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algorithms, based on direct or iterative methods, have been developed for parallel architectures. On
distributed grids consisting of processors located in distant geographical sites, their performances
may be unsatisfactory because they suffer from too many synchronizations and communications. The
GREMLINS code has been developed for solving large sparse linear systems on distributed grids. It
implements the multisplitting method that consists in splitting the original linear system into several
subsystems that can be solved independently. In this article, the performances of the GREMLINS
code obtained with several libraries for solving the linear subsystems are analysed. Its performances
are also compared with those of the widely used PETSc library, that enables one to develop portable
parallel applications. Numerical experiments have been carried out both on local clusters and on
distributed grids.
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environnement de grilles de calcul : comparaison des bibliothèques
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Résumé :
La résolution de systèmes linéaires creux de grande taille est essentielle à de nombreux domaines

scientifiques. Plusieurs algorithmes, basés sur des méthodes directes ou itératives, ont été développées
pour des architectures parallèles. Sur les grilles distribuées, constituées de processeurs localisés dans
des sites géographiques distants, leur performances peuvent être décevantes en raison des synchro-
nisations et des communications trop fréquentes. Le logiciel GREMLINS a été conçu pour résoudre
des systèmes linéaires creux de grande taille sur des grilles distribuées. Il est basé sur la méthode de
multidécomposition qui consiste à découper le système linéaire original en plusieurs sous systèmes
qui peuvent être résolu de manière indépendante. Dans cet article, nous analysons les performances
du code GREMLINS avec plusieurs bibliothèques pour résoudre les sous-systèmes linéaires. Nous
comparons également les performances de GREMLINS avec la bibliothèque PETSc qui permet de
développer des applications parallèles portables. De nombreuses expérimentations ont été menées sur
des clusteurs locaux et des grilles distribuées.
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Solving large sparse linear systems is essential in numerous scientific
domains. Several algorithms, based on direct or iterative methods, have
been developed for parallel architectures. On distributed grids consisting
of processors located in distant geographical sites, their performances may
be unsatisfactory because they suffer from too many synchronizations and
communications. The GREMLINS code has been developed for solving large
sparse linear systems on distributed grids. It implements the multisplitting
method that consists in splitting the original linear system into several sub-
systems that can be solved independently. In this article, the performances
of the GREMLINS code obtained with several libraries for solving the linear
subsystems are analysed. Its performances are also compared with those of
the widely used PETSc library, that enables one to develop portable paral-
lel applications. Numerical experiments have been carried out both on local
clusters and on distributed grids.

1 Introduction

Numerous scientific applications imply to solve a large sparse linear sys-
tem. Because of large requirements in terms of memory allocation and exe-
cution time, it may happen that this computation cannot be carried out
on a single-processor computer. Several multi-processor environments exist,
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Solving large sparse linear systems in a grid environment 13

such as parallel machines or clusters of computers. A distributed grid may
be defined as a set of connected local clusters. The large number of pro-
cessors it offers may be a relatively cheap answer to growing computational
needs. Because of the variety of machines and interconnection networks it is
usually composed of, a distributed grid is a heterogeneous environment. Be-
cause the performances of numerical algorithms designed to run on parallel
homogeneous computers may be unsatisfactory on such a grid, new coarse
grained and asynchronous efficient parallel algorithms must be proposed.

The GREMLINS code has been developed for efficiently solving large
sparse linear systems on a distributed grid [9]. It implements the multis-
plitting method [13, 16], based on a decomposition of the matrix into band
submatrices. Each processor belonging to the grid solves linear subsystems
using a direct or an iterative method. Successive approximations to the glo-
bal solution are computed. These iterations can be performed in a synchro-
nous or in an asynchronous mode. With the first version of the GREMLINS
code, the linear subsystems could be solved using direct methods from the
MUMPS [1] or the SuperLU [12] library or using iterative methods from the
SparseLib [11] library. The PETSc library is a popular suite of data struc-
tures and routines for scientific computing [6]. Applications developed with
PETSc are portable : a common code can be run an a sequential machine or
on various parallel architectures. PETSc employs the MPI standard for all
message-passing communication. By paying particular attention to memory
allocation, PETSc takes fully advantage of parallel machines. For solving
linear systems, it enables to use various iterative methods and also direct
methods from external libraries.

