the model checker is enabled;
600 - when stack guard pages are explicitely disabled (see \ref  options_perf_guard_size).
601
602 \subsection options_virt_parallel Running user code in parallel
603
604 Parallel execution of the user code is only considered stable in
605 SimGrid v3.7 and higher. It is described in
606 <a href="http://hal.inria.fr/inria-00602216/">INRIA RR-7653</a>.
607
608 If you are using the \c ucontext or \c raw context factories, you can
609 request to execute the user code in parallel. Several threads are
610 launched, each of them handling as much user contexts at each run. To
611 actiave this, set the \b contexts/nthreads item to the amount of
612 cores that you have in your computer (or lower than 1 to have
613 the amount of cores auto-detected).
614
615 Even if you asked several worker threads using the previous option,
616 you can request to start the parallel execution (and pay the
617 associated synchronization costs) only if the potential parallelism is
618 large enough. For that, set the \b contexts/parallel-threshold
619 item to the minimal amount of user contexts needed to start the
620 parallel execution. In any given simulation round, if that amount is
621 not reached, the contexts will be run sequentially directly by the
622 main thread (thus saving the synchronization costs). Note that this
623 option is mainly useful when the grain of the user code is very fine,
624 because our synchronization is now very efficient.
625
626 When parallel execution is activated, you can choose the
627 synchronization schema used with the \b contexts/synchro item,
628 which value is either:
629  - \b futex: ultra optimized synchronisation schema, based on futexes
630    (fast user-mode mutexes), and thus only available on Linux systems.
631    This is the default mode when available.
632  - \b posix: slow but portable synchronisation using only POSIX
633    primitives.
634  - \b busy_wait: not really a synchronisation: the worker threads
635    constantly request new contexts to execute. It should be the most
636    efficient synchronisation schema, but it loads all the cores of your
637    machine for no good reason. You probably prefer the other less
638    eager schemas.
639
640 \section options_tracing Configuring the tracing subsystem
641
642 The \ref outcomes_vizu "tracing subsystem" can be configured in several
643 different ways depending on the nature of the simulator (MSG, SimDag,
644 SMPI) and the kind of traces that need to be obtained. See the \ref
645 tracing_tracing_options "Tracing Configuration Options subsection" to
646 get a detailed description of each configuration option.
647
648 We detail here a simple way to get the traces working for you, even if
649 you never used the tracing API.
650
651
652 - Any SimGrid-based simulator (MSG, SimDag, SMPI, ...) and raw traces:
653 \verbatim
654 --cfg=tracing:yes --cfg=tracing/uncategorized:yes --cfg=triva/uncategorized:uncat.plist
655 \endverbatim
656     The first parameter activates the tracing subsystem, the second
657     tells it to trace host and link utilization (without any
658     categorization) and the third creates a graph configuration file
659     to configure Triva when analysing the resulting trace file.
660
661 - MSG or SimDag-based simulator and categorized traces (you need to declare categories and classify your tasks according to them)
662 \verbatim
663 --cfg=tracing:yes --cfg=tracing/categorized:yes --cfg=triva/categorized:cat.plist
664 \endverbatim
665     The first parameter activates the tracing subsystem, the second
666     tells it to trace host and link categorized utilization and the
667     third creates a graph configuration file to configure Triva when
668     analysing the resulting trace file.
669
670 - SMPI simulator and traces for a space/time view:
671 \verbatim
672 smpirun -trace ...
673 \endverbatim
674     The <i>-trace</i> parameter for the smpirun script runs the
675 simulation with --cfg=tracing:yes and --cfg=tracing/smpi:yes. Check the
676 smpirun's <i>-help</i> parameter for additional tracing options.
677
678 Sometimes you might want to put additional information on the trace to
679 correctly identify them later, or to provide data that can be used to
680 reproduce an experiment. You have two ways to do that:
681
682 - Add a string on top of the trace file as comment:
683 \verbatim
684 --cfg=tracing/comment:my_simulation_identifier
685 \endverbatim
686
687 - Add the contents of a textual file on top of the trace file as comment:
688 \verbatim
689 --cfg=tracing/comment-file:my_file_with_additional_information.txt
690 \endverbatim
691
692 Please, use these two parameters (for comments) to make reproducible
693 simulations. For additional details about this and all tracing
694 options, check See the \ref tracing_tracing_options.