The originality of this article lies in two types of works. Firstly, the
GREMLINS code has been improved in order to allow each processor in a
distributed grid to use PETSc for solving its linear subsystems. Secondly,
the performances of the PETSc library for solving large linear systems have
been compared with those of the GREMLINS code, both on a local cluster
and on a grid consisting of processors from several geographical sites. The
article is organized as follows. The principles of the multisplitting method
and the architecture of the GREMLINS code are presented in Section 2.
Numerical experiments are described in Section 3. Firstly, the performances
of the GREMLINS code have been analysed, several possible libraries being
used to solve serially the linear subsystems generated by the multisplitting
method. Then the performances of the PETSc library and the GREMLINS
code have been compared. Both numerical experiments have been carried out
in a local and in a distant context. Section 4 presents concluding remarks
and planed perspectives.
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14 F. Jézéquel R. Couturier C. Denis

2 The multisplitting method

2.1 Principles of the multisplitting method

For solving a linear system, the multisplitting method generalizes the
block Jacobi method. Nevertheless the multisplitting method supports the
asynchronous iteration model, it can be used with direct and/or iterative
inner solvers (even simultaneously) and it allows processors to compute com-
mon components by mixing freely overlapped components between proces-
sors. Its main principles are described here.

Let us consider the n× n non-symmetric sparse linear system

Ax = b (1)

and let us assume it has a unique solution. The multisplitting method
consists in splitting the matrix into horizontal band matrices. For the sake
of simplicity, let us consider the decomposition generates as many band ma-
trices as processors. Thus each processor is in charge of managing a subma-
trix, denoted by ASub. The part of the band matrix before the submatrix
represents the left dependencies, called DepLeft, and the part after the
submatrix represents the right dependencies, called DepRight. Let us de-
note by XSub the part of the solution vector and BSub the part of the
right-hand-side vector involved in the computation. Figure 1 describes the
decomposition of A, x and b into several parts (DepLeft, ASub, DepRight,
Xleft, XSub, XRight, BSub) required locally by a processor.

B
SubDepLeft ASub DepRight

X
L

eft
X

Sub
X

R
ight

Fig. 1 – Decomposition of the matrix A, the solution vector x and the
right-hand-side vector b into several parts required locally by a processor

At each step, a processor computes XSub by solving the following sub-
system

ASub ∗XSub = BSub−DepLeft ∗XLeft−DepRight ∗XRight. (2)
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Solving large sparse linear systems in a grid environment 15

Then the solution XSub must be sent to each processor depending on it.

Solving a linear system using the multisplitting method requires several
steps described below.

1. Initialization
The matrix can be loaded from a data file or generated at run time.
Each processor manages the load of the band matrix DepLeft+ASub+
DepRight. Then until convergence, each processor iterates on :

2. Computation
At each iteration, each processor computes BLoc = BSub−DepLeft∗
XLeft−DepRight∗XRight. Then, it solves the linear system ASub∗
XSub = BLoc.

3. Data exchange
Each processor sends XSub, the part of the solution vector it has
computed, to the other processors. When a processor receives a part
of the solution vector from another processor, it should update the
appropriate part of XLeft or XRight according to the rank of the
sending processor.

4. Convergence detection
Convergence can be detected using a centralized algorithm described
in [3] or a decentralized one, that is a more general version, as described
in [4].

In the multisplitting method, asynchronous iterations may reduce the
run time. In this case, receptions are non blocking, computations are disso-
ciated from communications using threads and an appropriate convergence
algorithm is used. For more references on theoretical works concerning asyn-
chronous iterative algorithms, interested readers are invited to read [7].