695
696 \section options_msg Configuring MSG
697
698 \subsection options_msg_debug_multiple_use Debugging MSG
699
700 Sometimes your application may try to send a task that is still being
701 executed somewhere else, making it impossible to send this task. However,
702 for debugging purposes, one may want to know what the other host is/was
703 doing. This option shows a backtrace of the other process.
704
705 Enable this option by adding
706
707 \verbatim
708 --cfg=msg/debug-multiple-use:on
709 \endverbatim
710
711 \section options_smpi Configuring SMPI
712
713 The SMPI interface provides several specific configuration items.
714 These are uneasy to see since the code is usually launched through the
715 \c smiprun script directly.
716
717 \subsection options_smpi_bench smpi/bench: Automatic benchmarking of SMPI code
718
719 In SMPI, the sequential code is automatically benchmarked, and these
720 computations are automatically reported to the simulator. That is to
721 say that if you have a large computation between a \c MPI_Recv() and a
722 \c MPI_Send(), SMPI will automatically benchmark the duration of this
723 code, and create an execution task within the simulator to take this
724 into account. For that, the actual duration is measured on the host
725 machine and then scaled to the power of the corresponding simulated
726 machine. The variable \b smpi/running-power allows to specify the
727 computational power of the host machine (in flop/s) to use when
728 scaling the execution times. It defaults to 20000, but you really want
729 to update it to get accurate simulation results.
730
731 When the code is constituted of numerous consecutive MPI calls, the
732 previous mechanism feeds the simulation kernel with numerous tiny
733 computations. The \b smpi/cpu-threshold item becomes handy when this
734 impacts badly the simulation performance. It specifies a threshold (in
735 seconds) below which the execution chunks are not reported to the
736 simulation kernel (default value: 1e-6).
737
738
739 \note
740     The option smpi/cpu-threshold ignores any computation time spent
741     below this threshold. SMPI does not consider the \a amount of these
742     computations; there is no offset for this. Hence, by using a
743     value that is too low, you may end up with unreliable simulation
744     results.
745
746  In some cases, however, one may wish to disable simulation of
747 application computation. This is the case when SMPI is used not to
748 simulate an MPI applications, but instead an MPI code that performs
749 "live replay" of another MPI app (e.g., ScalaTrace's replay tool,
750 various on-line simulators that run an app at scale). In this case the
751 computation of the replay/simulation logic should not be simulated by
752 SMPI. Instead, the replay tool or on-line simulator will issue
753 "computation events", which correspond to the actual MPI simulation
754 being replayed/simulated. At the moment, these computation events can
755 be simulated using SMPI by calling internal smpi_execute*() functions.
756
757 To disable the benchmarking/simulation of computation in the simulated
758 application, the variable \b smpi/simulate-computation should be set to no.
759 Equivalently, setting \b smpi/cpu-threshold to -1 also ignores all
760 computation.
761
762 \note
763     This option just ignores the timings in your simulation; it still executes
764     the computations itself. If you want to stop SMPI from doing that,
765     you should check the SMPI_SAMPLE macros, documented in the chapter
766     \ref SMPI_adapting_speed.
767
768 \subsection options_model_smpi_adj_file smpi/comp-adjustment-file: Slow-down or speed-up parts of your code.
769
770 This option allows you to pass a file that contains two columns: The first column
771 defines the section that will be subject to a speedup; the second column is the speedup.
772
773 For instance:
774
775 \verbatim
776 "start:stop","ratio"
777 "exchange_1.f:30:exchange_1.f:130",1.18244559422142
778 \endverbatim
779
780 The first line is the header - you must include it.
781 The following line means that the code between two consecutive MPI calls on
782 line 30 in exchange_1.f and line 130 in exchange_1.f should receive a speedup
783 of 1.18244559422142. The value for the second column is therefore a speedup, if it is
784 larger than 1 and a slow-down if it is smaller than 1. Nothing will be changed if it is
785 equal to 1.