The serial solver used for the linear subsystems can be a direct one
or an iterative one. With a direct solver, the most consuming part is the
factorization of the submatrix, that is performed at the first iteration only.
Then other iterations are faster, because only the right-hand-side changes.
With an iterative solver, all the iterations require approximatively the same
time.

The number of iterations required to solve the system is related to the
spectral radius of the iteration matrix : the closer the spectral radius is
to 1, the more iterations are required, as for all iterative methods. The
convergence condition in the asynchronous version is more restrictive than
in the synchronous one [2]. In some rare practical cases, the synchronous
version would converge whereas the asynchronous one would not.

As a remark, some elements of the solution vector may be computed by
several processors. This overlapping may reduce the number of iterations re-
quired to obtain the convergence. In [2], the authors have shown an example
of the impact of overlapping over the speed of convergence.
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2.2 The GREMLINS code

The GREMLINS code implements in C++ the multisplitting method for
solving non-symmetric sparse linear systems. It uses the CRAC library [10]
for communication. Depending on a flag set by the user in the GREMLINS
code, communications with CRAC can be synchronous or asynchronous.
Although the internals of CRAC are based on multithreading, the CRAC
programming interface uses the message passing paradigm. CRAC basically
has three functionalities : send a message, receive a message and detect the
convergence. The emission of a message is never blocking. The message is
copied into the outgoing queue when the sending method is called. The
receiving method is blocking in the synchronous mode, whereas it is not in
the asynchronous mode. In the latter case, if one or several versions of a
message arrived, the method returns its last version, otherwise it returns
nothing. The convergence method requires a boolean argument indicating
if local convergence has been achieved and determines if global convergence
has been reached using a centralized algorithm.

With the multisplitting method, the initial linear system is split into
subsystems. Each subsystem is solved on one processor. In the previous
version of the GREMLINS code [9], three scientific libraries could be chosen
for solving the subsystems : MUMPS [1], SparseLib [11] and SuperLU [12].
The GREMLINS code has been improved to allow the use of the PETSc
library [6] also.

The GREMLINS code consists of :
– C++ methods that first ensure the distribution of the matrix and then,

in an iterative process, compute the right-hand-sides, send them to the
different processors, receive the solutions from the different processors and
detect the convergence. These methods implement an iterative so-called
outer solver and use the CRAC library for communication.
– C++ methods using a scientific library that solve the subsystems in a

serial way. These methods implement a sequential so-called inner solver,
that can be direct or iterative, depending on the library chosen. For each
library, the inner solver consists of at most two methods : a constructor
(that classically performs initializations in object oriented programming
models and is not necessarily present) and a method called solve that
actually computes the solution of the linear system.
With the outer solver, the initial matrix and the submatrices are repre-

sented in a CSR (Compressed Sparse Row) format that consists in three
arrays : one for the column indices, one for the numerical values and one for
the positions in the previous arrays of the first entry in each row. The right-
hand-side and the solution of each subsystem are represented by classical
numerical arrays.

With the inner solver, the respresentation for the matrix, the right-hand-
side and the solution depends on the library used. If necessary, the matrix
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Solving large sparse linear systems in a grid environment 17

is converted from the CSR format previoulsy described to another format
required by the library. This conversion is performed once, in the constructor
of the inner solver. In the solve method, the right-hand-side and the solution
may also be converted if particular types are required for these two arrays.

3 Numerical experiments

3.1 Context of the experiments

With the GREMLINS code, the linear system to be solved can be either
generated at run time or assigned from a file. In the latter case, the file
is stored on a processor which is in charge of distributing the data to the
others. Therefore the memory size of this processor limits the size of the file
to be processed. In the numerical experiments described in this section, for
the matrices to be relatively large, they are generated at run time.