786
787 Of course, you can set any arbitrary filenames you want (so the start and end don't have to be
788 in the same file), but be aware that this mechanism only supports @em consecutive calls!
789
790 \note
791     Please note that you must pass the \b -trace-call-location flag to smpicc
792     or smpiff, respectively! This flag activates some macro definitions in our
793     mpi.h / mpi.f files that help with obtaining the call location.
794
795 \subsection options_model_smpi_bw_factor smpi/bw-factor: Bandwidth factors
796
797 The possible throughput of network links is often dependent on the
798 message sizes, as protocols may adapt to different message sizes. With
799 this option, a series of message sizes and factors are given, helping
800 the simulation to be more realistic. For instance, the current
801 default value is
802
803 \verbatim
804 65472:0.940694;15424:0.697866;9376:0.58729;5776:1.08739;3484:0.77493;1426:0.608902;732:0.341987;257:0.338112;0:0.812084
805 \endverbatim
806
807 So, messages with size 65472 and more will get a total of MAX_BANDWIDTH*0.940694,
808 messages of size 15424 to 65471 will get MAX_BANDWIDTH*0.697866 and so on.
809 Here, MAX_BANDWIDTH denotes the bandwidth of the link.
810
811 \note
812     The SimGrid-Team has developed a script to help you determine these
813     values. You can find more information and the download here:
814     1. http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc.html
815     2. http://simgrid.gforge.inria.fr/contrib/smpi-saturation-doc.html
816
817 \subsection options_smpi_timing smpi/display-timing: Reporting simulation time
818
819 \b Default: 0 (false)
820
821 Most of the time, you run MPI code with SMPI to compute the time it
822 would take to run it on a platform. But since the
823 code is run through the \c smpirun script, you don't have any control
824 on the launcher code, making it difficult to report the simulated time
825 when the simulation ends. If you set the \b smpi/display-timing item
826 to 1, \c smpirun will display this information when the simulation ends. \verbatim
827 Simulation time: 1e3 seconds.
828 \endverbatim
829
830 \subsection options_model_smpi_lat_factor smpi/lat-factor: Latency factors
831
832 The motivation and syntax for this option is identical to the motivation/syntax
833 of smpi/bw-factor, see \ref options_model_smpi_bw_factor for details.
834
835 There is an important difference, though: While smpi/bw-factor \a reduces the
836 actual bandwidth (i.e., values between 0 and 1 are valid), latency factors
837 increase the latency, i.e., values larger than or equal to 1 are valid here.
838
839 This is the default value:
840
841 \verbatim
842 65472:11.6436;15424:3.48845;9376:2.59299;5776:2.18796;3484:1.88101;1426:1.61075;732:1.9503;257:1.95341;0:2.01467
843 \endverbatim
844
845 \note
846     The SimGrid-Team has developed a script to help you determine these
847     values. You can find more information and the download here:
848     1. http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc.html
849     2. http://simgrid.gforge.inria.fr/contrib/smpi-saturation-doc.html
850
851 \subsection options_smpi_papi_events smpi/papi-events: Trace hardware counters with PAPI
852
853 \warning 
854     This option is experimental and will be subject to change.
855     This feature currently requires superuser privileges, as registers are queried.
856     Only use this feature with code you trust! Call smpirun for instance via
857         smpirun -wrapper "sudo " <your-parameters>
858     or run sudo sh -c "echo 0 > /proc/sys/kernel/perf_event_paranoid"
859     In the later case, sudo will not be required.
860
861 \note
862     This option is only available when SimGrid was compiled with PAPI support.
863
864 This option takes the names of PAPI counters and adds their respective values
865 to the trace files. (See Section \ref tracing_tracing_options.)
866
867 It is planned to make this feature available on a per-process (or per-thread?) basis.
868 The first draft, however, just implements a "global" (i.e., for all processes) set
869 of counters, the "default" set.