Each processor computes specific matrix rows, such that each matrix is
automatically distributed on the processors. Each generated matrix consists
of several non-empty diagonals : the main diagonal, the two nearest neighbor
diagonals and other diagonals equitably scattered between the main diago-
nal and the desired bandwidth. As an example, a matrix with 7 non-empty
diagonals and a bandwidth equal to half the matrix size is represented in
Figure 2. Off-diagonal entries are random values between -1 and 0. Each
diagonal entry is the inverse of the sum of the entries of the same row plus
a random value from an interval specified by the user. Such generated ma-
trices are M-matrices [5] (defined as Z-matrices with eigenvalues whose real
parts are positive). Z-matrices, i.e. matrices whose off-diagonal entries are
non-positive, and also diagonally dominant matrices satisfy the convergence
condition of both the synchronous and the asynchronous version of the mul-
tisplitting method [2].

Numerical experiments have been carried out on GRID’50001, an expe-
rimental grid platform that aims at featuring a total of 5000 processors and
gathers 9 sites geographically distributed in France [8]. Most of those sites
have a Gigabit Ethernet network for local machines. Links between the dif-
ferent sites range from 2.5 Gb/s to 10 Gb/s. Processors in the platform are
mostly AMD Opteron, but also Intel Xeon and Intel Itanium.

To run a code on the GRID’5000 platform, processors have to be reser-
ved. The choice of the sites and the number of processors used depends on
the ressources availability in the grid. Because clusters in the GRID’5000
architecture use different operating systems and libraries, a common Linux
image has been deployed on the nodes reserved for the experiments descri-
bed in this section. Thus the same operating system, libraries and compilers
could be available on any site.

1URL address : http ://www.grid5000.fr
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Bandwidth

Fig. 2 – A generated matrix with 7 non-empty diagonals and a bandwidth
equal to half the matrix size

Two types of experiments are described. Firstly, the performances ob-
tained using different libraries to solve the subsystems in the multisplitting
method are compared. Secondly, the multisplitting method is compared with
the GMRES method [15] implemented in the PETSc library. This second
point provides a comparison of our solver with a standard parallel one.

3.2 Comparison of different inner solvers in the GREMLINS
code

Different inner solvers for the subsystems in the multisplitting method
have been compared : direct solvers from the MUMPS or the SuperLU li-
brary and iterative solvers from the PETSc or the SparseLib library. With
the latter libraries, the GMRES method has been used with an ILU precon-
ditioner.

Table 1 presents results measured in a local context : 100 processors with
a frequency of 2.4 GHz in Orsay. The results presented in Table 2 have been
measured with 155 processors in a distant context : 59 processors in Rennes,
50 processors in Sophia and 46 processors in Toulouse, having a frequency
of respectively 2.0 GHz, 2.0 GHz and 2.6 GHz. With multicore processors,
one core per processor has been used, because inner solvers are not thread
safe except SparseLib.

The matrices involved in Tables 1 and 2 have the same size (2.107), the
same bandwidth (2.106) and the same number of diagonals (13, 23 or 33) but
their elements have different values. These values result from a combination
of random values and parameters that are set by the user and have an impact
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Solving large sparse linear systems in a grid environment 19

on the convergence speed of the multisplitting method. Indeed the number of
iterations required to achieve convergence and therefore the execution time of
the GREMLINS code is related to the spectral radius of the iteration matrix
in the multisplitting method. Although they have the same pattern, the
matrices from Tables 1 and 2 have been generated using different parameters.
In the synchronous mode, a matrix from Table 2 would require less iterations
and therefore lead to a faster convergence than the corresponding one from
Table 1 in the same context (local or distant processors).

The run time and the number of iterations performed by the outer solver
in the multisplitting method, in the synchronous mode and in the asynchro-
nous one, are reported in both Tables. In each case, the code has been run
several times. The run time that is reported is actually the mean value of
the different run times measured. In the synchronous mode, the number of
iterations is constant from one execution to another. It is not the case in the
asynchronous mode, for which the number of iterations performed depends
on the network traffic ; the minimum and the maximum number of iterations
measured have been indicated. In the asynchronous mode, within one exe-
cution, the number of iterations also varies from one processor to another. It
is the number of iterations performed by the supermaster, a processor that
has a specific function for communications with the CRAC library [10], that
has been measured.