870
871 \verbatim
872 --cfg=smpi/papi-events:"default:PAPI_L3_LDM:PAPI_L2_LDM"
873 \endverbatim
874
875 \subsection options_smpi_global smpi/privatize-global-variables: Automatic privatization of global variables
876
877 MPI executables are meant to be executed in separated processes, but SMPI is
878 executed in only one process. Global variables from executables will be placed
879 in the same memory zone and shared between processes, causing hard to find bugs.
880 To avoid this, several options are possible :
881   - Manual edition of the code, for example to add __thread keyword before data
882   declaration, which allows the resulting code to work with SMPI, but only
883   if the thread factory (see \ref options_virt_factory) is used, as global
884   variables are then placed in the TLS (thread local storage) segment.
885   - Source-to-source transformation, to add a level of indirection
886   to the global variables. SMPI does this for F77 codes compiled with smpiff,
887   and used to provide coccinelle scripts for C codes, which are not functional anymore.
888   - Compilation pass, to have the compiler automatically put the data in
889   an adapted zone.
890   - Runtime automatic switching of the data segments. SMPI stores a copy of
891   each global data segment for each process, and at each context switch replaces
892   the actual data with its copy from the right process. This mechanism uses mmap,
893   and is for now limited to systems supporting this functionnality (all Linux
894   and some BSD should be compatible).
895   Another limitation is that SMPI only accounts for global variables defined in
896   the executable. If the processes use external global variables from dynamic
897   libraries, they won't be switched correctly. To avoid this, using static
898   linking is advised (but not with the simgrid library, to avoid replicating
899   its own global variables).
900
901   To use this runtime automatic switching, the variable \b smpi/privatize-global-variables
902   should be set to yes
903
904 \warning
905   This configuration option cannot be set in your platform file. You can only
906   pass it as an argument to smpirun.
907
908
909 \subsection options_model_smpi_detached Simulating MPI detached send
910
911 This threshold specifies the size in bytes under which the send will return
912 immediately. This is different from the threshold detailed in  \ref options_model_network_asyncsend
913 because the message is not effectively sent when the send is posted. SMPI still waits for the
914 correspondant receive to be posted to perform the communication operation. This threshold can be set
915 by changing the \b smpi/send-is-detached-thresh item. The default value is 65536.
916
917 \subsection options_model_smpi_collectives Simulating MPI collective algorithms
918
919 SMPI implements more than 100 different algorithms for MPI collective communication, to accurately
920 simulate the behavior of most of the existing MPI libraries. The \b smpi/coll-selector item can be used
921  to use the decision logic of either OpenMPI or MPICH libraries (values: ompi or mpich, by default SMPI
922 uses naive version of collective operations). Each collective operation can be manually selected with a
923 \b smpi/collective_name:algo_name. Available algorithms are listed in \ref SMPI_collective_algorithms .
924
925 \subsection options_model_smpi_iprobe smpi/iprobe: Inject constant times for calls to MPI_Iprobe
926
927 \b Default value: 0.0001
928
929 The behavior and motivation for this configuration option is identical with \a smpi/test, see
930 Section \ref options_model_smpi_test for details.
931
932 \subsection options_model_smpi_init smpi/init: Inject constant times for calls to MPI_Init
933
934 \b Default value: 0
935
936 The behavior for this configuration option is identical with \a smpi/test, see
937 Section \ref options_model_smpi_test for details.
938
939 \subsection options_model_smpi_ois smpi/ois: Inject constant times for asynchronous send operations
940
941 This configuration option works exactly as \a smpi/os, see Section \ref options_model_smpi_os.
942 Of course, \a smpi/ois is used to account for MPI_Isend instead of MPI_Send.
943
944 \subsection options_model_smpi_os smpi/os: Inject constant times for send operations
945
946 In several network models such as LogP, send (MPI_Send, MPI_Isend) and receive (MPI_Recv)
947 operations incur costs (i.e., they consume CPU time). SMPI can factor these costs in as well, but the
948 user has to configure SMPI accordingly as these values may vary by machine.
949 This can be done by using smpi/os for MPI_Send operations; for MPI_Isend and
950 MPI_Recv, use \a smpi/ois and \a smpi/or, respectively. These work exactly as
951 \a smpi/ois.
952
953 \a smpi/os can consist of multiple sections; each section takes three values, for example:
954
955 \verbatim
956     1:3:2;10:5:1
957 \endverbatim
958
959 Here, the sections are divided by ";" (that is, this example contains two sections).
960 Furthermore, each section consists of three values.
961
962 1. The first value denotes the minimum size for this section to take effect;
963    read it as "if message size is greater than this value (and other section has a larger
964    first value that is also smaller than the message size), use this".
965    In the first section above, this value is "1".
966
967 2. The second value is the startup time; this is a constant value that will always
968    be charged, no matter what the size of the message. In the first section above,
969    this value is "3".
970
971 3. The third value is the \a per-byte cost. That is, it is charged for every
972    byte of the message (incurring cost messageSize*cost_per_byte)
973    and hence accounts also for larger messages. In the first
974    section of the example above, this value is "2".
975
976 Now, SMPI always checks which section it should take for a given message; that is,
977 if a message of size 11 is sent with the configuration of the example above, only
978 the second section will be used, not the first, as the first value of the second
979 section is closer to the message size. Hence, a message of size 11 incurs the
980 following cost inside MPI_Send:
981
982 \verbatim
983     5+11*1
984 \endverbatim
985
986 %As 5 is the startup cost and 1 is the cost per byte.
987
988 \note
989     The order of sections can be arbitrary; they will be ordered internally.
990
991 \subsection options_model_smpi_or smpi/or: Inject constant times for receive operations
992
993 This configuration option works exactly as \a smpi/os, see Section \ref options_model_smpi_os.
994 Of course, \a smpi/or is used to account for MPI_Recv instead of MPI_Send.
995
996 \subsection options_model_smpi_test smpi/test: Inject constant times for calls to MPI_Test
997
998 \b Default value: 0.0001
999
1000 By setting this option, you can control the amount of time a process sleeps
1001 when MPI_Test() is called; this is important, because SimGrid normally only
1002 advances the time while communication is happening and thus,
1003 MPI_Test will not add to the time, resulting in a deadlock if used as a
1004 break-condition.
1005
1006 Here is an example:
1007
1008 \code{.unparsed}
1009     while(!flag) {
1010         MPI_Test(request, flag, status);
1011         ...
1012     }
1013 \endcode
1014
1015 \note
1016     Internally, in order to speed up execution, we use a counter to keep track
1017     on how often we already checked if the handle is now valid or not. Hence, we
1018     actually use counter*SLEEP_TIME, that is, the time MPI_Test() causes the process
1019     to sleep increases linearly with the number of previously failed testk.
1020
1021
1022 \subsection options_model_smpi_use_shared_malloc smpi/use-shared-malloc: Factorize malloc()s
1023
1024 \b Default: 1
1025
1026 SMPI can use shared memory by calling shm_* functions; this might speed up the simulation.
1027 This opens or creates a new POSIX shared memory object, kept in RAM, in /dev/shm.
1028
1029 If you want to disable this behavior, set the value to 0.
1030
1031 \subsection options_model_smpi_wtime smpi/wtime: Inject constant times for calls to MPI_Wtime
1032
1033 \b Default value: 0
1034
1035 By setting this option, you can control the amount of time a process sleeps
1036 when MPI_Wtime() is called; this is important, because SimGrid normally only
1037 advances the time while communication is happening and thus,
1038 MPI_Wtime will not add to the time, resulting in a deadlock if used as a
1039 break-condition.
1040
1041 Here is an example:
1042
1043 \code{.unparsed}
1044     while(MPI_Wtime() < some_time_bound) {
1045         ...
1046     }
1047 \endcode
1048
1049 If the time is never advanced, this loop will clearly never end as MPI_Wtime()
1050 always returns the same value. Hence, pass a (small) value to the smpi/wtime
1051 option to force a call to MPI_Wtime to advance the time as well.
1052
1053
1054 \section options_generic Configuring other aspects of SimGrid
1055
1056 \subsection options_generic_clean_atexit Cleanup before termination
1057
1058 The C / C++ standard contains a function called \b [atexit](http://www.cplusplus.com/reference/cstdlib/atexit/).
1059 atexit registers callbacks, which are called just before the program terminates.