Synchronous AsynchronousSolver
time (s) nb. iter. time (s) nb. iter.

13 diagonals
MUMPS 98.79 83 93.79 [240-249]
SuperLU 84.09 83 98.07 [417-441]
SparseLib 87.21 83 91.68 [388-426]

PETSc 84.14 83 95.70 [424-457]
23 diagonals

MUMPS 278.43 148 258.98 [421-439]
SuperLU 253.71 148 248.57 [506-532]
SparseLib 272.39 148 259.32 [441-451]

PETSc 270.04 148 255.46 [411-414]
33 diagonals

MUMPS 407.06 205 376.94 [556-574]
SuperLU 367.49 205 351.04 [714-747]
SparseLib 394.02 205 364.86 [604-608]

PETSc 398.23 205 369.91 [527-566]

Tab. 1 – Execution times with the four solvers for generated matrices of
size 2.107 and bandwidth 2.106 on 100 processors in a local cluster in Orsay.
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20 F. Jézéquel R. Couturier C. Denis

Synchronous AsynchronousSolver
time (s) nb. iter. time (s) nb. iter.

13 diagonals
MUMPS 25.15 12 42.09 [199-215]
SuperLU 23.42 12 44.15 [510-526]
SparseLib 23.00 12 32.67 [272-310]

PETSc 23.57 12 40.89 [322-453]
23 diagonals

MUMPS 57.00 17 54.35 [170-188]
SuperLU 55.45 17 51.40 [333-389]
SparseLib 54.88 17 54.82 [302-330]

PETSc 55.33 17 53.87 [322-369]
33 diagonals

MUMPS 83.88 21 75.16 [191-199]
SuperLU 78.54 21 66.58 [344-359]
SparseLib 79.83 21 70.44 [230-255]

PETSc 79.12 21 71.70 [203-218]

Tab. 2 – Execution times with the four solvers for generated matrices of
size 2.107 and bandwidth 2.106 on 155 processors : 59 in Rennes, 50 in
Sophia and 46 in Toulouse.

With the matrices considered, both in the local context and in the dis-
tant one, one can notice that the performances obtained with the four inner
solvers are similar. In the synchronous mode, the number of iterations per-
formed by the outer solver is the same whatever the inner solver is. As the
number of diagonals increases, the computational volume increases, the num-
ber of iterations in the synchronous mode increases and so does the run time
both in the synchronous mode and in the asynchronous one. Performances
in the asynchronous mode are slightly better than in the synchronous one
from a certain number of diagonals.

3.3 Comparison of the GREMLINS code and the PETSc
library

The multisplitting method implemented in the GREMLINS code has
been compared with the GMRES method implemented in the PETSc li-
brary, both in a local and in a distant context. The inner solver used in the
multisplitting method is a direct one from the MUMPS library. As men-
tioned in 3.2, this choice has no significant impact on the run time of the
outer solver. Because no preconditioner has been implemented yet in the
GREMLINS code, the GMRES method has been used with no preconditio-
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ner also. The run time and the number of iterations of the outer solver in
the GREMLINS code have been compared with those of the GMRES me-
thod. Although the run time required by the generation of the matrix has
not been reported, particular attention has been paid to memory allocation.
Indeed with PETSc preallocation of memory is critical for achieving good
performances during matrix assembly. A correct estimation of the number of
nonzeros per row (before actually setting the matrix values) has significantly
reduced the total execution time.