1060
1061 By setting the configuration option clean-atexit to 1 (true), a callback
1062 is registered and will clean up some variables and terminate/cleanup the tracing.
1063
1064 TODO: Add when this should be used.
1065
1066 \subsection options_generic_path XML file inclusion path
1067
1068 It is possible to specify a list of directories to search into for the
1069 \<include\> tag in XML files by using the \b path configuration
1070 item. To add several directory to the path, set the configuration
1071 item several times, as in \verbatim
1072 --cfg=path:toto --cfg=path:tutu
1073 \endverbatim
1074
1075 \subsection options_generic_exit Behavior on Ctrl-C
1076
1077 By default, when Ctrl-C is pressed, the status of all existing
1078 simulated processes is displayed before exiting the simulation. This is very useful to debug your
1079 code, but it can reveal troublesome in some cases (such as when the
1080 amount of processes becomes really big). This behavior is disabled
1081 when \b verbose-exit is set to 0 (it is to 1 by default).
1082
1083 \subsection options_exception_cutpath Truncate local path from exception backtrace
1084
1085 \verbatim
1086 --cfg=exceptions/cutpath:1
1087 \endverbatim
1088
1089 This configuration option is used to remove the path from the
1090 backtrace shown when an exception is thrown. This is mainly useful for
1091 the tests: the full file path makes the tests not reproducible, and
1092 thus failing as we are currently comparing output. Clearly, the path
1093 used on different machines are almost guaranteed to be different and
1094 hence, the output would mismatch, causing the test to fail.
1095
1096 \section options_log Logging Configuration
1097
1098 It can be done by using XBT. Go to \ref XBT_log for more details.
1099
1100 \section options_perf Performance optimizations
1101
1102 \subsection options_perf_context Context factory
1103
1104 In order to achieve higher performance, you might want to use the raw
1105 context factory which avoids any system call when switching between
1106 tasks. If it is not possible you might use ucontext instead.
1107
1108 \subsection options_perf_guard_size Disabling stack guard pages
1109
1110 A stack guard page is usually used which prevents the stack from
1111 overflowing on other parts of the memory. However this might have a
1112 performance impact if a huge number of processes is created.  The
1113 option \b contexts:guard-size is the number of stack guard pages
1114 used. By setting it to 0, no guard pages will be used: in this case,
1115 you should avoid using small stacks (\b stack-size) as the stack will
1116 silently overflow on other parts of the memory.
1117
1118 \section options_index Index of all existing configuration options
1119
1120 \note
1121   Almost all options are defined in <i>src/simgrid/sg_config.c</i>. You may
1122   want to check this file, too, but this index should be somewhat complete
1123   for the moment (May 2015).
1124
1125 \note
1126   \b Please \b note: You can also pass the command-line option "--help" and
1127      "--help-cfg" to an executable that uses simgrid.