Table 3 presents results measured in a local context (100 processors with
a frequency of 2.4 GHz in Orsay) with matrices of size 2.107 and band-
width 2.106. The matrices studied for Table 3 with 13, 23 or 33 diagonals
had also been used for Table 2. As the number of diagonals increases, the
run time logically increases. It is noticeable that, in this experiment, with
the multisplitting method the run time is slightly higher in the asynchro-
nous mode than in the synchronous one. When the number of diagonals
increases, the relative difference between the synchronous execution time
and the asynchronouse one decreases. This difference depends on the ma-
trix, the processors and the interconnection network involved. Indeed the
run time is lower in the asynchronous mode than in the synchronous one,
on the one hand for the same matrix with 23 or 33 diagonals in a distant
context (see Table 2) and on the other hand in the same context for a matrix
with 23 or 33 diagonals having the same pattern but element values that
lead to a slower convergence (see Table 1).

Except with the matrix having 13 diagonals, the number of iterations
and the run time are lower with the GMRES method implemented in PETSc
than with the multisplitting method. This may be explained by the optimi-
zations inherent to the PETSc library in a local context. As the number of
diagonals increases, the ratio of the run time of the GREMLINS code over
the one of the PETSc code increases. In this experiment, this ratio is at
most 2.

Tables 4 and 5 present performances measured in a distant context, on
198 processors : 68 in Orsay (2.4 GHz), 70 in Rennes (2.0 GHz) and 60 in
Sophia (2.0 GHz).

The results reported in Table 4 refer to matrices of size 2.107 and band-
width 2.104. As already noticed in 3.2, the performances of the multisplitting
method are better in the asynchronous mode than in the synchronous one
from a certain number of diagonals. In this experiment, the run time of the
PETSc code is higher than the one of the GREMLINS code. Like in Table
3, as the number of diagonals increases, the ratio of the run time of the
GREMLINS code over the one of the PETSc code also increases. In Table
4, this ratio, that remains less than 1, is at least 0.5 (this value refers to the
matrix with 13 diagonals).

The matrices studied for Table 5 all have 13 diagonals. Their size S varies
from 2.107 to 7.107 and their bandwidth is 10−3S. As their size increases,
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Multisplitting (MUMPS) PETSc
Nb. Synchronous Asynchronous

diagonals time (s) nb. iter. time (s) nb. iter. time (s) nb. iter.
13 15.50 12 20.59 [54-56] 17.56 12
23 32.04 17 39.56 [66-72] 24.28 14
33 42.11 21 48.90 [81-82] 27.69 15
43 54.95 25 58.65 [78-81] 30.58 16
53 62.49 28 66.48 [97-100] 34.13 17
63 73.40 32 76.33 [104-110] 37.78 18

Tab. 3 – Execution times of the GREMLINS code and the PETSc code for
generated matrices of size 2.107 and bandwidth 2.106 on 100 processors in
a local cluster in Orsay.

Multisplitting (MUMPS) PETSc
Nb. Synchronous Asynchronous

diagonals time (s) nb. iter. time (s) nb. iter. time (s) nb. iter.
13 20.76 37 23.14 [172-198] 42.10 47
23 27.56 46 33.02 [215-245] 49.09 54
33 38.71 57 33.58 [169-186] 55.41 60
43 51.48 68 43.50 [173-189] 57.75 68
53 65.03 78 53.58 [187-204] 69.20 71
63 75.04 91 72.44 [243-286] 76.92 80

Tab. 4 – Execution times of the GREMLINS code and the PETSc code for
generated matrices of size 2.107 and bandwidth 2.104 on 198 processors : 68
in Orsay, 70 in Rennes and 60 in Sophia.

the communication time increases and therefore the run time increases. As
their size varies, the number of iterations both with the GREMLINS code in
the synchronous mode and with the PETSc code does not differ much. As
usually noticed in Tables 1 to 4 for matrices with 13 diagonals, performances
with the multisplitting method are better in the synchronous mode than in
the asynchronous one, except for the matrix of size 7.107. It is noticeable that
the number of iterations with the PETSc code is slightly higher than the one
with the GREMLINS code in the synchronous mode. The performances of
the GREMLINS code are better than those of the PETSc code, except when
the GREMLINS code is run in the asynchronous mode with the matrix of
size 3.107.