1128
1129 - \c clean-atexit: \ref options_generic_clean_atexit
1130
1131 - \c contexts/factory: \ref options_virt_factory
1132 - \c contexts/guard-size: \ref options_virt_parallel
1133 - \c contexts/nthreads: \ref options_virt_parallel
1134 - \c contexts/parallel_threshold: \ref options_virt_parallel
1135 - \c contexts/stack-size: \ref options_virt_stacksize
1136 - \c contexts/synchro: \ref options_virt_parallel
1137
1138 - \c cpu/maxmin-selective-update: \ref options_model_optim
1139 - \c cpu/model: \ref options_model_select
1140 - \c cpu/optim: \ref options_model_optim
1141
1142 - \c exception/cutpath: \ref options_exception_cutpath
1143
1144 - \c host/model: \ref options_model_select
1145
1146 - \c maxmin/precision: \ref options_model_precision
1147
1148 - \c msg/debug-multiple-use: \ref options_msg_debug_multiple_use
1149
1150 - \c model-check: \ref options_modelchecking
1151 - \c model-check/checkpoint: \ref options_modelchecking_steps
1152 - \c model-check/communications-determinism: \ref options_modelchecking_comm_determinism
1153 - \c model-check/dot-output: \ref options_modelchecking_dot_output
1154 - \c model-check/hash: \ref options_modelchecking_hash
1155 - \c model-check/property: \ref options_modelchecking_liveness
1156 - \c model-check/max-depth: \ref options_modelchecking_max_depth
1157 - \c model-check/record: \ref options_modelchecking_recordreplay
1158 - \c model-check/reduction: \ref options_modelchecking_reduction
1159 - \c model-check/replay: \ref options_modelchecking_recordreplay
1160 - \c model-check/send-determinism: \ref options_modelchecking_comm_determinism
1161 - \c model-check/sparse-checkpoint: \ref options_modelchecking_sparse_checkpoint
1162 - \c model-check/termination: \ref options_modelchecking_termination
1163 - \c model-check/timeout: \ref options_modelchecking_timeout
1164 - \c model-check/visited: \ref options_modelchecking_visited
1165
1166 - \c network/bandwidth-factor: \ref options_model_network_coefs
1167 - \c network/coordinates: \ref options_model_network_coord
1168 - \c network/crosstraffic: \ref options_model_network_crosstraffic
1169 - \c network/latency-factor: \ref options_model_network_coefs
1170 - \c network/maxmin-selective-update: \ref options_model_optim
1171 - \c network/model: \ref options_model_select
1172 - \c network/optim: \ref options_model_optim
1173 - \c network/sender_gap: \ref options_model_network_sendergap
1174 - \c network/TCP-gamma: \ref options_model_network_gamma
1175 - \c network/weight-S: \ref options_model_network_coefs
1176
1177 - \c ns3/TcpModel: \ref options_pls
1178 - \c path: \ref options_generic_path
1179 - \c plugin: \ref options_generic_plugin
1180
1181 - \c storage/max_file_descriptors: \ref option_model_storage_maxfd
1182
1183 - \c surf/precision: \ref options_model_precision
1184
1185 - \c <b>For collective operations of SMPI, please refer to Section \ref options_index_smpi_coll</b>
1186 - \c smpi/async-small-thresh: \ref options_model_network_asyncsend
1187 - \c smpi/bw-factor: \ref options_model_smpi_bw_factor
1188 - \c smpi/coll-selector: \ref options_model_smpi_collectives
1189 - \c smpi/comp-adjustment-file: \ref options_model_smpi_adj_file
1190 - \c smpi/cpu-threshold: \ref options_smpi_bench
1191 - \c smpi/display-timing: \ref options_smpi_timing
1192 - \c smpi/lat-factor: \ref options_model_smpi_lat_factor
1193 - \c smpi/IB-penalty-factors: \ref options_model_network_coefs
1194 - \c smpi/iprobe: \ref options_model_smpi_iprobe
1195 - \c smpi/init: \ref options_model_smpi_init
1196 - \c smpi/ois: \ref options_model_smpi_ois
1197 - \c smpi/or: \ref options_model_smpi_or
1198 - \c smpi/os: \ref options_model_smpi_os
1199 - \c smpi/papi-events: \ref options_smpi_papi_events
1200 - \c smpi/privatize-global-variables: \ref options_smpi_global
1201 - \c smpi/running-power: \ref options_smpi_bench
1202 - \c smpi/send-is-detached-thresh: \ref options_model_smpi_detached
1203 - \c smpi/simulate-computation: \ref options_smpi_bench
1204 - \c smpi/test: \ref options_model_smpi_test
1205 - \c smpi/use-shared-malloc: \ref options_model_smpi_use_shared_malloc
1206 - \c smpi/wtime: \ref options_model_smpi_wtime
1207
1208 - \c <b>Tracing configuration options can be found in Section \ref tracing_tracing_options</b>.
1209
1210 - \c storage/model: \ref options_storage_model
1211 - \c verbose-exit: \ref options_generic_exit
1212
1213 - \c vm/model: \ref options_vm_model
1214
1215 \subsection options_index_smpi_coll Index of SMPI collective algorithms options
1216
1217 TODO: All available collective algorithms will be made available via the ``smpirun --help-coll`` command.
1218
1219 */