Remark 1 The number of iterations is related to, on the one hand, the
spectral radius of the iteration matrix for the multisplitting method, and on
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Multisplitting (MUMPS) PETSc
Size Synchronous Asynchronous

time (s) nb. iter. time (s) nb. iter. time (s) nb. iter.
2.107 20.76 37 23.14 [172-198] 42.10 47
3.107 29.53 39 56.66 [281-314] 52.53 47
4.107 36.53 41 43.17 [160-179] 59.68 47
5.107 39.16 36 53.18 [158-175] 59.10 46
6.107 51.64 42 77.02 [195-213] 77.94 55
7.107 98.47 36 93.71 [189-215] 120.09 46

Tab. 5 – Execution times of the GREMLINS code and the PETSc code for
generated matrices having 13 diagonals on 198 processors : 68 in Orsay, 70
in Rennes and 60 in Sophia.

the other hand, the conditioning of the matrix for the GMRES method. The
size of the matrices studied in our experiments was too high for their condi-
tioning to be exactly evaluated. However, from the convergence observed with
the GMRES method, we can deduce a satisfactory conditioning of the ma-
trices.

4 Conclusion and perspectives

For solving a linear system, the multisplitting method is an iterative
method that consists in splitting the matrix into band submatrices. In a
distributed environment, each processor may be in charge of managing a
submatrix. The GREMLINS code enables one to use several variants of
the multisplitting method in a grid environment. First iterations can be
performed in a synchronous or in an asynchronous mode. Then the linear
subsystems that arise from the matrix decomposition can be solved using
a direct or an iterative method. For solving the subsystems, direct and ite-
rative solvers from several libraries have been compared in a local context
(i.e. on processors from the same cluster) and also in a distant one (i.e.
on processors from clusters located in different geographical sites). With
the matrices studied, no significant difference in terms of performance has
been noticed, both in a local or in a distant context. From a certain num-
ber of diagonals in the matrix, the asynchronous mode may lead to slightly
better performances than the synchronous one. The multisplitting method
implemented in the GREMLINS code has been compared with the GMRES
method implemented in the PETSc library. On a local cluster, Petsc takes
advantage of optimizations, its performances are usually better in such an
environment. In our numerical experiments carried out in a local context,
the run time of the GREMLINS code is at most twice the one of PETSc.
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In a distant context, the performances of the GREMLINS code are usually
better. Again a ratio that is at most 2 has been noticed.

Several perspectives to this work are planed. Each matrix involved in
our numerical experiments is not entirely managed by one processor. A part
of the matrix is generated by each processor belonging to the grid. Matrices
arising from real life problems have also been studied [2]. In this case, a file
is stored on one processor that sends parts of the matrix to the others. But
this limits the size of the matrix. In order to solve large real life problems,
the GREMLINS code may be linked with a finite element method software,
such as the ParaFEM free library [14]. After the finite element computation,
the large sparse linear system resulting from the modelling would be solved
using the GREMLINS code, without being explicitly built. Each processor
would build and solve a local sparse linear system.

The GREMLINS code can be run in a synchronous or in an asynchro-
nous mode, thanks to the CRAC library. But CRAC does not make any
difference between processors belonging to the distributed grid, even if some
processors are on the same local parallel cluster. The GREMLINS code could
be improved to better use the local parallel clusters in a grid. Because the
PETSc library is designed to fully take advantage of parallel computers and
local clusters, it could be used over local clusters to solve in parallel linear
systems generated by the multisplitting method. Communications would be
performed, on the one hand, by the MPI library used by PETSc on local
clusters and, on the other hand, by the CRAC library on distant clusters.
This implies adaptations in the CRAC library, that should become compa-
tible with MPI.
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